
RateML: A Code Generation Tool for
Brain Network Models
Michiel van der Vlag1*†, Marmaduke Woodman2†, Jan Fousek2, Sandra Diaz-Pier1,
Aarón Pérez Martín1, Viktor Jirsa 2 and Abigail Morrison1,3,4

1Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC),
Forschungszentrum Jülich GmbH, JARA, Jülich, Germany, 2Institut de Neurosciences des Systèmes, Aix Marseille Université,
Marseille, France, 3Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-
Institute Brain, Jülich, Germany, 4Computer Science 3–Software Engineering, RWTH Aachen University, Aachen, Germany

Whole brain network models are now an established tool in scientific and clinical research,
however their use in a larger workflow still adds significant informatics complexity. We
propose a tool, RateML, that enables users to generate such models from a succinct
declarative description, in which the mathematics of the model are described without
specifying how their simulation should be implemented. RateML builds on NeuroML’s Low
Entropy Model Specification (LEMS), an XML based language for specifying models of
dynamical systems, allowing descriptions of neural mass and discretized neural field
models, as implemented by the Virtual Brain (TVB) simulator: the end user describes their
model’s mathematics once and generates and runs code for different languages, targeting
both CPUs for fast single simulations and GPUs for parallel ensemble simulations. High
performance parallel simulations are crucial for tuning many parameters of a model to
empirical data such as functional magnetic resonance imaging (fMRI), with reasonable
execution times on small or modest hardware resources. Specifically, while RateML can
generate Python model code, it enables generation of Compute Unified Device
Architecture C++ code for NVIDIA GPUs. When a CUDA implementation of a model is
generated, a tailored model driver class is produced, enabling the user to tweak the driver
by hand and perform the parameter sweep. The model and driver can be executed on any
compute capable NVIDIA GPU with a high degree of parallelization, either locally or in a
compute cluster environment. The results reported in this manuscript show that with the
CUDA code generated by RateML, it is possible to explore thousands of parameter
combinations with a single Graphics Processing Unit for different models, substantially
reducing parameter exploration times and resource usage for the brain network models, in
turn accelerating the research workflow itself. This provides a new tool to create efficient
and broader parameter fitting workflows, support studies on larger cohorts, and derive
more robust and statistically relevant conclusions about brain dynamics.

Keywords: brain network models, domain specific language, automatic code generation, high performance
computing, simulation

Edited by:
Antonio Batista,

Universidade Estadual de Ponta
Grossa, Brazil

Reviewed by:
Sharon Crook,

Arizona State University, United States
Bruno Golosio,

University of Cagliari, Italy

*Correspondence:
Michiel van der Vlag

m.van.der.vlag@fz-juelich.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Networks in the Brain System,
a section of the journal

Frontiers in Network Physiology

Received: 30 November 2021
Accepted: 10 January 2022

Published: 14 February 2022

Citation:
van der Vlag M, Woodman M,

Fousek J, Diaz-Pier S, Pérez Martín A,
Jirsa V andMorrison A (2022) RateML:

A Code Generation Tool for Brain
Network Models.

Front. Netw. Physiol. 2:826345.
doi: 10.3389/fnetp.2022.826345

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263451

ORIGINAL RESEARCH
published: 14 February 2022

doi: 10.3389/fnetp.2022.826345

http://crossmark.crossref.org/dialog/?doi=10.3389/fnetp.2022.826345&domain=pdf&date_stamp=2022-02-14
https://www.frontiersin.org/articles/10.3389/fnetp.2022.826345/full
https://www.frontiersin.org/articles/10.3389/fnetp.2022.826345/full
http://creativecommons.org/licenses/by/4.0/
mailto:m.van.der.vlag@fz-juelich.de
https://doi.org/10.3389/fnetp.2022.826345
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org/journals/network-physiology#editorial-board
https://doi.org/10.3389/fnetp.2022.826345

1 INTRODUCTION

Understanding the relationship between structure and function
in the brain is a highly multidisciplinary endeavour; it requires
scientists from different fields to develop and explore hypotheses
based on both experimental data and the theoretical
considerations from diverse scientific domains (Peyser et al.,
2019). Because of this, simulation platforms have become
essential tools to understand different states of the brain and
promise, in the future, to provide a way of reproducing enough
features of brain activity in order to better understand healthy
brain states, diseases, aging, and development (Einevoll et al.,
2019).

One particularly promising approach is whole-brain
simulation based on non-invasive brain imaging techniques
suitable for use in human studies (Lynn and Bassett, 2019).
Functional and structural imaging modalities including
Electroencephalography (EEG), Magnetoencephalography
(MEG), Magnetic Resonance Imaging (MRI), and functional
Magnetic Resonance Imaging (fMRI) allow researchers to
capture characteristics of the brain primarily at a mesoscopic
scale. The brain activity measured by such methods can be
mathematically modelled and simulated using The Virtual
Brain simulator (TVB; Sanzleon et al., 2013). Due to its ability
to directly provide links between simulated outputs and
experimental data, TVB is quickly gaining popularity in the
scientific and clinical disciplines.

One of the strengths of such whole-scale brain simulation is
the possibility of personalization of the model for a particular
subject (Falcon et al., 2016; Bansal et al., 2018; Hashemi et al.,
2020). This happens first on the level of structure—using person-
specific connectivity and brain shape data, and second on the
level of inferring the model parameters based on functional
measurements of the subject at hand. The basic approach for
personalising the simulated model behaviour entails finding the
best fit between the numeric solution of the derivative equations,
which determine the behaviour of the model, and the patient-
specific functional empirical data (Deco et al., 2014). The
differential equations representing a single neural mass
prescribe the temporal evolution of multiple states, such as
mean membrane potential or firing rate, as a function of
initial conditions and parameters, such as the reversal
potential and intra-mass coupling strength. To find a match
between model and patient data, many model parameters need
to be explored over potentially large ranges. Consequently, large
parameter exploration are frequently carried out at high
performance computing (HPC) centers.

Translating the set of differential equations into a concrete
implementation is complex, as several factors can dramatically
influence performance and correctness of the simulation. End
users, such as clinicians or experimental neuroscientists, typically
lack the background in programming necessary to implement a
correct numeric implementation of their model and optimize it
by exploring minor variations of the mathematics.

We therefore conclude that abstracting the modeling from the
computational implementation, such that model descriptions can
be automatically translated into correct and performant

implementations (Blundell et al., 2018), would considerably
aid these scientists to exploit the possibilities of whole-brain
simulation. To this end, we have developed RateML, a
modeling workflow tool that uncouples the specification of
Neural Mass Models (NMMs) and Brain Network Models
(BNMs) from their implementations as machine code for
specific hardware. It is based on the existing domain
specific language ‘Low Entropy Model Specification’
(LEMS; Cannon et al., 2014), which allows the user to
enter declarative descriptions of model components in a
concise XML representation. RateML enables users to
generate brain models based on an XML format in which
the generic features of rate-based neuron models can be
addressed, without needing extensive knowledge of
mathematical modelling or hardware implementation. In
addition to providing code generation of the described
models in Python, it is also possible to generate Compute
Unified Device Architecture (CUDA) (NVIDIA et al., 2020)
code in which variables of interest can be designated with a
range for parameter exploration. The generated Python code
can be directly executed within the TVB simulation
framework, whereas the CUDA code has a separate driver
module which is also generated before execution. The
generated driver module enables the user to perform the
explorations on any CUDA capable Graphics Processing
Unit (GPU).

