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High-density electroencephalography (hd-EEG) provides an accessible indirect method to
record spatio-temporal brain activity with potential for disease diagnosis and monitoring.
Due to their highly multidimensional nature, extracting useful information from hd-EEG
recordings is a complex task. Network representations have been shown to provide an
intuitive picture of the spatial connectivity underlying an electroencephalogram recording,
although some information is lost in the projection. Here, we propose a method to
construct multilayer network representations of hd-EEG recordings that maximize their
information content and test it on sleep data recorded in individuals with mental health
issues. We perform a series of statistical measurements on the multilayer networks
obtained from patients and control subjects and detect significant differences between
the groups in clustering coefficient, betwenness centrality, average shortest path length
and parieto occipital edge presence. In particular, patients with a mood disorder display a
increased edge presence in the parieto-occipital region with respect to healthy control
subjects, indicating a highly correlated electrical activity in that region of the brain. We also
show that multilayer networks at constant edge density perform better, since most
network properties are correlated with the edge density itself which can act as a
confounding factor. Our results show that it is possible to stratify patients through
statistical measurements on a multilayer network representation of hd-EEG recordings.
The analysis reveals that individuals with mental health issues display strongly correlated
signals in the parieto-occipital region. Our methodology could be useful as a visualization
and analysis tool for hd-EEG recordings in a variety of pathological conditions.
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1 INTRODUCTION

Recent developments in neuroscience are giving rise to an increasing
amount of data on the functioning of the brain at different scales,
from molecular processes at the level of single neurons to
macroscopic signals encompassing the whole brain, as in
electroencephalogram (EEG) or functional magnetic resonance
imaging (fMRI). Despite the trove of accumulating data,
disentangling the complexity of brain function is still a largely
open issue. A particularly important goal is to develop tools that
are able to extract useful information from brain activity
measurements on individual subjects in order to identify
potential network dysfunction and support diagnosis (Bassett, 2021).

It is becoming increasingly clear that brain activity is strongly
interconnected and hierarchically organized, requiring a
sophisticated mathematical description to infer its underlying
properties from measurements. The emerging field of network
neuroscience is advocating the use of networks descriptions for a
statistical analysis of brain functions at multiple spatio-temporal
scales (Bassett and Sporns, 2017). As in many other applications,
a network representation can be derived by suitably thresholding
the covariance matrix of the signal recorded at different locations
(Masuda et al., 2018) with sophisticated metodologies to chose an
optimal threshold (De Vico Fallani et al., 2017) or using singular
value decomposition of the multidimensional signal (Worsley
et al., 2005). A typical feature of many complex networks that
appears promising to describe the hierarchical brain organization
is the small-world topology involving at the same time small-scale
local clusters and long-range connections between distant areas
(Bassett and Bullmore, 2006). Networks provide a visual
representation of brain connectivity (Rubinov and Sporns,
2010), but extracting robust statistical information from brain
network is a challenging task. Measures at the intersection
between neuroscience and complexity theory have emerged
such as topological data analysis (Phinyomark et al., 2017) or
multivariate auto-regressive models (Astolfi et al., 2007).

EEG recordings have attracted a wide interest for many years in
the study of brain function due to the relative simplicity in which
spatially localized time dependent data can be acquired through
non-invasive instrumentation. EEG data are conventionally
analyzed by sampling time depended signals into different
frequency bands at different locations on the scalp and then
looking for specific signatures in each band. For instance, resting
state EEG in patients diagnosed with First Episode Psychosis and
Bipolar Disorder revealed a general trend of increased delta
(0.5–4 Hz) and theta (4–8 Hz) activity, and a decrease in alpha
(8–13 Hz) activity (Clementz et al., 1994). Resting state EEG of
bipolar patients has also been studied using complex network
analysis in Kim et al. (2013), yielding differences from healthy
control subjects across several network measures such as
clustering coefficient or characteristic path length. More recently,
machine learning combined with complex network analysis was
used to classify non-epileptic and epileptic EEG signals (Gao et al.,
2020). Network analysis was also performed for EEG signals
recorded in Alzheimer Disease patients during cognitive tasks
and resting state (Das and Puthankattil, 2020), revealing a higher
betweenness centrality in patients compared to controls subjects.

