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Trillions of chemical reactions occur in the human body every second, where the generated
products are not only consumed locally but also transported to various locations in a
systematic manner to sustain homeostasis. Current solutions to model these biological
phenomena are restricted in computability and scalability due to the use of continuum
approaches in which it is practically impossible to encapsulate the complexity of the
physiological processes occurring at diverse scales. Here, we present a discrete modeling
framework defined on an interacting graph that offers the flexibility to model multiscale
systems by translating the physical space into a metamodel. We discretize the graph-
basedmetamodel into functional units composed of well-mixed volumes with vascular and
cellular subdomains; the operators defined over these volumes define the transport
dynamics. We predict glucose drift governed by advective–dispersive transport in the
vascular subdomains of an islet vasculature and cross-validate the flow and concentration
fields with finite-element–based COMSOL simulations. Vascular and cellular subdomains
are coupled to model the nutrient exchange occurring in response to the gradient arising
out of reaction and perfusion dynamics. The application of our framework for modeling
biologically relevant test systems shows how our approach can assimilate both multi-
omics data from in vitro–in vivo studies and vascular topology from imaging studies for
examining the structure–function relationship of complex vasculatures. The framework can
advance simulation of whole-body networks at user-defined levels and is expected to find
major use in personalized medicine and drug discovery.
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1 INTRODUCTION

The physiological system is a complex network in which each organ forms a subsystem and different
subsystems interact to maintain overall homeostasis of the body. Within each subsystem, functional
networks exist at different levels of complexity. Metabolic and signaling networks within a cell,
cell-to-cell communication networks in the extravascular region of tissue, cell-to-vessel
communication networks, and the vascular network which couples the local dynamics to
the global dynamics determine the functional behavior of all tissues. Bottom-up and top-down
modeling approaches emulate the cellular dynamics and organ-level physiology. The ability to
simultaneously capture the local and global dynamics by hierarchically bridging the
communication networks existing across diverse scales is the key challenge in the holistic
modeling of physiology.
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Microscale cellular models use a bottom-up approach in which
multi-omics data assimilated from high-throughput sources are
employed to formulate and validate parameter-intensive kinetic
models. These models capture the dependency of intracellular
dynamics onmetabolic steady states and flux distributions (König
et al., 2012; Berndt et al., 2018a; Masid et al., 2020). Owing to
cellular heterogeneity and the existence of intercellular
communication, autocrine and paracrine signaling (Koh et al.,
2012; Watts et al., 2016; Rao and Rizzo, 2020), the response
elicited by a single cell, cannot be scaled to a cell community. Cell
population models, therefore, employ discrete modeling
approaches for examining cell-to-cell interactions such as
intra- and inter-islet synchronization established by gap
junctional coupling (Pedersen et al., 2005; Barua and Goel, 2016).

Macroscopic organ scale compartment models (Sorensen,
1985) employ a top-down modeling approach for predicting
the bulk flow and elimination kinetics of biomolecules. These
organ scale models rely on single-tube, parallel-tube, or tank-in-
series approximations for idealizing distribution volume of blood
into compartments (Gray and Tam, 1987). For improving the
mechanistic understanding of tissue–vessel interaction,
multiphase porous media–based models representing the tissue
volume as intravascular and multi-region extravascular
compartments (e.g., capillary–interstitial–parenchymal
exchange unit) (Deussen and Bassingthwaighte, 1996;
Chalhoub et al., 2007) emerged. However, these frameworks

do not offer the possibility to fuse macroscale and microscale
models. Consequently, the effect of network architecture on
microperfusion patterns (Dolenšek et al., 2015) and its
influence on the nutrient exchange cannot be investigated by
these compartment models.

To overcome the limitations of compartment-based models,
continuum approaches have been put forth for understanding the
implications of morphological changes on the functional
response of an organ. In the extravascular domain, continuum
approaches are helpful in estimating the collective response of a
tissue mass where the bulk of the tissue is smeared and treated as a
homogenous domain. Although homogenization simplifies the
complexity of the computational domain, the approach is limited
in its ability to probe aspects such as the influence of
heterogenous arrangement of cells on nutrient release patterns.
In the intravascular domain, continuum approaches are suitable
for analyzing the effects of dilation of blood vessels, deformations
that occur as a result of fluid–structure interactions. With the
advancements in imaging studies, the availability of
microvascular datasets offers the possibility to model large-
scale networks. However, discretizing the tortuous
microvasculature vasculature for 3D modeling of the
advection–dispersion physics gives rise to extensive
computational overhead while employing continuum
approaches. This has led to the development of graph- and
hybrid-based approaches in which the vasculature infiltrating

GRAPHICAL ABSTRACT |

Frontiers in Network Physiology | www.frontiersin.org January 2022 | Volume 1 | Article 8028812

Deepa Maheshvare et al. Modeling Multiscale Physiological Transport

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


FIGURE 1 | Workflow involved in setting up the system for simulating the spatio-temporal evolution of biochemical species is illustrated: 1. Create skeleton: top,
z-stack of microscopic images; middle, three-dimensional volume of the reconstructed vascular geometry; bottom, the length of blood vessel branches are color-coded.
2. Solve flow distribution in the network: bottom, the vascular network represented as a hydraulic circuit; middle, from the estimated nodal pressures, flow through the
vessel branches are computed, and checked whether the mass conservation holds at the junctions; top: 3D visualization of the pressure gradient observed across
the vasculature. 3. Solve advection–dispersion-reaction dynamics: top, creation of the computational domain which includes the blood vessel and the layer of the cells
located in the vicinity of the outer surface of the capillary; middle, functional unit of the computational domain consisting of the vascular and cell sub-domains; bottom,
concentration gradient observed across the vasculature after solving the advection–dispersion-reaction dynamics.
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the tissue volume is represented as a one-dimensional network of
pipes for modeling the flow and delivering resources over
networks (Beard and Bassingthwaighte, 2000; Fang et al., 2008;
Heaton et al., 2012; Kojic et al., 2017; Safaei et al., 2018; Erlich
et al., 2019). In summary, while efforts have been made to resolve:
1) spatial heterogeneity at subcellular scale (Ii et al., 2019), 2)
short-range communication in the microenvironment of cell
communities, and 3) metabolic zonation in single sinusoid
models (Berndt et al., 2018b), explicit models of long-range
communications mediated by the vascular system remain
underdeveloped at both intra-organ and inter-organ scale.

