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Methodologies in applied sport science have predominantly driven a

reductionist grounding to component-specific mechanisms to drive athlete

training and care. While linear mechanistic approaches provide useful insights,

they have impeded progress in the development of more complex network

physiology models that consider the temporal and spatial interactions of

multiple factors within and across systems and subsystems. For this, a more

sophisticated approach is needed and the development of such a

methodological framework can be considered a Sport Grand Challenge.

Specifically, a transdisciplinary phenomics-based scientific and modeling

framework has merit. Phenomics is a relatively new area in human precision

medicine, but it is also a developed area of research in the plant and

evolutionary biology sciences. The convergence of innovative precision

medicine, portable non-destructive measurement technologies, and

advancements in modeling complex human behavior are central for the

integration of phenomics into sport science. The approach enables

application of concepts such as phenotypic fitness, plasticity, dose-response

dynamics, critical windows, and multi-dimensional network models of

behavior. In addition, profiles are grounded in indices of change, and models

consider the athlete’s performance or recovery trajectory as a function of their

dynamic environment. This new framework is introduced across several

example sport science domains for potential integration. Specific factors of

emphasis are provided as potential candidate fitness variables and example

profiles provide a generalizable modeling approach for precision training and

care. Finally, considerations for the future are discussed, including scaling from

individual athletes to teams and additional factors necessary for the successful

implementation of phenomics.
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1 Introduction

Maximizing an athlete’s availability and performance

capabilities is central to success in competitive sports, with

great time and effort invested to reduce injury, illness, and

extreme fatigue. Despite decades of research targeting these

topics, injury and re-injury rates do not appear to be

decreasing (Conte et al., 2016; Mack et al., 2020;

Westermann et al., 2016) and generalized health prediction

remains elusive (Van Eetvelde et al., 2021). Applied sport

science has predominantly utilized component-focused

linear additive models of causality, with single-factor

mechanisms emphasized with a limited account of

environmental factors. For example, recent discoveries

around biological markers supported the transition from

genetics to (gen)-omics with the promise these new data

would uncover high-resolution mechanistic underpinnings

of physical capabilities (Ehlert et al., 2013), physical fitness

trainability (Bouchard et al., 2011), soft tissue injury risk

(Georgiades et al., 2017), concussion diagnosis and recovery

(Gordon, 2010), and overall sport achievement (Ehlert et al.,

2013). However, these discoveries have not been the

promised panacea, as no reliable candidate genes or

genome-wide associations have been discovered. Instead,

inconsistent results have led to calls for expansion from

epigenetics (Ehlert et al., 2013) into phenotypes with larger

cohorts (Wang et al., 2016). Specific to physiology, there is a

need to move beyond the molecular level toward a broader

framework for how multiscale organ systems coordinate and

integrate to promote emergent, adaptive behavior for

successful performance (Balagué et al., 2022).

While much of what is known today is owed to

component-focused linear modeling, it has unfortunately

led to an impasse in understanding and predicting

performance and health in sport. It is a barrier made up of

underdetermined models that do not account for the complex

interaction of integrated factors that drive athlete

performance across both time and scale. Applied sport

science is therefore in need of a more sophisticated

approach to tackle what can be considered a Sport Grand

Challenge—the precise profiling and modeling of complex

interactions among the various components and sub-

components of training and recovery to inform the

successful risk management associated with athlete health.

The purpose of this paper is to introduce a new framework

that leverages emerging technology and methodologies, in

combination with decades of work in evolutionary biology,

to more accurately and comprehensively profile, model and

predict athlete performance and health (Section 2). Several

sport science domains are provided as example priorities for

integration into this new approach, with specific factors of

emphasis related to each (Section 3). We conclude with

considerations for the future (Section 4).