In this article we describe and benchmark the model generator
RateML. In addition to the performance of the generated
models, we investigate the maximum capacity for parameter
sweeps and the scaling of the application on HPC. This article is
structured as follows: after a summary of the state of the art in
Section 2, we describe the model generator and the elements
which are the building blocks for both the Python and CUDA
models in Section 3. We then employ a use-case derived from a
study on the impact of neuronal cascades on the causation of
whole-brain functional dynamics at rest (Fox and Raichle,
2007) as a scaffold to demonstrate how to set up an existing
model and validate it. In this study a parameter space
exploration on two parameters of the Montbrió NMM is
performed. Section 4 details the steps taken to express the
Montbrió NMM in RateML. For the validation of the models
generated by RateML, we reproduce the study’s parameter space
exploration and analyse the results of this in Section 4.2. In
Section 5, we examine the benchmark results for the Python
and CUDA frameworks, comparing the Kuramoto (Kuramoto,
1975), Reduced Wong Wang (Wong and Wang, 2006) and
Epileptor (Jirsa et al., 2014) models. From the benchmarks we
observe that the application scales linearly with parameter space
size and that it is memory bound. The performance increases
with the parameter space size, indicating better data locality and
decreasing memory latency.

With this work we provide a new modeling tool to the highly
interdisciplinary community around brain research which
bridges neuroscientific model descriptions and optimized
software implementations. RateML opens new alternatives to
better understand the effects of different parameters on
models and large experimental data cohorts.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263452

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

2 STATE OF THE ART

Computational models in neuroscience are becoming ever
more complex. There is also an increasing desire to fully
leverage new computing architectures to accelerate the
simulation of brain dynamics at different scales (Furber
et al., 2012; Abi Akar et al., 2019; van der Vlag et al.,
2020). Code generation has become a popular approach to
unburden users from manually creating models and to
separate them from the underlying hardware and
corresponding libraries, and indeed a multitude of
modeling languages are available that simplify many
aspects of brain simulation (Blundell et al., 2018). For
example, NestML (Plotnikov et al., 2016) is a domain
specific language for the NEST simulator which focuses on
the description of point neuron models and synapses.
NeuroML (Gleeson et al., 2010) is able to describe single
cells and networks of cells, and NineML (Davison, 2013)
focuses on networks of point neurons. Some simulators
such as GeNN (Yavuz et al., 2016) and Brian (Stimberg
et al., 2019) provide their own pipelines to transform
abstract representations of models either in C or in Python
and transform them into efficient executable code. Here, we
focus on frameworks suitable for representing the dynamic
variables of mesoscopic brain activity models.

One such framework mentioned by Blundell et al. (2018) is
LEMS, a metalanguage designed to generate simulator-agnostic
domain-specific languages (DSL) for graph-like networks
(Cannon et al., 2014). Each node can have local dynamics
described by ordinary differential equations, using the
provided standardized structured descriptions. When the
models are described in the LEMS XML format, a one-to-one
mapping of these abstract components to the simulator specific
functionality in the model file can be performed. The Mako
templating library written in Python is well suited for such
operations. Mako is an embedded Python language providing
placeholders and logic to build a template from the ordered LEMS
components. Mako is fast and supports Python control structures
such as loops and conditionals, and code can be organized using
callable blocks.

LEMS is a strong standard for the description of neural
models and networks, used by a variety of simulators from the
neuroscience community. It offers a set of generic building
blocks, but currently, no domain specific language building on
LEMS supports the whole variety of features required to
express BNNs and NMNs. For example, if a user would
like to perform large parameter explorations on models
defined with the standard LEMS, she would need to rely on
external software to coordinate the execution of parallel
instances of the model on the target computing resources,
also considering configuration and computing/memory
access performance.

As an alternative to LEMS, PyRates is a Python framework
that provides intuitive access to and modification of all
mathematical operators in a graph (Gast et al., 2019). This
enables a highly generic model definition. The aim of PyRates
is to configure and simulate the model with only a few lines of

code. Each model must be represented by a graph (circuit) of
nodes and edges. The nodes represent the model units (for
example, the cell populations) and the edges represent the
information transfer between them. Circuits may be nested
arbitrarily within other circuits, forming more complex sub-
circuits. PyRates can, in principle, implement any kind of
dynamical neural system. The resulting graph description can
be then executed on CPUs, GPUs, or many node compute
clusters.

To combine computational feasibility with biophysical
interpretability, three mathematical operators are used to
define the dynamics and transformations. The rate-to-potential
operator (RPO) transforms synaptic inputs into average
membrane potentials while the potential-to-rate operator
(PRO) transforms the average membrane potential into an
average firing rate output. The coupling operator (CO)
transforms outgoing into incoming firing rates and is used to
establish connections between populations; the weight and delay
of such a connection are considered attributes of the
corresponding edge. Individual network nodes consists of
operators, which define scopes in which a set of equations and
related variables are uniquely defined. The mathematical syntax
closely follows the conventions used in Python. Vector and
higher-dimensional variables may be used and it follows the
conventions of NumPy (Harris et al., 2020).

For the actual simulation, the user can choose between two
backend implementations. The first is the default NumPy
backend which provides relatively fast simulations on a single
CPU, or on multiple CPUs in combination with the Python
distribution provided by Intel. The second is the Tensorflow 2.0
implementation, which makes use of dataflow graphs to run
parallel simulation on CPUs or GPUs (Abadi et al., 2015). It can
also apply vectorization, which reduces identical nodes to one
vectorized node.

PyRates offers parallelization based on the inherent
capabilities of Tensorflow. This generic approach has the
downside that it does not optimize the parallelization
depending on specific characteristics of the model to be executed.

Therefore, there is still a need for an automatic code
generation framework that not only shares important qualities
of the aforementioned tools, such as compact model specification
and direct connection to simulation backends, but that is also able
to support parameter sweep specification and highly optimized
model-specific code generation.

3 THE RATEML FRAMEWORK

In this manuscript we present RateML, a tool that enables users to
generate BNNs and NMNs from a declarative description in which
themathematics of themodel are described without specifying how
their simulation should be implemented. Furthermore, RateML
provides language features that permit parameter sweeps to be
easily specified and deployed on high performance systems.