Toward this end, we need a scalable hierarchical framework that
allows us to bridge diverse scales for modeling production,
consumption, and distribution of biochemicals in a tissue
microenvironment. We introduce a discrete modeling framework
for simulating gradient-driven advection–dispersion-reaction
physics of multispecies transport. Graph-theoretic approaches
that have been proven successful in examining flow of
information through large-scale real-world networks are applied
(Kumar et al., 2019; Bellocchi andGeroliminis, 2020; Besse and Faye,
2021) in this study. We resort to discrete-vector calculus and use the
operators defined on a finite-graph to spatially discretize and
formulate the transport dynamics in the vascular domain as a
“tank-in-series” model. Further, the computational domain for
establishing the vessel-to-cell exchange and cellular dynamics
within the cell are set up by combining ideas from other
multiscale and Krogh cylinder models (Berndt et al., 2018b; Frost
et al., 2019). Dynamics of nutrient exchange from the blood vessel to
the layer of cells that lie in close proximity to the vessel surface is
modeled; cellular reactions are explicitly modeled by representing
cells as discrete volume nodes. Differential equations defining the
interactions over nodal volumes embedded in the graph are solved
by translating the physical domain into a metamodel in which the
biophysical attributes are subsumed. This framework is suitable for
the following key applications: 1) to reduce the computational cost
involved in the spatial discretization of large tissue volumes (Section
3.1.2); our discrete approach is geared toward obtaining fast solution
by reducing the system dimension, and the metamodel is scalable
into any domain; 2) to probe the effect of flow topology on scalar
transport and the sensitivity of concentration dynamics to network
parameters and variations in physiological set points. (Section 3.2,
3.4); and 3) to assimilate multi-omics data from in vitro and in vivo
studies and vascular topology from imaging studies (Section 3.3) for
examining the influence of structural changes on the functional
response of a tissue. Our graph-based discrete modeling framework
differs from the existing approaches in the following aspects:
conventional finite-difference, finite volume– or finite-
element–based formulations operate on a continuous domain,
and the equations are discretized, and approximate solutions are
obtained. In our approach, we discretize the physical space and solve
the equations on the graph which forms the discrete domain. This
makes it possible to scale our framework to large networks and offers
the flexibility to fuse multiscale models by encoding imaging data of
vascular topology and omics data of cellular reactions to enhance
systems-level understanding.

The outline of this study is as follows: the procedure followed
in translating the capillary vasculature into a weighted graph and

the preliminary assumptions considered for setting up the
computational domain are discussed in Sections 2.1 and 2.2.
The governing equations of the flow distribution and the
mathematical formulation of the discrete model of
advection–diffusion-reaction physics are presented (Sections
2.3, 2.4, 2.5). We use our framework to model two
physiologically relevant test systems: 1) advection–dispersion
dynamics of glucose transport in the microvasculature and 2)
advection–dispersion-reaction dynamics of glucose–lactate
exchange in the functionally coupled tissue–vascular domains
(glucose–lactate dynamics is relevant in tumor metabolism where
metabolic activity alters in tumor microenvironments (Yang
et al., 2021) and in modeling fuel-stimulated insulin secretion
(Jiang et al., 2007; Prentki et al., 2013)). By applying our method,
we predict glucose drift in the islet vasculature and cross-validate
the flow and concentration fields of the multiphysics simulation
with COMSOL simulations (Section 3.1.1). We establish the
cell–vessel link and predict the spatio-temporal evolution of
glucose–lactate exchange in the extravascular and intravascular
domains (Section 3.3). We test the model behavior for various
flow topologies (Section 3.2) and different pressure drops and
glucose doses (Section 3.4). The network configurations
illustrated in the applications presented in this work are the
capillary blood vessels.

2 METHODOLOGY

For setting up the discrete modeling framework to study the
multiphysics coupling in multiscale systems, we start by
introducing the steps involved in constructing the
computational domain which is a metamodel of the physical
space, dissection of the metamodel into subdomains which
form the functional units, and formulation of the
mathematical operators. The three main steps involved in
our workflow are illustrated in Figure 1. 1) Create skeleton:
The topological organization of the capillary network and
biophysical characteristics such as length and diameter of the
vessels in the network constitute the structural and anatomical
characteristics relevant for setting up the computational
domain. These characteristics are extracted in this step by
skeletonizing the reconstructed vasculature (Section 2.1). 2)
Solve flow distribution in the network: The physical space is
translated into a weighted graph representing a hydraulic
circuit. The pressure and flow fields are computed over the
network by establishing the relationship between the node and
edge entities of the graph using the Hagen–Poiseuille equation
(Section 2.3). 3) Solve advection–dispersion-reaction dynamics:
The metamodel is subdivided into functional units composed of
cell and vessel subdomains. We combine multiple scales by
coupling the uptake and release flux of the cell domain ωt with
the carrier-mediated exchange flux occurring at cell–vessel
interface. The metabolic reactions occurring at the cellular
scale are modeled by biochemical rate laws, and the mass
transport in the capillary domain Ωbv is described by
coupling the cell-to-vessel influx or outflux with the
gradient-driven advection–dispersion transport in the
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capillary domain Ωbv (Section 2.4, 2.5). Henceforth, the
superscripts bv and t denote the parameters and variables
defined in the capillary blood vessel and tissue domains,
respectively.