Since EEG signals are highly multidimensional, considering
their dependence on time, location and frequency band, a
projection into a single network may overshadow some
essential feature of the system. To overcome this limitation,
multilayer netwroks have been recently proposed as a
promising tool to study the dynamics of brain activity,
reducing the information loss due to the projection into a
single network (Muldoon and Bassett, 2016; De Domenico,
2017). A multilayer network can be seen as an interconnected
set single-layer networks where each layer represents a
particular dimension of the original signal (Aleta and
Moreno, 2019; Bianconi, 2018). In the context of EEG we
can assign distinct layers to different time windows and/or
different frequency bands and assign each electrode to a node
in each single-layer network. For example, a time-based
multilayer complex network analysis was perfomed on EEG
recordings in patients with epilepsy (Leitgeb et al., 2020). The
central issues in multilayer network based methods for EEG
signal is to find a representation that minimizes information
loss and introduce suitable statistical tools to extract readable
information from the networks.

FIGURE 1 | Overview of the method. (A) Short description of the
dataset, see Methods for complete details. (B) Example of the eye-artifact
correction method, showing the correlation of the signal from electrodes AF8,
F7, Fp1, and Fp2 (black lines) with horizontal eye movements (HEOG,
orange line) before (Raw data panel) and after (HEOG correction panel) the
eye-artifact correction method. (C) Example of a electrode-to-electrode
correlation matrix, depicted as a heatmap. Correlation goes from −1 (blue
shading) to +1 (red shading). Correlations are both time- and band-specific.
(D) Example of the resulting band- and time-depended multilayer networks,
where nodes represent electrode and edges represent high correlations, see
Methods for the details of the different thresholding procedures.
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In this paper, we propose a multilayer network representation of
EEG signals that maximize the information content and apply it to a
set of sleep EEG data from patients diagnosed with First Episode
Psychosis (FEP) or BipolarDisorder (BD) and comparedwith control
subjects. We then use a set of network measures and show that it is
easier to reliably stratify patients from control subjects when using
network representations with constant edge densities.

2 RESULTS

2.1 Maximization of Total Information
Change Over Time
Sleep hd-EEG recordings from 12 FEP, seven BD patients, and 13
control subjects were analyzed, see Methods for details and
Figure 1. Raw data are extremely fine-grained: the sampling
frequency of 500 Hz during an average of 8 h of sleep, multiplied
by the 64 electrodes that comprise the EEG headset yields
approximately, 1,000,000,000 measurements per patient.
Clearly, these measurements are not all independent of each
other, but they encode information that spans several sleep phases
and brain regions. Therefore, we aim at finding a satisfactory
compromise between compression and information.

To do so, we process the raw sleep EEG records through our
pipeline as described inMethods in detail and illustrated in Figure 1.
The first step is to remove artifacts from the data. Eye-movement
artifacts are well known to influence raw sleep EEG data. Tomitigate
their impact on our results, we use a fast linear regression model to
correct for eyemovements, seeMethods for details and Figure 1B: in
this illustrative figure, the horizontal electro-oculogram potential
(HEOG) well correlated with channels AF8, F7, FP2 and FP1 in the
top plot. After the correction step (bottom plot in pannel B), this
dependence was almost completely eliminated. After splitting the
signal into different frequency bands (see Methods for details), we
compute time- and band-specific electrode-to-electrode correlations
of the form Cb

ij(t), represented as a heatmap in Figure 1C. Finally,
we construct time-varying multilayer networks using an innovative
strategy that takes into account the whole dataset (and not each time
snapshot individually), maximising the total amount of information
contained in the time-varying dataset. Figure 1D offers a visual
representation of the final output we obtain after processing the raw
EEG data: a set of time-varying multilayer networs, where different
layers correspond to different frequency bands, network nodes
represent electrodes and edges represent high EEG correlations.

Networks offer a simplified and effective representation of
interactions between nodes, but deciding the correlation
threshold beyond which edges are added to the network is a
nontrivial subject. In order to make an informed choice, here we
introduce the Integrated Jensen-Shannon Divergence (IJSD),

I(θ) � ∑θ
t�1

D(ρt−1, ρt), (1)

a measure of the total information change over time (Grosse et al.,
2002), computed as the sum of the Jensen-Shannon divergence of
each epoch with respect to the previous one. Here ρt are the density
matrices associated to each network in the framework of spectral

entropies (Domenico and Biamonte, 2016), see Methods for details.
The value of I depends on θ in non-trivial ways, but the limit cases
are clear: if θ is too low (high), all edges are present (absent) at all
time steps, so there is no information change over time and thus
I � 0 for both θ � 0 and θ � 1. It is only for intermediate values of
the correlation threshold θ that the sequence of multilayer networks
can display richer temporal variations, yielding a higher information
change. This can be clearly seen in Figure 2 panels (A, B, C), which
show the value of I as a function of θ for one BD, one FEP and one
control example. As anticipated, I(θ) � 0 for both θ � 0 and θ � 1,
with a clear maximum at around θ ∼ 0.7 for most frequency bands.