By building on LEMS, RateML joins a widely used standard
which is in continuous development. RateML is able to automatically
generate code which can be executed on CPUs and

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263453

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

CUDA-compatible GPUs. RateML’s optimized CUDA backend
takes full advantage of the device in order to maximize the
occupancy based on the characteristics of the model like state
variables and memory requirements. RateML also offers a
Numba-based vectorized backend for execution on CPUs. In case
of the latter, a generalized universal function using Numba’s
guvectorize decorator is generated. Using this decorator, a pure
Python function that operates over NumPy arrays can be compiled
directly into machine code. This is as fast as a C implementation and
it automatically uses features such as reduction, accumulation and
broadcasting to efficiently implement the algorithm in question
(Lam et al., 2015).

This section provides an overview of the implementation of
the RateML framework which supports the definition of models
and generation of both Python and CUDA code.

3.1 RateML Syntax
LEMS was originally designed to specify generic models of hybrid
dynamical systems (Cannon et al., 2014). The LEMS language can be
used to define the structure and dynamics of a wide range of
biological models. The ComponentType building blocks can be
defined as templates for model elements. Many of the
ComponentTypes used in LEMS have a one-to-one mapping with
the building blocks that make up the models for the TVB simulator.
For instance, TVB has models which are defined by the dynamics of
state variables represented by time derivatives, for which LEMS has
placeholders. For these reasons, we adopted LEMS to create the code
generation tool RateML, using the ComponentTypes as place holders
to build and directly parse the NMMs dynamical models.

Because not all ComponentTypes are necessary for the TVB
models, RateML implements its syntax on top of a subset of
components from LEMS. Figure 1 shows an overview of the
adopted LEMS components which can be used to build BNMs
and NMMs for TVB. The ComponentTypes defined for Python,
which run in the native TVB simulator, are a subset of those
defined for CUDA. Firstly, the ComponentTypes coupling and
noise are excluded as building blocks, as they can be enabled by
adding a single line of code when setting up the TVB simulator.
Secondly, the elements Parameters and DerivedParameters of the

ComponentType Derivatives are excluded, as these are needed for
extensive parameter space exploration, for which the native TVB
simulator is not designed.

Section 3.1.1 details the components that describe the differential
equations. These components are used to build the Python Numba
models and the CUDA models. Section 3.1.2 describes the
components defining the coupling of the models for the CUDA
implementation and Section 3.1.3 describes how stochastic
integration is enabled. The Python models only require the
definition of the time derivatives, while the CUDA models also
require the parameter space exploration (PSE) to be configured and
the coupling and stochastic integration of the time derivatives to be
defined (if needed by the modeller).

An empty XML template called model_template.xml, can be
found in the XMLmodels folder of RateML in the TVB repository1

and can be used as a blank template to start the construction of a
model. The same folder hosts XML examples of the Kuramoto,
Wong Wang, Epileptor, Montbrió, and Generic 2D oscillator
models. Further documentation is also available in this repository.

3.1.1 Derivatives

FIGURE 1 |Overview of LEMS components adopted byRateML. The blue square indicates the ComponentType and the elements used to build Pythonmodels with a
Numba kernel. The light green rectangle indicates the components types used to build CUDAmodels. The Python ComponentTypes are a subset of those used for CUDA.

1https://github.com/the-virtual-brain/tvb-root.git.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263454

van der Vlag et al. RateML

https://github.com/the-virtual-brain/tvb-root.git
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

Listing 1 XML derivatives definition for the CUDA
Kuramoto model.

The ComponentType Derivatives enables the specification of
the NMM equations that define amodel’s dynamical behaviour. It
contains a number of elements which support the differential
equations. An overview of all the elements of the Derivatives
ComponentType are listed in Table 1.

The Parameter element defines the parameters targeted in the
parameter sweeps. A Cartesian product is created over the
parameter ranges, which generates all possible configurations
of parameters. Each thread of the CUDA kernel takes a single
parameter configuration and runs a TVB simulation. The
resolution for each parameter, which determines how many
threads are spawned, can be set on the command line (see
Section 3.3).

There are two special DerivedParameters, rec_speed_dt and
nsig. This DerivedParameter represents a unitary delay based on
the transmission speed of the white fibers per integration unit.
This convenient operation preprocesses the global_speed such
that the CUDA kernel only has to perform a single multiplication
instead of two divisions for the calculation of each input signal
coupled to each node. The former sets the conduction speed to
match TVB (no conduction delays if unset) and the latter is a
multiplicative parameter to scale noise variance (see Section 3.1.2
and Section 3.1.3 for the coupling and stochastics components,
respectively).

As a worked example, we will consider the implementation in
RateML of the Kuramoto model (Kuramoto, 1975). The
differential equation that defines the behavior of the Kuramoto
model is

θn
dt

� ωn︸︷︷︸
A

+ k∑
N

p�1
Cnp sin θp t − τnp() − θn t()()

︸														︷︷														︸
B

+ ηn t()︸		︷︷		︸
C

,

n � 1, . . . , N (1)
where θn denotes the phase of node n at time t (Cabral et al.,
2011), ωn is the intrinsic frequency of the node n on its limit cycle,
k is the global coupling strength, Cnp is the relative coupling
strength, which is usually expressed as the weight of the
connection between node p and node n, τnp = dnp/v is the
delay between node p and node n and is calculated by
dividing the distance between the nodes by the conduction
speed v, and ηn is a Gaussian white noise term. The lengths
and weights matrices are defined in a connectivity file outside of

the XML file, which can be specified in the TVB simulation
setup phase.

Eq 1 can be broken down into three terms, separated at the
plus signs. Term A represents a constant contribution to the
dynamics, the sum in term B defines the coupling, and term C
defines the noise added to the model. These terms correspond to
the three ComponentTypes in RateML, namely derivatives,
coupling and noise.

The first ComponentType that needs to be defined is named
derivatives. Listing 1 shows an XML file with all the elements and
fields for the derivatives ComponentType. The elements in LEMS
have to be used in an specific order. First, the elements used for
the parameter sweeps are defined. In this case the global_speed
and global_coupling are swept, which corresponds to the v and k
terms as described above. The range for the parameter sweep is
defined by the dimension field; in this example, both parameters
will be swept between the values of 1.0 and 2.0. Note that the
resolution is defined when the model is called on the command
line, see Section 3.3). Next, two DerivedParameters named
rec_speed_dt and nsig are defined. The DerivedParameter
rec_speed_dt sets the conduction speed similar to the format
used by TVB. This derived parameter is used to calculate the delay
between the nodes which is the length between node n and p
multiplied by rec_speed_dt. The lengths are specified in the
connectivity matrix. The Parameter global_coupling reappears
in the coupling ComponentType.

Having defined the sweeping parameters and the derived
parameters, the constant ωn (omega) is defined and its value
set. Next, the dynamic variables which the user wishes to monitor
are identified using the exposure element. In this example, as the
Kuromoto model only has one dynamic variable, θ, only theta can
be monitored.