2.1 Construction of Capillary Networks
The topology of the blood vessels that exchange nutrients with the
surrounding tissue is represented by the one-dimensional network of
pipes. The biophysical attributes, such as diameter and length of each
segment and the blood vessel fragment connecting two branching
points, are quantified as edge weights (W) of the graph network (G).
We investigate four network configurations in this work. The 3D
vasculature of pancreatic islet displayed in Figure 2A and both the
configurations of tumor network shown in Figures 2B,C were
reconstructed from binary images of vessels which were
examined in Chen et al. (Chen et al., 2020). The tiff stacks
containing binary images were generated in their study by
imaging the blood vessels, labeled with a fluorescent dye, using
light-sheet microscopy followed by segmentation of the vessels in the
ilastik (Sommer et al., 2011) toolkit which leverages a machine
learning–based classification algorithm. We follow the workflow
detailed below for generating a weighted graph from the binary

images: 1) the multipage .tiff image was rendered into a 3D volume
using the ray-casting technique available in 3D Slicer (Fedorov et al.,
2012) by specifying the spacing of the image stack in the xyz
directions. The dimensions of the input stack and domain size of
the reconstructed volume are given in Table 1. 2) The largest
connected region of the segmented volume was filtered using the
Island effect available in Slicer, and the 3D object was exported in a
stereolithography file (.stl) for skeletonization in the Vascular
Modeling Toolkit library (VMTK) (Antiga et al., 2008). 3)
vmtksurfaceclipper was employed to open the surface at the
network inlet, and the vmtknetworkextraction algorithm was
utilized to skeletonize the geometry. This yielded a network with
nodes (vertices) (V) positioned at the N-furcation points or terminal
ends and edges (E) formed by the vessel segment linking two nodes.
4) Segment length lbv and diameter dbv of the blood vessels were
computed by tracing the shortest path between two nodes and
extracting the maximum inscribed sphere radius (thickness),
respectively. The 2D structure of the mesentery vasculature
displayed in Figure 2D was generated by parsing the diameter,
length of vessels, and topology information available in Amiramesh
file provided in Esposito et al. (d’Esposito et al., 2018). Statistics of
diameter and length distributions are shown in Figures 2E,F. We

FIGURE 2 |Microvascular network configurations: (A) pancreatic islet, (B) tumor design 1, (C) tumor design 2, and (D)mesentery generated after skeletonization of
3D volumes reconstructed from the image geometries studied in Chen et al. (2020) and d’Esposito et al. (2018). Diameter (E) and length (F) distributions of the vessel
segments present in the four geometries.
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represent the skeletonized geometry of the capillaries as a weighted
graph, G(V ∈ Rm,E ∈ Rn,W ∈ Rn), for investigating the
advection–diffusion-reaction dynamics. The cardinality of all the
properties and the operators defined on G are summarized in
Supplementary Table S1.

2.2 Preliminary Assumptions
The time-dependent uptake and release of biochemicals by a tissue is
determined by the gradient-driven transport across the capillary vessels
which facilitate the transvascular exchange of solute with the tissue
interstitium. Subsequently, the carrier-mediated sites present on the
plasmamembrane of cells aid the uptake of nutrient resources from the
interstitial space for metabolism. Here, we introduce a graph-based
mathematical framework for capturing blood-tissue exchange. The
following simplifying assumptions aremade in ourmodel similar to the
assumptions considered in the other multiscale studies: 1) assuming

that the scalar concentration in the interstitial fluid attains rapid
equilibrium with the concentration in the blood (Chalhoub et al.,
2007), the interstitial compartment is not modeled; 2) the endothelial
layer of the capillary surface is linedwithmetabolite transporters, which
promote facilitated diffusion of biochemicals across the capillary wall; a
similar approach has been presented in Heaton et al. (Heaton, 2012).
We consider this as a reasonable assumption since a large fraction of
the endocrine cells of the pancreas lie in close contact with the surface
of the capillaries (Cohrs et al., 2017); 3) due to the deficiency of
lymphatic drainage in the islets of Langerhans (Korsgren andKorsgren,
2016), fluid exchange with lymph vessels is not modeled (Thurber and
Weissleder, 2011). Based on these considerations, we subdivide each
blood vessel branch and the layer of tissue surrounding the capillary
into discrete functional units, diagrammed in Figure 3D. The molar
transport occurring through the blood vessel compartment of these
functional units is modeled by the one-dimensional
advection–dispersion equation (Taylor, 1954) that accounts for
convection flux and the axial and radial diffusive flux of the solute
molecules. The transcapillary exchange flux and the cellular processes
occurring in the tissue compartment of each functional unit are
modeled by rate expressions that capture the kinetics of metabolite-
specific transporters and enzyme-catalyzed reactions, respectively. The
governing equations that model the inter-compartment dynamics of
these well-mixed volumes embedded in the finite connected network
representation of the capillary bed is detailed in Sections 2.4 and 2.5.

2.3 Mathematical Formulation of Flow
Distribution in the Network
To simulate the spatio-temporal evolution of chemical species, we
first solve for the flow field in the vascular branches using the
approach generally applied in studies that focus on modeling flow
distribution in branching networks (Kirkegaard and Kim, 2020;
Poelma, 2017; d’Esposito et al., 2018; Erlich et al., 2019).

2.3.1 Domain
To perform fluid flow simulations, the oriented graph depicted in
Figure 3A was used as the computational domain for setting up

TABLE 1 | Specifications of the computational domain, values of flow boundary
conditions, and the values of transport parameters used in the model.