2.2 Fixed-Threshold and Fixed-Density
Networks
We implement two strategies to choose the optimal correlation
threshold θ* from the analysis of the information content
quantified by IJSD. In the first approach, we set a global
absolute value for the correlation threshold, while in the
second approach that value is relative to each network and
chosen to maintain a constant edge density, keeping only the
interactions with highest absolute correlation. In both cases, the
adjacency matrices can be build as

Ab
ij(t) � 1 if |Cb

ij(t)|≥ θ*
0 else

{ (2)

that is, we place edges for both large positive and large negative
correlations.

The optimal correlation threshold θ* for fixed-threshold networks
is computed as the average of the band- and patient-specific optimal
values that result from optimizing each case separately,

θ* � 〈θ*b,p〉b,p (3)

θ*b,p � argmaxθ∈[0,1]I b,p(θ) (4)

where I θ(b, p) denotes the IJSD of patient p at frequency band b. In
other words, for each patient p we compute a band-specific optimal
threshold θ*b,p. The group averages and variability of these are shown
in Figure 2. Taking the average of all θ*b,p, we reach an overall value
of θ* � 0.72, shown as a black solid line in Figure 2. Overall, the
figure shows that a single global threshold can reasonably
accommodate for the band- and patient-specific optimal values.

The second approach consists in keeping the same fraction of
edges in all networks, yielding what we call fixed-density networks.
The optimal density value in this case is set so that it coincides with
the average density of the fixed-threshold networks. This second
approach takes into account that different patients, time point or
bands might have different intrinsic correlation levels, and presents
additional advantages from the network analysis point of view.

2.3 Network Edge Presence Shows
Differences Between Groups
We investigate the group differences between BD and control
patients, as well as between FEP and control patients. To do so, we
need to condense the information contained in our multilayer
and time-varying networks into simpler summary statistics. A
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simple yet useful measure in this case is what we coin as edge
presence, which is the fraction of time an edge is present (that is,
Ab
ij(t) � 1) during one full EEG sleep session. Formally,

Pb
ij � 〈Ab

ij(t)〉t (5)

Figure 3 shows the group differences ofPb
ij for each edge (i, j) and

each band when comparing BD patients with controls (panels A, C),
as well as FEP patients with controls (panels B, D). This analysis is
shown both for fixed-density networks (A, B) and for fixed-
threshold networks (C, D). In both cases we see differences in
the parieto-occipital area, but the signal is stronger for fixed-density
networks. If we focus on Figure 3A, for instance, we see that BD
patients tend to have a lower edge presence in the parieto-occipital
area (strong blue edges). Notice that we employ a colorbar that goes
from red to transparent to blue, so that edges that do not have strong
differences are effectively not drawn. Overall, the figure shows
important differences in the parieto-occipital area, with a similar
but stronger signal for fixed-density networks.

2.4 Parieto-Occipital Correlations and
Clustering Measures Differ Between
Groups
Motivated by the results shown visually in Figure 3, we construct
a parieto-occipital (PO) specific measure. Selecting the 18
electrodes of that region (see methods for details), we compute
the difference of PO presence between the PO area and the rest.

PPO � 〈Pb
ij〉(ij)∈PO − 〈Pb

ij〉(ij) ∉ PO (6)

Additionally, we also consider the average clustering
coefficient, the average shortest path length and the
betweenness centrality as measures related to clustering and
information navigability as candidates to better quantify the
differences that we see in Figure 3.