Finally, the dynamics of the model are defined. The StateVariable
element is used to identify θ (theta) as a dynamic variable; the range
of the dimension field is used for its random initialization, in this case
a value between 0.0 and 1.0, and the exposure field defines its
boundaries. The exposure field has a different meaning than the
Exposure element; these definitions are an inheritance from LEMS.
In this example, θ, which represents the phase of the oscillation, is
constrained to the range between 0.0 and 2π. The TimeDerivative
element holds the equation for θ, here the sum of the constant omega
and the result of the coupling defined by c_pop0, discussed below in
Section 3.1.2. This corresponds to terms A+ B in Eq 1. The noise
term does not need to be explicitly included in the TimeDerivative
element and is discussed below in Section 3.1.3.

TABLE 1 | Overview of all the elements of the ComponentType derivatives.

Element Generates Has fields Numba or CUDA Special

Parameter Parameter for sweeps Name-Dimension CUDA
Derived Parameter Expression for parameters Name Value CUDA rec_speed_dt
Constants Constant scalar variables of type float Name Dimension Value Description Both nsig
Exposures Simulation objects to monitor Name Dimension Both
State Variables Definition of state Variables and conditions Name Dimension Exposure Both
Derived Variable Temporary variables to support formulation of time derivatives Name Value Both
Conditional derived Variables If-else statements Name Both
Case Case with condition for if-else Condition Value Both
Time Derivatives The dynamic equation Variable Value Both

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263455

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

3.1.2 Coupling
Term B is the part of Eq 1 that defines the coupling between the
nodes. It is usually a sum of a function of the signals received by
all other connected regions into each region. The coupling
ComponentType gives the user freedom to define arbitrary
coupling functions for the CUDA code generation; note that
to identify this ComponentType, the name field must include the
string ‘coupling’.

During the coupling computation the temporal properties of the
brain network are taken into account. All nodes that are connected to
the current node, the node for which the coupling is being calculated,
are delayed before reaching it. This means that not the current states
but states at previous timesteps of the connected nodes should be
used to calculate the state of the current node. These previous states
are fetched from memory. The computed delay, mentioned above in
Section 3.1.1, serves as the timestep index to fetch the delayed states.
Next to the temporal-also the spatial properties of the network are
computed. The weight of the connected nodes, Cnp in Eq 1
determines how strong the connection is.

Listing two shows a possible coupling relation of the
Kuramoto model. The coupling elements have a similar
keyword naming scheme to derivatives but differ slightly. The
dynamic state variable for which the coupling relation needs to be
computed, can be identified with the Parameter element. The
Kuramoto model has only one state, thus the dimension, which is
used to select the state, is set to ‘0’, because that is where the
indexing starts. For models with multiple dynamic variables, the
user is able to appoint any of these for the coupling function.

The delayed states of the connected nodes are stored in a user
defined temporary variable (theta_p in the example), and can be
used as a building block in the ComponentType for the coupling.
This fetching of these delayed states, corresponds to the first part
of the coupling term: θp (t − τnp), where τnp is the delay, derived
from the connectivity matrix.

Next, the DerivedParameter element defines a function that
can be applied to the gathered result of all delayed nodes. In this
case the gathered result is stored in c_pop0, which was previously
used in the TimeDerivative element in the ComponentType
derivatives defined in the section above. The function applied
is a multiplication (which is implicit) with the global_coupling
parameter, the target for the sweeps, corresponding to the
multiplication by k in Eq 1.

In TVB, coupling components are composed of two functions:
pre is applied before the summation over neighboring nodes, and
post is applied after the summation. The DerivedVariable
elements with the name pre or post are used to define the
pre- and post synaptic coupling function. The pre-synaptic
definition corresponds to the sin (θp (t − τnp) − θn(t)) in term
B of Eq 1. The model does not require post-synaptic activity.

Listing 2 XML coupling definition for the CUDA
Kuramoto model.

3.1.3 Stochastics

Listing 3 XML stochastics definition for the CUDA
Kuramoto model.

To enable stochastic integration, a ComponentType with the
name noise can be defined, see Listing 3. As discussed above, this
is only implemented for the CUDA variant. The CUDA code
generation makes use of the Curand library (NVIDIA, 2008) to
add a normal distributed random value to the calculated
derivatives. This corresponds to term C in Eq 1.

Asmentioned in Section 3.1.1, if the derivatives ComponentType
has a derived parameter with the name nsig, a noise amplification/
attenuation is applied to the noise before it is added. In listing 1 an
example of this derived parameter is shown on line 7. In this case the
value for nsig is

dt

√
p

2.0p1e−5

√
, which acts as a multiplicative term

to the noise term and is a commonly used attenuation in TVB.

3.2 XML to Model
When theXML file is complete, theNMMcan be generated. RateML
is part of the TVB main repository; installing TVB through: pip
install tvb-library also installs the command line interface operated
RateML. To use RateML, a user must import and create an object of
the RateML class, enter the arguments model filename, language,
XML file location and model output location, and run the code:

or run from command line:

The XML file is converted into a model file using the Mako
template engine for Python. When a model generation is started,
the flow depicted in Figure 2 is started.

The PyLEMS (Vella et al., 2014) expression parser is used to
check and parse mathematical expressions of the XML file. The
expression parser embedded in the LEMS library recognises a
variety of fundamental mathematical function and operators2.

The PyLEMS library returns an expression tree consisting of a
large Python dictionary which contains all the aforementioned
model components. During the rendering of the model, the
elements in the dictionary are projected onto the placeholder
expressions of the Mako templates. There are Mako templates for
Python, Cuda and the GPU driver module, consisting of dynamic
for-loops responsible for generating the code. If a Python
conversion is executed, the TVB framework is updated with
the latest model. The user can specify a folder in which to
save the generated model.

2https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/
rateML/README.md for further documentation.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263456

van der Vlag et al. RateML

https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/rateML/README.md
https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/rateML/README.md
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

3.3 Driver Generation
Generating a model with RateML for CUDA not only produces a
model but also a driver file specifically set for that specific model.
The driver determines optimal CUDA grid layout, outputs
runtime information and makes use of 32 CUDA streams to
asynchronously process time steps in combination with memory
transfers. The generated driver file model_driver_[model_name].
c is found in the run folder within the RateML folder structure.
The fields that dynamically link the model to the driver, are
Parameter, DerivedParameter, StatesVariable and Exposure. The
number of parameters entered for sweeping together with their
ranges and resolution determine the optimal size for the thread
grid automatically. The model driver uses the PyCUDA library
(Klöckner et al., 2012). To run the model driver, the user must call
it in a terminal with the appropriate arguments.