Tissue (unit) Islet Tumor design 1 and 2 Mesentery

Image dimensions — — —

x (pixels) 366 529 —

y (pixels) 366 529 —

z (pixels) 253 348 —

Image spacing (μm) 0.6 2.31 —

Domain size — — —

x (μm) 219.6 1,221.9 —

y (μm) 219.6 1,221.9 —

z (μm) 151.8 803.8 —

# Vessel segments 52 63 489
vin (μm/s) 160a 400b 400b

Qin/Qout (nl/min) 3.76 23.8 40
Pin (mmHg) 60 60 -
Pout (mmHg) — — 0
] (Pas) 0.004c 0.004c 0.004c

~DA (cm2/min) 5.46e−4c 5.46e−4c 5.46e−4c

~DB (cm2/min) 7.71e−4c 7.71e−4c 7.71e−4c

#—number; vin—inlet velocity; Qin—inflow rate; Qout—outflow rate; Pin—inlet pressure;
Pout—outlet pressure; ν—viscosity of blood; ~DA—diffusion coefficient of species A
(glucose) in blood; ~DB—diffusion coefficient of species B (lactate) in blood; a—Diez et al.
(2017); b—Gabriel et al. (2020); c—Berndt et al. (2018b).

FIGURE 3 | Schematic representation of functional units in the model. Computational domain for studying (A) flow distribution, (B) and (C) advective–dispersive
transport of biochemicals in the discrete volumes of the blood vesselΩbv, and (D) advective–dispersive-reactive transport of biochemicals in the discrete volumes of the
blood vessel Ωbv and tissue domains ωt.
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the linear system of equations. As illustrated, each blood vessel
branch was treated as an axially symmetric cylinder of axial
length lbv and circular radius rbv derived from the diameter dbv

extracted from the skeletonized geometry (Section 2.1).

2.3.2 Equations
We consider blood as an incompressible, viscous Newtonian fluid
and apply the Hagen–Poiseuille equation (Eq. 2) for modeling the
conductance of an edge as a function of viscosity μ, radius rbv, and
length lbv. The linear analysis of the flow distribution presented
here is applicable for laminar flow, Re < 1 in all segments, and
this can be extended further to study the nonlinear rheology of
blood using the procedure illustrated in Pries et al. (Pries et al.,
1990). Therefore, the distribution of flow in a microvascular
network is determined by the pressure gradient and the resistance
offered to flow:

Qij � 1
Rij

pi − pj( ). (1)

Here, pi and pj are the pressures at tail i and head j nodes of
the oriented edge eij, and Gij is the conductance associated
with eij.

Qij � Gij pi − pj( ) � π rbv( )4
8 μlbv

Δp. (2)

The vector Q ∈ Rn of volumetric flow rates in n edges is
defined in Eq. 3. The negative of the oriented incidence matrix
M(G) ∈ Rn×m, denoted asM henceforth, is the gradient operator
that acts on the vector P ∈ Rm of nodal pressures to result in the
vector ΔP ∈ Rn of pressure gradients. We obtain Q by
premultiplying ΔP with the diagonal conductance-matrix
G ∈ Rn×n; this scales the pressure gradient across each edge by
the corresponding edge conductance.

Q � −GMP. (3)

In our model, we consider blood as an incompressible fluid
and determine the unknown nodal pressures by imposing
mass conservation at all nodes. Consequently, the net flow at
any given node i is zero (Eq. 4). Here, Qij is positive when
flow enters node i (Qi←j), negative when flow leaves node i
(Qi→j), and A(i) denotes the set of nodes that are adjacent
to i.

∑
j∈A i( )

Qij � 0. (4)

Overm nodes in the network, the vectorMTQ (MT ∈ Rm×n is a
divergence operator which is given by the transpose ofM) defines
the flow conservation at all nodes excluding the terminal nodes,
where the flow boundary conditions are specified. The non-zero
entries of vector ~q ∈ Rm (Eq. 5) contain the values of inflow or
outflow rates at the boundary nodes (Erlich et al., 2019). In
addition to the flow rate, we specify one value of known pressure
at the inlet pin or outlet pout. The values of these boundary
conditions were specified based on experimental
measurements of blood flow velocities reported in Table 1.

~qi �
−Qin, if i � inlet node
Qout, if i � outlet node
0, otherwise

⎧⎪⎨⎪⎩ (5)

MTGMP � ~q. (6)

Here, MTGM is a square matrix. After substitution of known
pressures in the vector P, the columns of MTGM scaled by the
values of known pressure are shifted to the RHS of Eq. 6. This
operation results in a non-square matrix on the LHS of Eq. 6. The
resulting system of linear equations is solved for the unknown
nodal pressures by finding the pseudoinverse (Golub and Pereyra,
1973), which is the generalization of inverse for rank-deficient
matrices. Pseudoinverse was computed in MATLAB using
singular-value decomposition. From the estimated nodal
pressures, the centerline velocity uij and the volumetric flow
rates are computed using Eq. 2.

2.4 Advection–Dispersion of Chemical
Species in the Blood Vessel
2.4.1 Domain Discretization
The axial lines (edges) of the pipe network in Figure 3A were
spatially discretized to set up the computational domain and
study the transport of biochemical species in the
microvasculature. For discretizing the edges into 1D
elements, in Gmsh (Geuzaine and Remacle, 2009), the
vasculature was represented as a geometry with point and
line entities. The length of the mesh elements, denoted by h in
Figure 3B, was constrained by specifying the maximum and
minimum characteristic lengths, i.e., h ∈ (cl + δ, cl—δ). We
derive the characteristic length cl based on the average
diameter of a biological cell, approximately 11.5 μm,
calculated from the volume ranges reported in the
pancreas (Pisania et al., 2010; Parween et al., 2016), and
we consider a deviation δ of 2.5 μm from cl.