2 Phenomics

Genomics-based precision medicine has shown great

promise for treating specific disease states (Collins and

Varmus, 2015; Ashley, 2016), with associated methodologies

and modeling approaches foundational for solving our Sport

Grand Challenge. However, nearly a decade ago, scientists

realized that a genomics framework alone is insufficient, and

advocated for innovative approaches for the detection,

measurement and analysis of a range of biomedical data that

move beyond traditional (gen)-omics data by taking into account

behavioral, physiological and environmental parameters

(Mirnezami et al., 2012; Collins and Varmus, 2015). These

calls have since been expanded to prioritize high-resolution

phenomics and environmental exposure data as a critical step

for precision medicine to reach its full potential (Denny and

Collins, 2021). It is with this focus that a new framework can

emerge. The transdisciplinary study of phenomics captures the

many dimensions of phenotypic change that arise from the

interaction of an individual’s genetic make-up with

environmental factors (Houle et al., 2010). As current

phenomics approaches are based primarily on human

medicine models, they risk repeating past mistakes of early

human genome discussions on whether isolated components

should be the focus (Lewin, 1986; Angier, 1990). A human

medicine approach also relies on expensive, high-fidelity

medical imaging and screenings conducted in relatively sterile

laboratory settings that do not always facilitate practical and

scalable implementation in sport.

Importantly, phenomics has also been a burgeoning area of

research in the plant and evolutionary biology sciences (Shahzad

et al., 2021), with established research lines in both lab-controlled

and field environments (Lürig et al., 2021) borne out of

comprehensive biological phenotyping and the introduction of

the conceptual phenome in 1967 (Soule, 1967). These fields have

standardized protocols and techniques that specialize in the

comparatively low-cost, non-destructive screening of living

organisms in their natural environment to index real-time

multidimensional phenotypic change (West-Eberhard, 1989;

Agrawal, 2001; Burggren, 2014; Hairmansis et al., 2014). This

work is based on indexing change in biological fitness, defined as

the rate of change (e.g., growth) of a genotype, phenotype or even

a specific population of organisms relative to fluctuations in the

environment (Laughlin et al., 2020). Thus, it is typically framed

regarding organism survival: examinations of mortality rate,

reproduction rate, and growth rate are examples of well-

defined biological fitness variables for study (cf. Burggren and

Mueller, 2015).

It is this approach to phenomics for which we advocate as

foundational to solving the Sport Grand Challenge. Our

proposed sport science framework is grounded in the

phenotypic expression of the athlete’s performance in

response to important and meaningful environmental
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influences. This expression is based on individual performance-

relevant fitness variables. These variables must first be accurately

identified, with each fitness variable part of a specific domain, or

phenotype, that is then connected to other phenotypes. Thus, the

approach moves beyond the traditional linear use of mechanism

through the construction of a multidimensional phenomic

profile (or network) across multiple domains. This makes the

phenomic profile, and associated component phenotypes,

adherent to dynamical explanatory (e.g., network) models that

can predict the behavior of similar individuals (i.e., systems) and

adhere to a many-to-one principal—i.e., outcomes realized

through an array of potential mechanistic underpinnings, or

varying inputs (Chemero and Silberstein, 2008). This approach

also connects directly with the burgeoning field of network

physiology (cf. Balagué et al, 2020) in that it treats the

human-behavioral system as an integrated network of

interconnected organ sub-systems, while considering their

complex nonlinear dynamics through specific fitness variables.

Further, each fitness variable serves as a proxy for these dynamic

interactions within or across sub-systems, depending on the

measured characteristic (e.g., neurophysiological,

neuromechanical or behavioral), while indexing each across

stress magnitudes and over time.

Essential to this modeling approach is the objective

identification of specific stressors and their well-defined

magnitudes, to precisely relate phenotypic change as a

FIGURE 1
Example phenotypic plasticity profiles across varying levels of stress. Top: A 2-dimensional phenotypic fitness curve with fitness (y-axis) plotted
over environmental stress exposure (x-axis). The dotted line at the peak of the curve denotes a critical region of adaptive sensitivity, where the
phenotypic fitness ismost sensitive to the environmental stress in a positive way. Similarly, the critical region ofmaladaptive sensitivity is labeledwhen
the phenotypic fitness drops below the baseline, or neutral condition. This is where the phenotypic fitness is most negatively impacted, or
overwhelmed, by external stress exposure. The shaded area under (and above) the curve represents one quantifiable index of phenotypic plasticity,
or overall adaptability, of the system. Bottom: A 3-dimensional phenotypic fitness response surfacewith phenotypic fitness (y-axis) plotted in relation
to physical stress (x-axis) and cognitive workload (z-axis). This provides an example of how additional dimensions of stress or workload can be added
to the profile in order to visualize the system’s response to each of these factors.
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function of environmental (e.g., performance or daily living)