The argument -si refers to the ith sweeping parameter defined
in the XML file. These arguments set the size of the CUDA grid.
In this case a 8 × 8 grid is spawned. If there are more that two
parameters that need to be swept, the grid size will adapt and will
stay two dimensional. The argument also sets the resolution of
parameters, i.e. the number of points in the user defined
parameter range. In case of the example of the Kuramoto in
Listing 1 the -s0 corresponds to the resolution of global_speed
and the -s1 corresponds to global_coupling ranges defined in the
derivatives section of the XML file. An argument of size eight
returns evenly spaced samples calculated over the range defined
in the XML Parameter element. The -n argument sets the number
of iteration steps. The -dt argument sets the time step in
milliseconds of the integration. More information about the
commands can also be found in the documentation in footnote2.

The CUDAmodel spawns a grid in which each thread represents
parameter combination of the parameters to be explored (see
Figure 3). During the coupling phase, all nodes fetch the states
of all other nodes according to the delay specified in the connectivity
matrix. This means that the GPU has to store the states of all brain
nodes for a certain simulation depth, determined by the largest
connection delay in the model. This depth can be configured in the
driver software available to drive the CUDA models.

4 USE CASE: THE MONTBRIÓ MODEL

TheMontbriómodel describes theOtt-Antonsen (Ott andAntonsen,
2008) reduction of an infinite number of all-to-all coupled quadratic
integrate-and-fire (QIF) neurons (Montbrió et al., 2015). The two
state variables r and V represent the firing rate and the average
membrane potential of the QIF neurons. Their derived exact
macroscopic equations relate the individual cell’s membrane
potential to the firing rate and populationmeanmembrane potential.

This neural mass model was adapted for a study on the role
which neuronal cascades play in the causation of whole-brain
functional dynamics at rest (Rabuffo et al., 2021). Causality is
established by linking structural defined features of a brain
network model to neural activation patterns and their
variability. The ordinary differential equations that describe
the exact firing rates for a network of spiking neurons read:

_rn t() � Δ/π + 2rn t()Vn t() + 2σΦ t() (2)
_Vn t() � V2

n t() + η + Jrn t() − π2r2n t() + I t() + 4σΦ t() (3)
where rn and Vn are the firing rate and membrane potential,
respectively, of the nth neuron, J (= 14.5) is the synaptic weight,
Δ(= 0.7) is the heterogeneous noise distribution and η(= − 4.6) is
the average neuronal excitability. Noise enters the equation as
Φ(t) and its attenuation is σ. The attenuation for Φ(t) in _Vn(t) is

FIGURE 2 | The steps that make up RateMLmodel generation workflow and the software responsible (black text). The flags correspond to the bullets in box 4. The
driver and model strings are the translated CUDA model and driver or Python model which only need to be written to file, which happens at the final step.

2https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/
rateML/README.md for further documentation.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263457

van der Vlag et al. RateML

https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/rateML/README.md
https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/rateML/README.md
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

twice as large as in _rn(t), this is to keep the relative level of noise
the same for both. The coupling term enters as additive current in
the average membrane potentials equations, which reads:

I t() � G∑
p≠n

Wnprp t − τnp() (4)

where the global coupling parameterG scales the connectivitymatrix
Wnp. The delay is, just as in Eq 1, defined as τnp = lnp/v; where the lnp
are the lengths between the nodes and v is the conduction speed. In
contrast to the Kuramoto example; the coupling applied here is not
the differencewith the current state but is only an accumulation of its
connected delayed states. The former is called difference- and the
latter is called linear coupling in TVB.

To research the synthetic whole-brain dynamics, Rabuffo et al.
(2021) performed a parameter sweep on two global parameters: the
global coupling G representing the impact of the structure over the
local dynamics, and the intensity σ which simulates the effect of a
generic environmental noise. For each parameterization several
minutes of neuroelectric and BOLD activity were simulated.

As a validation test for RateML, we compare the output of the
parameter sweep enabled CUDA models against the
implementation of the Montbrió model included in TVB. As
sweeping over noise would introduce confounding varibility into
the results, we substitute a sweep over the global_speed v instead

of the σ parameter, similar to the Kuramoto example above. In the
following, we describe how Eqs 2–4 are converted to a CUDA
parameter space exploration model using RateML.

4.1 Implementing the Model

Listing 4 XML derivatives definition for the CUDA
Montbrió model.

First the derivative equations are set up. The ComponentType
derivatives, shown in Listing 4, details its implementation. As

FIGURE 3 | GPU state space specification. Each thread executes a simulation with a unique parameter combination. When the coupling is calculated the kernel
steps through all nodes for each time step. At each node, every other node is taken into consideration to calculate the coupling (c.f. Eq 1). The calculated states are
stored for as many timesteps back, corresponding to the buffer depth.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263458

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

mentioned in the introduction in Section 4, the global_speed and
global_coupling are explored; the parameters’ dimension fields
set their ranges, which are chosen arbitrarily. The number of
points in this range are determined by calling the generated driver
file from the command line, see Section 4.2. Next a derived
parameter rec_speed_dt is defined, this is identical with TVB’s
implementation of the connectome’s conduction speed. The
constants match the terms defined in the model equations
above; the description fields are omitted here for brevity. Next,
the exposure is set to monitor the state variable r.

Both state variables are initialized to 0.0; this can be done by
setting the range in the dimension field both to 0.0. Their boundaries
are entered in the exposure field. Only the state r has a lower bound
of 0.0, the upper bound is set to infinity. The TimeDerivative element
holds the derivatives which match the differential equations from
Section 4. The ComponentType derivatives is followed by the
ComponentType coupling, shown in Listing 5.

Listing 5 XML Coupling definition for the CUDA
Montbrió model.

For the Montbrió model, only the state variable r is involved in
the coupling calculation, therefore a single coupling function should
be defined. First, the Parameter construct defines the coupling
variable rp. The coupling function computes the influence of the
connected nodes by taking the state values into account. The RateML
framework automatically generates code for the coupling function
such that the state values of the connected nodes, in this case
representing the firing rates, are gathered and processed
according to the connection weights. Then, the DerivedParameter
construct defines the c_pop0 variable, which links the coupling result
to the TimeDerivative element and applies a multiplication with the
global_coupling Parameter. The result of which is stored in c_pop0.
The defined coupling corresponds to TVB linear coupling meaning
that the presynaptic coupling function, specified with the
DerivedVariable constructs with the name “pre”, simply holds the
coupling variable rp. There is no postsynaptic coupling term, thus a
second DerivedVariable can be omitted.

Since no stochastic integration is applied, the XML file should
not contain a ComponentType noise.

4.2 Validation
A validation setup was used to ensure the accuracy of the results
obtained with the automatically generated CUDA code. The
validation setup uses the Montbrió model described in the
previous section and compares the output to the version of
the Montbrió model already present in TVB3. This model is
sequentially executed for all the parameters using the TVB

framework. When RateML is executed to generate the
corresponding CUDA model, the produced driver file bears
the name model_driver_montbrio.c. A parameter sweep with a
grid size of 5x10 for 40000 timesteps on a connectome with 68
nodes for dt = 0.01 was then setup. The argument to run the
generated driver file is as follows:

The -s0 and -s1 set the grid to 5x10 threads and divide the
points evenly for the parameters range, the -dt sets the simulation
step time in milliseconds and the -r sets the number of nodes of
the connectome. The -n sets the simulation length to 400
resulting in 400/0.01 simulation steps.