2.4.2 Domain Volume Elements
Each node in the discretized domain forms the center of the
volume surrounding it. For instance, the volume of ith node Vbv

i
(Equation 7) located at the bifurcation point, depicted in
Figure 3B, is the sum of half-cylinder volumes formed
between nodes i–j, where j ∈ A(i) (Reichold et al., 2009).
Here, A(i) is the set {i-1, i+1, i+2} of nodes adjacent to i,
and Aij and lij are the cross-sectional area and length of the
cylindrical volume between nodes i–j, respectively. At the
junction nodes, we merge the half-cylinder volumes of the
adjoining edges and equate the sum to a spherical volume
(Figure 3C). Therefore, each branch in the network is
dissected into cylindrical elements, and the branches are
assembled together by the spherical elements at the
junctions. Since the rate of momentum transport is three
orders of magnitude greater than the rate of mass transport,
the accumulation term at any N-furcation junction is zero while
solving for flow field and non-zero while solving the mass
transport problem. As an example, for glucose species, the
ratio of momentum to mass transport defined by the
Schmidt number ]/D is around 4,000.
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Vbv
i � 1

2
∑

j∈A i( )
Aijlij. (7)

2.4.3 Equations
The continuous formulation of the advection–dispersion physics
is given by the following partial differential equation, which
describes the solute mole balance:

A
zCbv

zt
� ∇. −QCbv +DA∇Cbv( ). (8)

Here, A denotes the area of flow, D is the dispersion
coefficient of species, Q denotes the flow field, and Cbv is the
scalar concentration of a chemical species. To shift from the
continuous to discrete counterpart, first we assign the scalar
concentration field C0 to all vertices, and the flow field and dispersion
coefficients form the edge weights. The net change in the molar
concentration of a species Cbv

i in the control volume Vbv
i at the ith

node of the blood vessel depends on the contributions from advective
JAi and dispersive fluxes JDi presented in Equation 9. The influx and
outflux of JAi are the summation of molar fluxes through the edges
feeding into i (j→ i) and leaving i (i→ l), respectively, and the molar
flux through an edge is the flow-weighted concentration of the
compartment from which the oriented edge originates (Chapman,
2015; Hošek and Volek, 2019). The third term contributes to the
dispersive transport. Furthermore,A(i) is the set that contains nodes
that are adjacent to node i, A+(i) is the set of in-neighbor nodes of i,
A−(i) is the set of out-neighbor nodes of i, and Dik, Aik, and lik are the
dispersion coefficient, cross-sectional area, and length of edge eik,
respectively.

Vbv
i

dCbv
i

dt
� ∑

j∈A+ i( )
Cbv

j Q
in
j→i︸������︷︷������︸

influx

− ∑
l∈A− i( )

Cbv
i Q

out
i→l︸�����︷︷�����︸

outflux︸�������������︷︷�������������︸
advection flux JAi

+ ∑
k∈A i( )

DikAik

lik︸��︷︷��︸
DQ
ik

Cbv
k − Cbv

i( )
︸����������︷︷����������︸

dispersion flux JDi

(9)

Dik � ~Dik + u2
ikr

2
ik

48 ~Dik

. (10)

The dispersion coefficient is determined from Aris–Taylor’s
relation in Eq. 10. Here, ~Dik, uik, and rik are the diffusion
coefficient of a species, centerline velocity, and radius of eik,
respectively.

VbvdC
bv

dt
� MTQMoCbv −MTDQMCbv. (11)

For setting up the discrete advection–diffusion equation on
the network, we express the first and second order partial
derivatives in Eq. 8 in terms of weighted advection Laplacian
proposed by Rak et al. (Rak, 2017) and weighted diffusion
Laplacian, respectively. This yields a system of ordinary
differential equations shown in Eqs 11 and 12. In Eq. 11,
DQ ∈ Rn×nis the diagonal matrix with diagonal entries the
volumetric dispersion coefficient DA/l of each edge specified
in Eq. 9, Q ∈ Rn×n is the diagonal matrix with diagonal entries
the volumetric flow rate of each edge,Mo ∈ Rn×m is the modified

incidence matrix (Rak, 2017; Erlich et al., 2019), MTDQM is the
weighted dispersion Laplacian matrix LD(G) ∈ Rm×m, and
MTQMo is the weighted advection Laplacian matrix
LQ(G) ∈ Rm×m (Eq. 12).

VbvdC
bv

dt
� LQCbv − LDCbv. (12)

2.5 Advection–Dispersion-Reaction
2.5.1 Domain
We adapt the Krogh cylinder approach presented in multiscale
models (Thurber and Weissleder, 2011; Chalhoub et al., 2007;
Berndt et al., 2018b) and approximate the layer of tissue
surrounding the vessels as a hollow cylindrical volume
element ωt illustrated in Figure 3D. The outer diameter of
the region ωt is given by the summation of dbv and dt. A value of
12.4 µm was used in our model for dt. This value is derived from
the physical volume of an insulin-secreting beta cell (1020 μm3)
(Finegood et al., 1995) located in the islets of pancreas.

2.5.2 Equations

Vbv
i

dCbv
i

dt
� ∑

j∈A+ i( )
Cbv

j Q
in
ji − ∑

l∈A− i( )
Cbv

i Q
out
il︸������������︷︷������������︸

advection flux JAi

+ ∑
k∈A i( )

DikAik

lik
Cbv

k − Cbv
i( )︸����������︷︷����������︸

dispersion flux JDi

− Vcell
i jEi︸��︷︷��︸

exchange flux JEi

. (13)

In the last term of Eq. 13, jEi (Eq. 15) is the net exchange
rate that governs the bidirectional transport between tissue
compartment ωt

i and blood vessel compartment Ωbv
i of the

functional unit. The uptake or release flux JEi is computed by
multiplying jEi with Vcell

i since the maximal rates are often
reported in per unit volume of a biological cell. This ensures
mole balance when a species moves from ωt

i to Ωbv
i which

differs in volume. Furthermore, Ccell
i is the concentration of

species in the tissue cell that interacts with ith node of Ωbv,
the half-saturation constant Km quantifies the affinity of a
transporter protein or an enzyme for a metabolite, and Vm is
the maximal rate of metabolite transport. When Ωbv

i is
encompassed by ωt

i , interaction between the node
associated with both the compartments exists, and JEi

TABLE 2 | Reactions, rate laws, and parameter values of exchange and cellular
reactions.