conditions (Kiefer et al., 2018; Kiefer et al., 2022). In doing so, an

ordinal stress-fitness response curve can be developed to profile

phenotypic expression across a stressor gradient (see Figure 1)

and, ultimately, the adaptability of the system via the

computation of phenotypic plasticity (Agrawal, 2001).

Phenotypic plasticity is a global fitness characteristic and

captures the ability to positively adapt across environmental

stressors. It is made up of the interacting components that

underlie a given phenotype, and profiles the phenotypic

expression across successive measurements of (behavioral)

responses relative to increasing stress levels. Phenotypic

plasticity therefore accounts for the dynamic nature of

adaptive processes underlying functional performance, which

emerge from the interaction of the individual with their

environment. This metric is likely highly sensitive to the

behavioral transitions an individual makes to achieve more

efficient performance states and, specifically, behavioral

change as a function of environmental change (Kiefer et al.,

2018).

A phenotypic plasticity approach leverages several other

important principles from evolutionary biology. The first is a

FIGURE 2
Example 3-dimensional phenotypic plasticity profiles across time. Top: A phenotypic fitness surface with a critical window of phenotypic
expression as denoted by the arrow indicating the critical region of maladaptive sensitivity of phenotypic fitness in the early stages of skill
development (for example) at higher levels of stress. Conversely, the critical region of adaptive sensitivity, denoted by the dotted line, indicates when
phenotypic fitness is positively expressed in slightly later stages of skill development, even at these same higher levels of stress. This could be
indicative of a match between capability and challenge. Bottom: A multi-dimensional phenotypic fitness surface with four phenotypic
domains—Neuromotor Control, Mechanics, Perception and Physiology—and their phnoetypic response dynamics across both time and stress.
While this is an overly simplified example, in this case, one could see how each dimension of performance can be modeled on the same time/stress
scales to allow for phenotypic expression comparison. This approach allows for initial inspection of potential intervention points that are related to
critical time windows in the system’s skill development, for example.
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connection with dose-response curves (Calabrese and Mattson,

2011) that can inform intervention points and, thus, treatment

plans for health or performance enhancement—e.g., the well-

defined “inverted-U” (i.e., hormetic) curve of arousal and

performance first introduced over a century ago (Yerkes and

Dodson, 1908). Foundational to the hormetic response is that a

low-dose stress or environmental challenge promotes positive

expression (or growth) of the fitness variable under study

(Costantini and Borremans, 2019). This type of response

profile is ubiquitous in biological systems (Calabrese and

Blain, 2011) and provides a profile of a system’s adaptive

capability.

A second principle is critical time windows (cf. Burggren and

Mueller, 2015). These have generally been considered relative to

crucial periods of biological development and identified as

regions when the system is most sensitive and where

phenotypic expression is greatest. For the purposes of sport,

these can be considered as time windows of enhanced athlete

responsiveness. Modeling phenotypic plasticity across a gradient

of stress, the third dimensional axis of time can be added.

Importantly, while time is an interval variable, the actual units

can be based on the temporal ordering of events, with spatial

relations relative to important aspects of a training or

development cycle (see Figure 2, top). This is a useful profile

of individual time windows, but it is likely also possible to model

a more generalizable skill development profile averaged across

multiple athletes or athletic “genotypes”. One of the most

powerful aspects of this approach is the development of

multi-domain profiles across both time and stress (cf.