Figure 4 shows boxplots of these four measures comparing,
BD and FEP patients with control subjects. Statistically
significant differences are marked with a star, see Methods
for details. Panels (A, B) show that for bands 1 to 4 (that is,
between 1 and 16 Hz), FEP patients have a higher clustering
coefficient when compared to controls, while panels (C, D)
shows some significant results on the same range of
frequencies for the average shortest path length, both for
BD and for FEP patients. Turning to betweenness centrality,
panel E shows that when using fixed-threshold networks, FEP
patients significantly differ from controls in bands 2, 3, and 4
(2–16 Hz) Interestingly, when looking at the parieto-occipital
relative presence (panels G, H), we observe a different pattern
of marked differences between BD and control patients for
lower frequency bands, 0.5–4 Hz. This is consistent with the
fact that the more standard network measures used in panels A
to F treat all nodes under the same footing, independently of
the brain region they correspond to, while PO presence is a
tailor-made measure, specifically designed to capture the
visual results of Figure 3 taking into account the location of
parieto-occipital electrodes.

FIGURE 2 |Choice of correlation thresholds. (A–C)CheckWhich Patient. Integrated Jensen-Shannon divergence (JSD) as a function of the correlation threshold θ,
for each band (colored lines), for BD (A), Control (B) and FEP (C) patients. The panel shows a consistent maximum of the integrated JSD at around θ � 0.7. (B) Threshold
that maximizes the integrated JSD. The errorbars correspond to the average over different patients. The overall chosen best threshold is marked as a solid horizontal
black line, see Methods for details. The panel shows that a single correlation threshold value can accommodate all patient groups and frequency bands.
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2.5 Network Measures Correlate With Edge
Density
It is interesting to ask if the networkmeasures shown in Figure 4 are
correlated with network edge density, for the case of fixed-threshold
networks. Figure 5 shows how indeed edge density is a strong driver
of average clustering coefficient, average shortest path length and
betweenness centrality for all patient groups, but not of parieto-
occipital presence. This is consistent with the fact that, by

construction, PPO is a relative difference of two averages taken on
the same network.

3 DISCUSSION

Hd-EEG represents an attractive method to study brain function
by providing non-invasive spatio-temporal measurements of
brain activity with possible applications to disease diagnosis

FIGURE 3 | Network edge presence highlights differences between groups. Multilayer EEG fixed-density (A, B) or fixed-threshold (C, D) networks, with edges colored
according to the averageBD (A,D)or FEP (C,D)presenceminus the corresponding average value of control patients. Edgepresence is ameasure of the fractionof time an edge is
active, see Methods for details. The four panels use a divergent colormap that is blue for negatives values, red for positive values, and becomes gradually transparent as values
approach zero. Overall, the panel visually shows clear differences between BD and control patients, and between FEP and control patients.
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and monitoring. While it is relatively easy to obtain large amount
of data from individual subjects, extracting useful information
from hd-EEG recordings is a challenging task. Hd-EEG only
provides an indirect far-field measurement of the underlying
electrical activity and is intrinsically subject to noise.
Furthermore, hd-EEG recordings typically involve noisy
signals recorded in parallel through different electrodes for
long time periods so that even the mere visualization of the
data is complex.

Network representations have been shown in the past to
provide a useful tool to highlight the connectivity and
spatio-temporal correlation of brain activity as revealed
from EEG or other measurments such as fMRI. Due to the
complexity of hd-EEG recordings, multilayer networks are
more appropriate to represent the data since they provide
separate visualization for potentially crucial features of EEG

signals such as the frequency band and/or the time
dependence. An effective network representation of hd-EEG
recordings should be able to extract most of the relevant
information from the signal cross-correlation. To address
this issue, we use the IJSD to quantify information content
in the multilayer network (Domenico and Biamonte, 2016)
and adjust correlation threshold parameters to maximize it. In
this way, we obtain a multilayer networks that maximizes the
information content of the underlying hd-EEG recordings and
test it on a set of EEG data obtained from patients with mental
health issue, as well as healthy control subjects.

Statistical analysis on the resulting multilayer networks reveals
a number of distinguishing topological features between patients
and the control group. In particular, observed differences in
parieto-occipital edge presence appear to be particularly
relevant. These results indicate a stronger correlation of EEG

FIGURE 4 | EEG network measures evidence differences between groups. Boxplots of average clustering (A, B), average shortest path length (C, D),
betweenness centrality (E, F) and parieto-occipital presence (G, H) for control (gray), BD (blue) and FEP (pink) patients. Panels in the left column correspond to fixed-
threshold networks, while panels in the right column correspond to fixed-denstiy networks.
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signals in that area for BD patients with respect to control
subjects, a feature that warrants further study and could
potentially be used as a diagnostic tool.