The Montbrió model produces a high time-resolution
neuroelectric signal, namely the firing rate r and the
membrane potential V. Then, a low time-resolution simulated
BOLD activity is obtained, by filtering the membrane potentials
through the Balloon-Windkessel model. A sliding window
approach was applied to obtain the dynamical Functional
Connectivity (dFC); inside each time window, a static
Functional Connectivity (FC) was computed as the correlation
matrix of the BOLD activities. The entries of this windowed-dFC
(dFCw) are defined as the correlation between the FCs at different
windows.

Figure 4 shows the results of parameter simulation validated
against the standard Python TVB version. It shows the variance in
dFC for each parameter combination. From the figure can be
concluded that RateMLs models have similar output. The
difference between results is smaller than 13.4e−5 · t, relative to
the timestep. It shows that the CUDA code is accurate and suited
to do parameter sweep experiments.

5 PERFORMANCE

To examine the performance of our approach, we benchmarked
three CUDA models, namely the Kuramoto (Kuramoto, 1975),
WongWang (Wong and Wang, 2006) and Epileptor (Jirsa et al.,
2014), which have one, two and six state variables, respectively.
We systematically vary the number of simulated points in the
parameter space and integration steps in order to observe the run-
time behaviour expressed in iterations per second and memory
scaling. The iterations per seconds are calculated as:
(integration_steps · parameter_space_size)/elapsed_time.

The benchmark experiments are executed on the
JuwelsBooster clusters equipped with A100 GPUs with 40 GB
of High Bandwidth Memory two and a bandwidth of 1555 GB/s.
In general the GPU’s performance increases, in contrast to a CPU
device, by increasing the thread number in combination with the
utilization of memory bandwidth; the more threads utilizing
memory, the better it can hide the memory latency of the
application.

The results in Figure 5 panel A show increasing memory
bandwidth utilization in relation to a larger parameter space;
indicating that the application is memory bound. The Kuramoto,
Montbrió and Epileptor models reach their maximum capacities
for 40 GB of memory at 144k, 62k and 22k parameters

3https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/
simulator/models/infinite_theta.py.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 8263459

van der Vlag et al. RateML

https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/simulator/models/infinite_theta.py
https://github.com/the-virtual-brain/tvb-root/blob/master/scientific_library/tvb/simulator/models/infinite_theta.py
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

respectively; the plots in panels A, C and D show the results until
the memory of the GPU was saturated. The Epileptor reaches its
maximum capacity first because it has the most state variables.
The parameter capacity is directly related to state size: more states
mean more data has to be stored. The single state Kuramoto
model has only a single state and has a much larger maximum
parameter space. For this model the application reaches it
maximum attainable bandwidth at 175 MiB/sec at 91k
parameters.

Figure 5 panel B shows the behaviour in iterations per
second of the RateML generated CUDA models when the
simulation length is increased. It shows that there is hardly
any increase in the computation speed; for these settings the
application is computationally bound. Because the number of
iterations cannot be parallelized, there is no increase in
memory utilization and hence the GPU cannot increase its
performance.

In panel C and D from Figure 5 it is shown that the
application performs better when the parameter size
increases. The Kuramoto reaches its maximum computation
speed at 65 Miters/sec for 91k parameters. The executions in
panel D for 10s of simulated time reach a higher number of
iterations per second than those seen in panel C which ran for
0.4s simulated time. This can be explained from the fact that
the GPU uses 32 streams to asynchronously copy data from the
GPU back to disk, which is usually the most time consuming
part of the application. The memory copying can be masked by
asynchronously starting a new integration step in a new
stream, in parallel to the memory movement. When a GPU
instance is still busy with copying data to disk another stream
can start the next integration step. The more simulation steps
performed the larger the benefit from asynchronously copying
data to disk, resulting in an increase in the iterations per
second.

Finally, for reference we present current performance of the
Python TVB library using the Numba backend (Figure 6). For
this we have configured the simulation with the Montbrió model
driven by noise and a connectome of 68 nodes and delays induced
by a propagation speed of 2 m/s. The benchmark was executed on
a single Cray XC40 node (Intel Xeon E5 − 2,695 v4, 2 × 18 cores,
2.10 GHz, 128 GB RAM) of the multicore partition located in Piz
Daint. The execution of different parameters was orchestrated by
the multiprocessing Python package using all 36 cores of the
compute node.

The results presented in Figure 6A show that the
performance increases with the length of the simulation
suggesting better amortization of the simulation initialization
overhead and better data locality. We explored two simulation
lengths with this model: a 4 000 iteration step microbenchmark
and a longer experiment of 100000 integration steps
corresponding to 10 s of simulated time which spans several
BOLD time points (usual sampling frequency 1Hz) and is more
representative of real workloads. The results presented in
Figure 6B indicate that the peak performance is already
reached for small parameter space sizes. Longer simulations
achieve better performance due to amortization of simulation
launch overhead and increased data locality. For a particular
simulation length, the peak performance is reached already for
small parameter spaces.

6 DISCUSSION

In this work we presented RateML, a model code generator
based on LEMS for defining neural mass models succinctly.
TVB simulations vary greatly in simulation time, number
of nodes used and which parameters to explore within
the different research topics and science groups. One
thing is clear, in order to have the simulation results fit
subject data for clinical research or have an optimal
resolution for, e.g., the cohort studies for aging, the
number of parameters that need to be explored are vast;
and it is safe to say that the more parameters explored
the better. RateML enables the user to generate complex
Python and CUDA neural mass models and to do fast
parameters sweeps on the GPU, with identical results as
when done with TVB. We introduced the interface and its
elements, the inner workings of the generator and the
relation of the elements to the placeholder templates
which generate the code for neural mass models and the
GPU driver. At the moment some of the variables within the
LEMS components used in RateML have been modified to fit
specific functionality and match the TVB simulation
strategy. Even though at the moment models produced by
RateML can not be directly ported to other simulators which
support LEMS and are able to simulate BNMs or NMMs,
work is being done in collaboration with the LEMS
development community to fit all the requirements and

FIGURE 4 | (A). CPU and (B). GPU parameter sweep validation for 68 nodes, 40,000 simulation steps, 0.01 dt on global_speed (y-axis) and global_coupling
(x-axis). The color bar displays the value for the variance of the dFC.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 82634510

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

perform any required modifications to RateML or extensions
to the standard.