Burggren and Mueller, 2015). Consider, for example, the

varying time scales of physiological, neuromotor, perceptual

and skill development processes that take place across a

particular season, off-season, or career. By constructing

phenotypic profiles across time and stress, one can begin

model change among a complex number of interconnected

components (see Figure 2, bottom). Note that these are most

straightforward when developed as human readable two- or

three-dimensional profiles; however, there is no limit to the

number of dimensions and scales one can model. Thus, while

human readability is paramount, as this approach is further

developed it will be critically important to leverage innovative

explainable and interpretable machine learning techniques to

make sense of high-dimensional networks of components (e.g.,

Mi et al, 2021), and to detect relevant features of these profiles

quickly and accurately for precision training or care.

3 Expansion of phenomics to applied
sport science

The expansion of phenomics to applied sport science

requires profiling key fitness domains associated with athlete

performance and health. Although the pre-requisites for success

in sport are highly variable, it is common for sport scientists to

focus their attention on understanding: 1) physiological and

psychological characteristics of the successful competitors, 2)

physical, tactical and technical demands of the sport, and 3)

interventions that promote desired adaptations. Prior to the

development of advanced technology and funding that

allowed teams of specialists to focus on athlete support,

coaches relied on intuition, experience and often relatively

simple measurements of fatigue and performance to guide

decision making. Today, many of these general principles

remain relevant; however, the methodology involved with

evaluating an athlete’s strengths, weaknesses, and readiness to

perform can be more sophisticated to yield more meaningful

insights. This necessitates innovative technologies that facilitate

the high-resolution extraction of phenotypic information with a

focus on non-destructive assessments. One such rapidly growing

technology is that of computer vision-based extraction of

information from video to derive both kinematic outputs, via

markerless pose estimation (e.g., Uhlrich et al., 2022), and

contextualized action recognition (Bertasius et al, 2017;

Bertasius et al, 2021) so that unique manifestations of fatigue

can be quantified. These tools can be combined with other

passive wearable technologies for monitoring biometrics,

exercise, and recovery (e.g., global position sensors,

accelerometry, heart rate monitoring or even mobile eye

tracking). The combination of technologies and methods

facilitates integration of biology-based phenomics with a

precision human medicine focus. In short, the data can

inform the right intervention at the right time, with minimum

disruption and maximum efficiency.

The sport of cycling has seen a focus on high precision

estimates of body composition including quantification of lower

body muscle mass using dual-energy X-ray absorptiometry

(DXA; Haakonssen et al, 2016). Sophisticated cycling power

meters and cycle ergometers incorporating relevant inertial

loads can quantify the maximum power output–exercise

duration profiles. During graded exercise tests, heart rate,

oxygen update, blood lactate, sweat rates, and perceived

exertion can be quantified to document relevant physiological

capacities. Wind tunnels can be used to estimate the coefficient of

drag area associated with different types of cycling equipment

and riding positions. It is also possible to quantify biomechanical

manifestations of fatigue during prolonged cycling challenges

using force pedals and inverse dynamics (Martin and Brown,

2009). For a given fitness domain, pacing strategies for time trials

can be optimized relative to terrain. In addition, new wearable

technologies can quantify nutrition, sleep and training loads to

provide insights into performance readiness. Recent data

examining how muscle adapts to resistance training provides

a vivid example of how protein intake prior to sleep canmodulate

desired adaptations (Trommelen and van Loon, 2016).

Sophisticated models that incorporate both stress type and the

nutrition available post exercise will be required to predict
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muscle fitness plasticity. A comprehensive profile of cycling

performance could target certain factors and prioritize them

for training.

In contrast to an individual sport like cycling where the

physiological and biomechanical pre-requisites for success have

been identified, team sport introduces additional complexities.