Flux Reaction Rate law Parameter value (Vm

in M/min, Km

in mM)

vTI Abv # Acell VT1
m (Abv−Acell )

KT1
m,A+Abv+Acell

VT1
m � 10, KT1

m,A � 1.0

vE Acell → 2Bcell VE
mA

cell

Acell+KE
m,A

VE
m � 0.01, KE

m,A � 4.5

vT2 Bcell # Bbv VT2
m (Bcell−Bbv )

KT2
m,B+Bcell+Bbv

VT2
m � 10, KT2

m,B � 0.5

A: glucose, B: lactate, T1: glucose transporter glcim, T2: lactate transporter lacex, and E:
glucose to lactate converter glc2lac are the tags used in the mathematical model.
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appears as a source or sink term in Eq. 13. At the junction
nodes of the blood vessel where no interaction exists, JEi is
zero.

VbvdC
bv

dt
� MTQMoCbv −MTDQMCbv − JE (14)

jEi � Vm

Km

Cbv
i − Ccell

i

1 + Ccell
i
Km

+ Cbv
i

Km

⎛⎜⎜⎝ ⎞⎟⎟⎠. (15)

As an example, we consider a minimal model of glucose
metabolism in β-cells in the islets. Under basal conditions, the
concentration of glucose and lactate are at the basal level in the

FIGURE 4 | Distribution of the static properties of islet vasculature. (A) Pressure gradient from inlet to outlet and (B) directional flow from inlet to outlet. (C) Flow
conservation at all nodes. The summation of flows through the edges entering and leaving each node, except the boundary nodes, adds to zero. Validation of static
results of the islet vasculature. (D): Comparison of nodal pressures between the current work and COMSOL simulation. (E): Comparison of edge velocities between the
current work and COMSOL simulation. Comparison of the concentration profiles at various locations in the islet and mesentery vasculatures. (F) Scalar
concentrations observed at positions 12.07 μm (red), 54.85 μm (green), and 110.27 μm (blue) from the inlet node. (G) Scalar concentrations observed at positions
1,267.78 μm (blue), 1,692.3 μm (cyan), 3,476.96 μm (green), 5,085.33 μm (magenta), and 6,319.57 μm (blue) from the inlet node. Solid and dashed lines indicate the
transient change in glucose concentration from our model and COMSOL, respectively.
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bloodstream. In the fed state, glucose transporters sense the high
blood glucose level and export glucose from Ωbv to Ωt. The
glucose-to-lactate conversion in Ωt is presented as a lumped
reaction in our model for simplicity. Ωt acts as a source of lactate,
and the lactate transporter facilitates its release into the
bloodstream. The direction of the exchange flux is dictated by
the concentration gradient Cbv—Ccell across the vessel wall.

2.6 Cell
The mole balance of each species in the cell domain ωt is
modeled by

Vcell dC
cell
i

dt
� Nv, (16)

where N is the stoichiometric matrix, and v is the reaction flux
vector. The rate expressions of the kinetic reactions and
metabolite transporters and the values of the kinetic
parameters used in the model are presented in Table 2. The
values of half-saturation constants, Km and Vm, were chosen from
panmin (König and Deepa Maheshvare, 2021), a minimal model
of glucose metabolism and insulin secretion in the pancreatic
β-cell. The Vm values from the minimal model were scaled in this
study so that the reaction fluxes are comparable to the diffusive
and convective fluxes. To apply our framework for predictive
modeling in clinical applications, the Vm values can be
determined by model calibration to achieve good agreement
between model predictions and experimental measurements.
Steady-state and transient values of the metabolite and flux
distributions measured from biochemical assays can be used as
the inputs for calibrating the tunable parameters in the model
(Berndt et al., 2018b). Since the focus of this study is in
introducing and illustrating the applicability of our
mathematical framework for bridging multiple scales, the
parameters were not calibrated in the glucose–lactate test
system presented here.

3 RESULTS AND DISCUSSION

The discrete model framework developed allows bridging the cell-
to-vessel exchange and explicitly modeling the cellular dynamics.
In this section, the mathematical formulations presented in
Section 2 are verified using several test systems, and the
results are compared with finite element analysis in COMSOL.
The analysis includes solving two steps that are coupled: first, a
flow field analysis which involves computation of pressure and
velocity distribution in the blood vessel branches; and second,
analysis of the spatio-temporal evolution of the concentration
fields.

We first present the results of the pressure gradient and flow
distribution observed across the islet vasculature. After validating
the results of nodal pressures and edge velocities with the results
from COMSOL, we proceed with the simulations of
advection–dispersion dynamics of glucose species in the blood
vessel. Here, we compare the transient change in the blood
glucose concentration obtained from our discrete model versus

COMSOL simulations for islet and mesentery networks. Next, we
investigate the effect of change in the perfusion pattern on glucose
distribution by varying the inlet and outlet locations in the tumor
vasculature. Furthermore, we examine the effect of different
pressure gradients applied across the network and the effect of
glucose doses supplied at the inlet on metabolite rise times
observed in the islet vasculature.

All the 3D visualizations of flow and concentration fields
presented in this article are rendered using vedo (Musy et al.,
2021), a python-based module for analyzing and visualizing
multidimensional point-cloud, mesh, and volume data.

3.1 Comparison of Flow and Concentration
Fields
To illustrate how the results from our discrete formulation
compare with the finite element implementation available in
COMSOL, we first solve the static flow problem (Eq. 6) and
use the flow profile for simulating the advection–dispersion
dynamics (Eq. 12) in the islet vasculature.

The pressure and velocity fields computed across the islet
vasculature are shown in Figures 4A,B. We observe a net
pressure drop of 34.83 Pa for an inlet pressure and flow rate
of 60 Pa and 3.76 nl/min, respectively. The velocity distribution
lies in the range reported by Diez et al. (Diez et al., 2017). The
conservation of flow at each node is cross-verified by computing
the divergence of the flow field MTQ, and the visualization is
presented in Figure 4C.