In the use case section we demonstrated how to define the
XML file for the Montbrió model, generate the CUDA code
and driver, and do fast and efficient parameter sweeps over

the global speed and global coupling parameters using a
GPU. Several other models are already currently available in
XML format at the TVB repository. We showed that the
output is very close to the TVB simulator. This verifies that
the code generation process is faithful to the reference

FIGURE 5 | Performance overview for the CUDA parameter sweep models: Kuramoto (red curves), Montbrió (blue curves) and Epileptor (black curves)
(A) Memory bandwidth consumption as a function of the number of parameter configurations simulated (B) Model iterations per second as a function of the
number of integration steps (simulated time) for a fixed parameter space size (1,024) (C)Model iterations per second as a function of the number of parameter
configurations simulated for a small number of integration steps (4,000; 0.4 s simulated time) (D) as in (C) for 100,000 integration steps (10 s simulated
time). Results indicate linear scaling when increasing the parameter space and that the application is memory bound for the higher state models.

FIGURE 6 | Performance of the code-generated TVB Numba backend (CPU) on a single Cray XC40 node (2×18 cores, 2.10 GHz, 128 GB RAM). Execution
time of a parameter space exploration was measured for the Montbrió model on a connectome of 68 nodes for (A) fixed parameter space size (1,024 points) and
varying number of integration steps, (B) small number of integration steps (4,000) corresponding to 0.4 s of simulated time, and longer simulation of 100,000 or 10 s
of simulated time.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 82634511

van der Vlag et al. RateML

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

implementation in TVB. For simplicity and clarity in the
validation procedure, noise has been neglected from these
tests. However, RateML can include noise within the model
description.

We have benchmarked the code and shown that the
GPU version is memory bound and the runtime for the
models generated with RateML scales linearly to
the number of explored parameters, up to 144,000
parameters on a single GPU. Results also show that
the GPU performs even better with larger parameter
spaces, due to the fact that it can then hide
memory latency more effectively. In Figure 5 it is also
visible that the amount of iterations per second in the
GPU continues to increase as the number of parameter
combinations grows. This translates into a progressive
utilization of the GPU computing resources and almost
constant simulation times for any amount of parameters
which can fit in memory. The application could benefit from
a multi GPU setup enabling users to do even larger
parameters sweeps.

7 CONCLUSION AND FUTURE WORK

While the work on performant code generation in RateML has
focused on NVIDIA GPUs, because of their prevalence in
HPC centers, future work in RateML will address better code
generation for CPUs, from generating full simulations for
CPU instead of just the model derivatives and ensuring Single
Instruction Multiple Data (SIMD)4 instruction sets are
correctly used, instead of relying on Low Level Virtual
Machine (LLVM) (Lattner and Adve, 2004)
autovectorization, to sizing parameter space exploration
work arrays to stay within CPU level 3 cache. These
improvements allow for end users to do significant
interactive prototyping prior to sending a model for full
sweeps or optimization.

To further streamline computational workflows involving
brain atlas data, RateML will add data specifications, which
enable fetching the requested data from an online atlas,
transformed into a model on which a parameter sweep is
performed to fit the model against, e.g. the fMRI belonging to
the requested subject’s brain. This will also include integrating
new atlas data on per-region variability, e.g. receptor
densities, and mapping these to model parameters. Deep
integration between multimodal neuroimaging data,
anatomical data, and high-performance code generation is
a key unique feature enabling non-expert users to take
advantage of neural mass modeling techniques.

For workflows that involve extensive parameter tuning, it is
frequently required to use adaptive algorithms and not rely on
full grid explorations. This is specialy important where the
dimensionality of the parameter space is high. For instance, to

optimize resource utilization one could make use of stochastic
gradient descent or other algorithms which selectively focus on
regions of interest within the parameter space. While RateML
can scale models to tens of thousands of parameter
combinations, hyper-parameter optimization can be
delegated to a framework such as Learning to Learn (L2L)
(Subramoney et al., 2019). This framework is a hyper
parameter optimizing network consisting of two loops, an
inner loop which handles the process to be optimized and
an outer loop which handles the hyper parameter
optimization. The user can instantiate many optimizer
algorithms such as gradient descent, evolutionary strategies
or cross-entropy to find the best fitting algorithm for each use
case. With RateML, which acts as a front-end to this
framework, the user is able to generate a parameter sweep-
enabled model and directly run it, as a multi agent optimizee
within the L2L framework, enabling new use cases with
complex hierarchical models.

In summary, RateML provides the neuroscience
community with a new tool to easily define, generate, and
simulate BNMs and NMMs. The high throughput of
simulation results which can be derived of this frameworks
helps match the increasing production of data by experimental
neuroscientists and the equal need for its processing, analysis
and interpretation. By simplifying the access to state of the art
computing methods, RateML enables the further
understanding of the brain function merging dynamical
models based on experimental data and fast parameter
exploration.

DATA AVAILABILTY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors conceived of the project. MV, MW, JF, SD-P, and
AP worked on the design of the framework. MV, SD-P, MW,
and JF designed the use cases. MV, AP, SD, and MW worked
on the implementation and testing. MV, MW, JF, and SD-P
worked on the validation. All authors reviewed, contributed
and approved the final version of the manuscript.

FUNDING

The research leading to these results has received funding
from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under the Specific
Grant Agreements No. 785907 (Human Brain Project SGA2)
and 945539 (Human Brain Project SGA3). This research has
also been partially funded by the Helmholtz Association
through the Helmholtz Portfolio Theme “Supercomputing
and Modeling for the Human Brain”.

4https://www.sciencedirect.com/topics/computer-science/single-instruction-
multiple-data.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 82634512

van der Vlag et al. RateML

https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data
https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software
available from tensorflow.org [Dataset].

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor - AMorphologically-Detailed Neural Network Simulation Library
for Contemporary High-Performance Computing Architectures,” in 2019 27th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 274–282. doi:10.1109/EMPDP.2019.8671560

Bansal, K., Nakuci, J., and Muldoon, S. F. (2018). Personalized Brain Network
Models for Assessing Structure-Function Relationships. Curr. Opin. Neurobiol.
52, 42–47. doi:10.1016/j.conb.2018.04.014

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P.,
et al. (2018). Code Generation in Computational Neuroscience: A Review
of Tools and Techniques. Front. Neuroinform. 12, 68. doi:10.3389/fninf.
2018.00068

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of Local Network
Oscillations in Resting-State Functional Connectivity. NeuroImage 57,
130–139. doi:10.1016/j.neuroimage.2011.04.010

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., et al.
(2014). Lems: a Language for Expressing Complex Biological Models in Concise
and Hierarchical Form and its Use in Underpinning Neuroml 2. Front.
Neuroinform. 8, 79. doi:10.3389/fninf.2014.00079

Davison, A. (2013).NineML. New York, NY: Springer New York, 1–2. doi:10.1007/
978-1-4614-7320-6_375-2

Deco, G., McIntosh, A. R., Shen, K., Hutchison, R. M., Menon, R. S., Everling, S.,
et al. (2014). Identification of Optimal Structural Connectivity Using
Functional Connectivity and Neural Modeling. J. Neurosci. 34, 7910–7916.
doi:10.1523/jneurosci.4423-13.2014

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., et al.
(2019). The Scientific Case for Brain Simulations. Neuron 102, 735–744. doi:10.
1016/j.neuron.2019.03.027

Falcon, M. I., Jirsa, V., and Solodkin, A. (2016). A New Neuroinformatics
Approach to Personalized Medicine in Neurology: The Virtual Brain. Curr.
Opin. Neurol. 29, 429–436. doi:10.1097/wco.0000000000000344

Fox, M. D., and Raichle, M. E. (2007). Spontaneous Fluctuations in Brain Activity
Observed with Functional Magnetic Resonance Imaging. Nat. Rev. Neurosci. 8,
700–711. doi:10.1038/nrn2201

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2012). Overview of the Spinnaker System Architecture. IEEE Trans. Comput.
62, 2454–2467.