For example, professional basketball teams now employ large

teams of specialists who focus on player selection, development,

competition, and rehabilitation, and use technologies such as

computer vision to comprehensively evaluate how players move

during practice and games (Monezi et al, 2020). And while

support staff tend to focus on enhancing physical,

psychological, and technical aptitudes, coaches tend to turn

their attention to emergent properties associated with player

interactions. Of particular importance in team sport is

minimizing risk of injury (Dolan et al., 2022) and building up

a culture where players, coaches and staff believe success is

inevitable. A phenomics framework can help identify both

adaptive and maladaptive regions for fitness variables

associated with these factors. Specifically, Pygmalion effects

have been described as the performance benefits attributed to

preparing in an environment where teachers/coaches portray a

strong belief of success in their students/players (Weaver et al,

2015). Unique polling techniques have been shown to be effective

at understanding the collective perspective of small groups of

individuals and hold promise for evaluating whether teams

believe they will improve and ultimately win (Becker et al,

2017). The phenomics-approach in this case can profile these

types of psycho-social features and enable the targeting of

physical or coaching interventions to enhance plasticity, or

adaptation, of specific fitness variables at the right time.

4 Considerations and priorities for the
future

The phenomics framework is a powerful approach to

comprehensively profile and model athlete performance and

health. It brings with it important advantages for accurately

and efficiently indexing response zones and precisely

intervening on relevant fitness variables to enhance an

athlete’s adaptability and, ultimately, maximize their peak

capabilities. It also scales exceptionally well (cf. Agrawal, 2001,

for an example in biology). In sport, identified fitness variables

can be examined and modeled from an individual athlete up

through a team system. For example, a basketball-relevant fitness

variable such as contested field goal percentage can be indexed

for an individual athlete, a backcourt position group, or for an

entire team. Moreover, this could be profiled relative to a specific

training session or using player tracking technologies across

segments of a season or multiple seasons. It is also possible to

look at additional stress variables, such as physical workload

during a competitive season, with higher-resolution factors such

as shooting performance during more critical game moments or

changing defensive capabilities of opponents. Similarly, one

could imagine a fitness variable in which the tactical stability,

or coherence (e.g., López-Felip et al, 2018), of a team is indexed,

and then modeled relative to performance stress.

The phenomics framework also incorporates underlying

factors that contribute to phenotypic expression, such as

exposomics, or an individual’s lifetime environmental exposure

history, including lifestyle factors, to better characterize

environment-based risk factors (Wild, 2005; Lubelczyk et al.,

2013). While this has been predominantly advocated for in

human medicine as a scaling up of genomics (Holland, 2017),

when considered as additional parameters that act to predispose

a phenotype for specific magnitudes of expression relative to

environmental stress, exposomics data can integrate well into

more complex phenomics-based network models of performance

and health. It is important to consider that athletes are exposed to

unique environmental factors compared to non-athlete

populations, ranging from increased radiation exposure from

medical screenings to chemical supplementation and

therapeutics (Thevis et al, 2021). Such exposures are easier to

track once the athlete is a member of an organization, but each

athlete brings with them an exposure history that may

dramatically influence several important factors of network

physiology and related phenotypic fitness. Therefore, mobile

sensors for more accurate and comprehensive evaluation of

environmental exposures becomes important to move beyond

lower-resolution metrics (e.g., an individual’s geographical

home) to higher-resolution monitoring data that can inform

exposure and risk models (Loh et al., 2017). In short, all stress

responses are not created equal, and exposomics has the potential

to further elucidate the complex factors that underlie

physiological sub-system interactions that underlie phenotypic

expression.

5 Conclusion

As the field looks to the future of characterizing and

predicting the performance and health of athletes, a

phenomics framework will have great utility. It facilitates the

modeling of many interacting components and multi-

dimensional profiling that is comprehensive and translateable

to actionable interventions with high precision. It also promotes

personalization through a unit of analysis that is context-driven

and accounts for athlete and performance environment factors.

To paraphrase famed physiologist Dr. Leon Glass, on the

dynamics of biology and health: as scientists and practitioners,

we must recognize that advancements may not depend on a

breakthrough, but instead often emerge from the “. . .appropriate

use of well-known concepts to vital problems (Glass, 2015,

pp. 8).” In the case of phenomics, we must turn to the well-

established concepts of fitness, phenotypic plasticity and,
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ultimately, phenomics, from evolutionary biology as a roadmap

for sport science to negotiate the impasse of linear causal models

and transform athlete risk management, training, and care.
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