3.1.1 Validation in COMSOL Multiphysics
Here, we describe the simulation implementation of the coupled
multiphysics problem in COMSOL to validate the flow fields and
concentration fields of advection–dispersion simulations from
our discrete model. Geometry: The generation of the geometrical
model of the islet and mesentery vasculature (Figure 2A,D) was
automated using an AutoLISP script (Mac, 2020). The
coordinates of points and the connectivity information of the
lines were specified as inputs for creating the CAD geometry. The
DXF file containing the geometry data was imported into
COMSOL, and the normal mesh size was used to generate the
mesh elements. Parameters: Values of the diffusion coefficient of
glucose species, viscosity of blood, inlet pressure and outlet flow
rate specified in Table 1, and diameter of all branches in the
vasculature were defined as input parameters. Computation: Fluid
flow was studied as a static problem in the Pipe Flow Module
considering blood as a Newtonian fluid. This stationary problem
was solved as a linear system using the direct solver by specifying
the pressure and flow boundary conditions. Then, one-way
coupling of the flow physics was established with the
Transport of Dilute Species in Pipes module to solve for the
time-dependent advection–dispersion physics of glucose
species in the finite element solver. For this transient
simulation, a value of 5 mM was used for the Dirichlet
boundary condition defined at the inlet, and the mass outflow
was modeled by setting the diffusive flux to zero. The initial
concentration was set to zero in the volume elements of our
discrete framework. In COMSOL, the concentration was
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initialized to zero, and a smoothed step function was applied to
avoid discontinuity with the boundary condition.

Figures 4D,E show that the nodal pressures and edge
velocities computed from our model are consistent with the
results from COMSOL for the islet vasculature. The time-
varying concentration profile of glucose species obtained from
our discrete model is compared with COMSOL simulations at
nodes highlighted in the inset of Figure 4F. After comparing the
results of the islet vasculature containing 52 edges and 125
discretized elements in our discrete model, we further extend
this analysis to compare the results (Figure 4G) of the large
mesentery network with 489 edges and 9,033 discretized
elements. Supplementary videos S1 and S2 show the
comparison of evolution of concentration profiles from our
model versus the results from COMSOL for the entire region
of the islet and mesentery vasculature, respectively.

3.1.2 Scalability
The procedure involved in solving the partial differential
equations can be split into two steps: assembly step and solve
step. In the assembly step, discretization is performed, and
matrices are generated for the second step which solves the
system. For the islet vasculature, we report the time taken for
solving the stationary fluid flow and the transient
advection–dispersion dynamics for a time span of 15 s. Our
discrete method implementation in MATLAB takes 7 s, and the
finite element solver in COMSOL takes 10 s. For the mesentery
network, running the advection–dispersion dynamics for a time
span of 300 s takes 267 and 168 s in MATLAB and COMSOL
implementations, respectively. We provide the sparse Jacobian
pattern as an additional input to ode15 s to speed up the
compute time. Solving the same system in Julia using the
QNDF method, which is a translation of MATLAB’s ode15 s,
gives a speed up of 127x when compared to that of COMSOL. A
relative error tolerance of 1e-3 is set for carrying out all

simulations, and an absolute error tolerance of 1e-6 is set for
both ode15 s and QNDF.

Some of the challenges involved in expanding this approach to
a vascular network composed of arterioles, arteries, and veins
would be in scaling flow parameters and resistances to flow (such
as molecular interaction in capillary versus viscosity in larger
vessels) to fit the formulation so that the model still retains its
physical fidelity. Computationally, there can be stiffness in the
differential equations and condition numbers of matrices may be
affected, especially when both capillary and larger vessels are
present in the model. This may need smaller time steps in
simulation and regularization of affected matrices.

3.2 Influence of Flow Topology on Scalar
Transport
Engineered perfusable vasculatures have been useful for
investigating the structure–function relationship of
complex vasculatures (Kinstlinger et al., 2020).
Computational models that capture the influence of flow
topology on the scalar transport will enable experimental
scientists to design and test the efficacy of optimized drug
delivery systems.

Motivated by the experiments carried out by Chen et al.
(Chen et al., 2020) on microfluidic devices imprinted with
blood vessel vasculatures, we study the effect of variation in
perfusion patterns on the metabolite rise times tr in two
different geometric configurations (Figures 2B,C) of the
tumor vasculature examined in their study. Flow
distribution was computed for an inlet pressure of 60 Pa
and fluid flow rate of 23.8 nl/min. Spatial distribution of
glucose species was obtained, and the rise time in each
volume element Ωbv

i is computed by finding the time taken
for the concentration to rise from 10 to 90% of the steady-state
value. Figure 5 illustrates the time taken for the distribution of

FIGURE 5 |Comparison of rise time tr for two different configurations of tumor vasculature. (A) Tumor design 2: the outlet is positioned away from the inlet, and the
rise time is shorter in this configuration. (B) Tumor design 1: the outlet is positioned closer to the inlet, and the rise time is longer in this configuration.
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glucose in tumor design 1 (Figure 5B) is much greater than that
in tumor design 2 (Figure 5A). These findings support the dye
distribution patterns observed in these two configurations

reported in Chen et al. Supplementary Video S3 shows the
distribution of glucose computed by our discrete model for
both the configurations of tumor vasculature.

FIGURE 6 | Spatial concentrations of metabolites in the blood vessel and tissue domains of the islet vasculature observed at three different instants in time (0.6, 6,
and 30 s). (A) (eglucose)/ (B) (elactate) and (C) (glucose)/ (D) (lactate) denote the concentration of glucose/lactate species observed in blood vessel Ωbv and tissue ωt

compartments, respectively. In panel (A) and (D), the concentration of cylindrical and spherical volume elements embedded in the blood vessel domain is simulated, and
the gradient displayed along the length of the blood vessel is generated by interpolation. In panels (B) and (C), the color-coded spheres represent the concentration
evaluated in the annular region of ωt.