An important issue in our analysis is that most statistical
indicators crucially depend on the density of edges present in the
network. To discount this effect, we constructed and analyzed
constant-density multilayer networks. While our analysis only
considers pairwise correlations, future work could also extend our
analysis to the study of interactions between groups of nodes
(Battiston et al., 2020).

We applied our strategy to a particular set of EEG recordings
from patients with mental disorders, but the methodology could
readily be generalized and applied to a variety of pathological
conditions. It would be interesting for instance to use our
multilayer network approach to predict the response of
individual patients to specific drugs. Finally, the analysis of
EEG signals could be enriched by measuring at the same time
other physiological signals, such as heartbeat or respiration
adding further layers to the network, in the spirit of the
emerging field of network physiology (Bashan et al., 2012;
Bartsch et al., 2015; Ivanov et al., 2016).

4 METHODS

4.1 Data
Hd-EEG recordings where obtained from San Paolo Hospital in
Milano. In particular, the dataset consists of sleep EEG recordings
from 12 FEP patients (Eight males and four females, mean age
21.0 ± 3.77), seven BD patients (Three males and four females,
mean age 34.57 ± 7.09), and 13 control subjects (Six males and
seven females, mean age 25.61 ± 10.64). All participants
underwent an in-laboratory sleep hd-EEG recording with a
64-electrode Easycap net designed to enhance electrode
contact with the scalp (BrainAmp, Brain Products GmbH,
Gilching, Germany). The night of the recording, all subjects
were accommodated in a sleep suite and allowed to sleep
within 1 h of their usual bedtime. All subjects were recorded
throughout the night and until they woke up naturally the next
morning. Table 1 shows the average length of recording sessions
and total sleep time for each participant group. The headset has
64 unipolar electrodes positioned following the standard 10–20
system, and include two channels that record eye movements
(one for vertical movements and one for horizontal movements).

FIGURE 5 | Fixed-threshold networks yield measures that correlate with edge density. Scatter plots of average clustering (A), average shortest path length (B),
betweenness centrality (C) and parieto-occipital presence (D) vs. network density, for fixed-threshold networks. Overall, the panel shows that all measures except
parieto-occipital presence correlate with network density.

TABLE 1 | Recording time and sleep time. Sleep time is obtained by visual scoring according to the American Academy of Sleep Medicine (AASM) Manual for the Scoring of
Sleep and Associated Events (Berry, R. B., Brooks, R., Gamaldo, C. E. and Susan, M. 2012). All values expressed in minutes.

FEP BD Healthy control

Recording Time (mean ± S.D.) 431.02 ± 136.94 526.06 ± 44.84 489.22 ± 42.44
Total Sleep Time (mean ± S.D.) 300.02 ± 115.75 351.77 ± 102.38 361.47 ± 73.92
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All recordings had a sampling frequency of 500 Hz. Data was
provided in anonymized form as pairs of .set and .fdt files.

4.2 Data Preprocessing
Our preprocessing pipeline transforms the raw EEG recordings
into correlation tensors of the form Cb

ij(t), with (i, j) denoting and
edge between electrodes i and j, b a specific frequency band, and t
a 30-s epoch. The steps we carry are as follows:

1. Epochs division: divide the raw signal into epochs of
approximately 30 s, see below for details, obtaining a signal
Si(t) for electrode i and epoch t.

2. Artifact correction: apply eye-movement correction.
3. Bands division: divide the corrected signal into seven

frequency bands. This gives a signal Sbi (t) with b ∈ {0, . . ., 6}.
4. Correlation analysis: compute electrode-to-electrode Pearson

correlations, obtaining a correlation tensor of the form Cb
ij(t).

Epochs division: We divide EEG recordings into epochs of
around 30 s following Aboalayon et al. (2016). To be precise, each
epoch has a length of 214 raw time points which, at a sampling
frequency of 500 Hz, corresponds to 32.768 s. This choice is
particularly convenient because pure powers of two allow for
faster discrete Fourier transform calculations.

Artifact correction: Following Gratton et al. (1983), we correct
for eye-movements using a linear regression equation of the form

Y � XB (7)

where Y corresponds to the EEG data (62 channels in our case), X
corresponds to the eye-movement data (Two channels in our
case), and B is the regression coefficient matrix to be determined.
Solving for B via least squares, the corrected signal X* is
computed as

X* � (X − YB)T (8)

Bands division: We use seven frequency bands, numbered
from 0 to 6 throughout the manuscript, which logarithmically
interpolate the 0.5–64 Hz range typical of brain waves.