FIGURE 7 | Sensitivity of concentration dynamics to ΔP and glucose dose. (A) Left: influence of the varying pressure gradient across the network on metabolite rise
times. Glucose concentration observed at positions 12.07 μm (red), 54.85 μm (green), and 110.27 μm (blue) from the inlet node. Inset displays the distribution of the
Peclet number obtained by computing ul/~D for each branch. Dashed and solid lines indicate the dynamic change in concentration observed at 20Pa and 200Pa,
respectively. (B) Right: variation in the net glucose uptake (red) and net lactate release (blue) from the cells in response to change in glucose dose is displayed.
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3.3 Functional Coupling of Blood
Vessel–Cell Exchange
In the mathematical framework presented in Section 2, it is
practical to model heterogenous cell types exhibiting
heterogenous enzyme activity at different vascular and cell
densities observed under various pathophysiological
conditions.

In this study, for the ease of demonstration of our method,
we present the results of a minimal model of cellular glucose
metabolism with uniform enzyme activity and homogenous
cell type exchanging biochemicals with bloodstream. In
Figure 6, we present the volumetric spatial analysis of the
islet vasculature enveloped by a layer of homogenous cell mass,
which forms the annular region of the tissue domain ωt. The
extracellular glucose and lactate concentrations in Ωbv are
initialized to 5 and 1.2 mM at the network inlet,
respectively. The intracellular concentrations of glucose and
lactate in ωt are initialized to zero. Due to the high
concentration of glucose in the bloodstream, the gradient
established between Ωbv and ωt in response to the
advective–dispersive transport promotes the uptake of
glucose by the annular region ωt. The cellular enzymes
metabolize glucose-to-lactate, and the concentration of
lactate in ωt rises above the basal value in the bloodstream.
This gradient drives the export of lactate into the bloodstream
until the system equilibrates.

It is known from clinical observations that vascular
phenotypes alter in cohorts with disease conditions such as
diabetes and tumor. For example, in a tumor condition, the
glycolytic enzymes are upregulated to produce more energy
molecules that aid in the rapid proliferation of tumor cells
(Rojas et al., 2018; St Clair et al., 2018). As a result,
glucose–lactate dynamics is perturbed when compared to
normal cells. In case of diabetes, histopathological and
image reconstruction studies reveal that a decrease in the
cell mass and reduction in vascular density can alter insulin
release patterns (Richards et al., 2010; Cohrs et al., 2017). The
framework proposed here can be useful in such clinical
applications for carrying out systematic analysis in which
1) the change in vascular density can be induced in the form
of mutations in the network (e.g., by deleting or inserting
blood vessels) to examine the effect of anatomical changes on
functional response of a tissue; 2) the alterations in the
expression levels of enzymes quantified as fold changes in
proteomics studies (Haythorne et al., 2019; Malinowski et al.,
2020) can be mapped to the reaction velocities (i.e., Vm, a
function of enzyme abundance, can be scaled using fold
change) to examine the effect of genetic or environmental
perturbations on cellular dynamics.

3.4 Sensitivity of Concentration Dynamics to
ΔP and Glucose Dose
The pressure conditions observed in a vascular tissue may vary
due to several physiological factors. To study the influence of
the pressure gradient on the time taken to reach the steady-

state concentration, we vary ΔP across the vasculature by
specifying the inlet pressure and zero outlet pressure.
Figure 7A illustrates the concentration profiles generated by
simulating the advection–dispersion dynamics of glucose
species by varying the pressure drop from 20 Pa to 200 Pa.
When ΔP is high, the velocity of fluid is high in each branch.
Consequently, convective flow dominates over dispersion,
and this results in short rise times. The effect of change in the
pressure gradient results in change in transit time of the fluid
from 90.76 s at ΔP � 20 Pa to 9.08 s at ΔP � 200Pa. In
Figure 7B, we show the sensitivity of the net glucose
uptake flux and net lactate release flux to different glucose
doses set at the inlet. It is observed that with an increase in the
glucose dose the tissue units uptake more glucose from blood,
and this drives the formation of lactate in the tissue
subdomains. The excess lactate is then transported to the
vessel subdomains until equilibrium is attained and the
driving potential is zero.

In conclusion, here we have presented a mathematical
framework for understanding the multiscale connectivity
existing in the functional networks of tissues. The test
cases presented previously demonstrate how experimental
data from different sources (e.g., kinetic data available in
databases such as SABIO-RK (Wittig et al., 2012) and
BRENDA (Chang et al., 2021), proteomics and
metabolomics data, imaging data of vascular phenotypes,
and flux measurements from perfusion experiments) can
be encoded in our framework to build explicit models of
cellular and vessel-to-cell interaction dynamics to better
predict pathomechanisms. At the intra-organ scale, this
work can be further extended to include cell-to-cell
communication networks and decipher the order of
communication occurring in the microenvironments with
different vasculature architectures (e.g., periphery to the
center, center to periphery, and one pole to other patterns
in islets (El-Gohary and Gittes, 2018)) and cytoarchitectures
(e.g., mantle-core and heterogenous distribution of β and α
cells in islets (Dolenšek et al., 2015)). The metamodel is easily
mutable; it is possible to induce different vascular phenotypes
and disease states by altering vascular density and
incorporating fold changes of metabolic and enzyme
concentrations in the cellular units. To further research
efforts involved in carrying out virtual experiments of
inter-organ communication, our framework can be utilized
for piecing together the top-down and bottom-up modeling
approaches and accommodates each organ at the desired
spatial resolution. For example, a comprehensive
understanding of multi-organ disease states such as
diabetes can be developed by interpreting the intra- and
inter-organ interaction as communication occurring within
“network of networks”; in whole-body models, the inter-
organ communication can be modeled by abstracting
organs as compartments forming nodes of the global
network, and the detailed local dynamics occurring in the
functional networks of an organ can be modeled by including
subnetworks in the global network.
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