• Band 0: (0.5, 1) Hz.
• Band 1: (1, 2) Hz.
• Band 2: (2, 4) Hz.
• Band 3: (4, 8) Hz.
• Band 4: (8, 16) Hz.
• Band 5: (16, 32) Hz.
• Band 6: (32, 64) Hz.

4.3 Correlation Analysis
We use the Pearson correlation coefficient to measure the
strength and direction of dependence between the signals xi, xj
recorded by two electrodes i, j,

Cij � cov(xi, xj)
σxiσxj

. (9)

Repeating this measurement for each band b and timepoint t,
we get a full correlation tensor Cb

ij(t).

4.4 Jensen-Shannon Divergence
We use Jensen-Shannon Divergence (JSD) as a distance measure
between networks, in the framework of spectral entropies
(Domenico and Biamonte, 2016). For a pair of networks with
density matrices ρ and σ, the JSD is defined as

J(ρ‖σ) � S
ρ + σ

2
( ) − 1

2
[S(ρ) + S(σ)], (10)

where S(ρ) is the spectral entropy of the network,

S(ρ) � log2Z + τ

ln 2
Tr[Lρ], (11)

with L denoting the Laplacian, τ diffusion time and the density
matrix ρ defined as

ρ � e−τL

Z
, Z � Tr(e−τL) (12)

4.5 Network Measures
Parieto-occipital edge presence: The parieto-occipital area is
mapped to the following electrodes: P7, P5, P3, P1, PZ, P2,
P4, P6, P8, PO7, PO3, PO4, PO8, O1, OZ, O2, and IZ. From
this list, the parieto-occipital presence is computed as explained
in the main text, mainly the difference of average presence
between nodes in the parieto-occipital area and the rest.

Clustering Coefficient: We use the standard definition of
clustering coefficient,

ci � 2 · ti
ki · (ki − 1) (13)

as implemented in the networkx python library (Hagberg
et al., 2008), where ti is the number of triangles in which
node i is involved and ki is the node degree. Averaging over
all nodes, we define the clustering coefficient of the
network as

c � 1
N

∑N
i�1

ci (14)

Betweenness Centrality: We use the convention of Brandes
(2008), which defines a node-dependent quantity as follows:

cB(i) � 2
(N − 1)(N − 2) ∑

j,k∈V

σ(j, k|i)
σ(j, k) (15)

where σ( j, k|i) is the number of shortest path that connect nodes j
and k that passes through i and σ( j, k|i) � 0 if i � j, k. σ( j, k) is the
total number of shortest path connecting j and k and σ( j, k) � 1 if
j � k. By convention the fraction σ(j,k|i)

σ(j,k) is considered zero if both
elements are zero. We then average over all nodes to get a single
measure for each network:

BC � 1
N

∑N
i�1

cB(i). (16)

Average Shortest Path Length: We start from the standard
definition of average shortest path length (ASPL) for a connected
graph G
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aG � 1
N · (N − 1) ∑i≠j d(i, j). (17)

where d(i, j) is defined as the length of the shortest path
connecting two nodes, j. If i and j belong to two different
connected components d(i, j) is said to be infinite, while
d(i, j) � 0 if i � j.

In our setting, networks can have more than one
connected component, and we do not want to limit
ourselves to the largest connected component as important
information could be missed. Hence we employ a weighted
version of the ASPL,

waG � ∑nc
c�1ac · wc∑nc

c�1wc
(18)

where nc is the number of connected components with more than
two nodes and wc � Nc · (Nc − 1), Nc is the number of nodes of
component c. This formulation takes into account the ASPL of all
nodes but effectively gives more weight to the larger components.

4.6 Statistical Analysis
Group differences are assessed with a two-sided T-test without
assuming equal variances between groups, as implemented in the
ttest_ ind function from the scipy Python scientific library. Cases
marked as significant (p) in Figure 4 correspond to a p-value
below 0.05.

4.7 Ethical Approval
Data from the SPINDLE-1 study, approved by the Milan Area A
Interhospital Ethics Committee (Approval n. 22864). All
participants signed an informed consent for participation in
the SPINDLE-1 study.
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