Gast, R., Rose, D., Salomon, C., Möller, H. E., Weiskopf, N., and Knösche, T. R.
(2019). PyRates-A Python Framework for Rate-Based Neural Simulations.
PLOS ONE 14, e0225900–26. doi:10.1371/journal.pone.0225900

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). Neuroml: A Language for Describing Data Driven Models of
Neurons and Networks with a High Degree of Biological Detail. Plos Comput.
Biol. 6, e1000815–19. doi:10.1371/journal.pcbi.1000815

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array Programming with NumPy. Nature 585,
357–362. doi:10.1038/s41586-020-2649-2

Hashemi, M., Vattikonda, A. N., Sip, V., Guye, M., Bartolomei, F., Woodman, M.
M., et al. (2020). The Bayesian Virtual Epileptic Patient: A Probabilistic
Framework Designed to Infer the Spatial Map of Epileptogenicity in a
Personalized Large-Scale Brain Model of Epilepsy Spread. NeuroImage 217,
116839. doi:10.1016/j.neuroimage.2020.116839

Jirsa, V. K., Stacey,W. C., Quilichini, P. P., Ivanov, A. I., and Bernard, C. (2014). On
the Nature of Seizure Dynamics. Brain 137, 2210–2230. doi:10.1093/brain/
awu133

Klöckner, A., Pinto, N., Catanzaro, B., Lee, Y., Ivanov, P., and Fasih, A. (2012).
GPU Scripting and Code Generation with PyCUDA. GPU Comput. Gems Jade
Edition 373, 373–385. doi:10.1016/B978-0-12-385963-1.00027-7

Kuramoto, Y. (1975). International Symposium on Mathematical Problems in
Theoretical Physics. Lecture Notes Phys. 30, 420.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). “Numba,” in Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC (New York, NY, USA:

Association for Computing Machinery LLVM ’15). doi:10.1145/2833157.
2833162

Lattner, C., and Adve, V. (2004). “The LLVM Compiler Framework and
Infrastructure Tutorial,” in LCPC’04 Mini Workshop on Compiler Research
Infrastructures (West Lafayette, Indiana.

Lynn, C. W., and Bassett, D. S. (2019). The Physics of Brain Network Structure,
Function and Control. Nat. Rev. Phys. 1, 318–332. doi:10.1038/s42254-019-
0040-8

Montbrió, E., Pazó, D., and Roxin, A. (2015). Macroscopic Description for
Networks of Spiking Neurons. Phys. Rev. X 5, 1–15. doi:10.1103/PhysRevX.
5.021028

Nvidia, C. (2008). Curand library. [Dataset].
Nvidia, C., Vingelmann, P., and Fitzek, F. H. (2020). Release, Cuda, 89.

[Dataset]. 10.2.
Ott, E., and Antonsen, T. M. (2008). Low Dimensional Behavior of Large Systems

of Globally Coupled Oscillators. Chaos 18, 037113. doi:10.1063/1.2930766
Peyser, A., Diaz Pier, S., Klijn, W., Morrison, A., and Triesch, J. (2019). Linking

Experimental and Computational Connectomics. [Dataset].
Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B.

(2016). “Nestml: a Modeling Language for Spiking Neurons,” in Modellierung
2016. Editors A. Oberweis and R. Reussner (Bonn: Gesellschaft für Informatik
e.V.), 93–108.

Rabuffo, G., Fousek, J., Bernard, C., and Jirsa, V. (2021). Neuronal Cascades Shape
Whole-Brain Functional Dynamics at Rest. eNeuro 8, 0283–321. doi:10.1523/
ENEURO.0283-21.2021

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,
Mcintosh, A. R., et al. (2013). The Virtual Brain: A Simulator of Primate
Brain Network Dynamics. Front. Neuroinform. 7. doi:10.3389/fninf.2013.
00010

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an Intuitive and
Efficient Neural Simulator. eLife 8, e47314. doi:10.7554/eLife.47314

Subramoney, A., Diaz-Pier, S., Rao, A., Scherr, F., Salaj, D., Bohnstingl, T., et al.
(2019). Igitugraz/l2l: v1.0.0-beta. [Dataset]. doi:10.5281/zenodo.2590760

van der Vlag, M. A., Smaragdos, G., Al-Ars, Z., and Strydis, C. (2020). Exploring
Complex Brain-Simulation Workloads on Multi-Gpu Deployments. ACM
Trans. Archit. Code Optim. 16, 53–61.

Vella, M., Cannon, R. C., Crook, S., Davison, A. P., Ganapathy, G., Robinson, H. P.
C., et al. (2014). libNeuroML and PyLEMS: Using Python to Combine
Procedural and Declarative Modeling Approaches in Computational
Neuroscience. Front. Neuroinform. 8, 38. doi:10.3389/fninf.2014.00038

Wong, K.-F., and Wang, X.-J. (2006). A Recurrent Network Mechanism of Time
Integration in Perceptual Decisions. J. Neurosci. 26, 1314–1328. doi:10.1523/
jneurosci.3733-05.2006

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: A Code Generation
Framework for Accelerated Brain Simulations. Sci. Rep. 6, 18854. doi:10.
1038/srep18854

Conflict of Interest: Author MV is employed by F. Jülich GmbH. Author SD-P is
employed by F. Jülich GmbH. Author AP is employed by F. Jülich GmbH. Author
A. Morrison is employed by F. Jülich GmbH.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 van der Vlag, Woodman, Fousek, Diaz-Pier, Pérez Martín, Jirsa
and Morrison. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Network Physiology | www.frontiersin.org February 2022 | Volume 2 | Article 82634513

van der Vlag et al. RateML

https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1016/j.neuroimage.2011.04.010
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1007/978-1-4614-7320-6_375-2
https://doi.org/10.1007/978-1-4614-7320-6_375-2
https://doi.org/10.1523/jneurosci.4423-13.2014
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1097/wco.0000000000000344
https://doi.org/10.1038/nrn2201
https://doi.org/10.1371/journal.pone.0225900
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.neuroimage.2020.116839
https://doi.org/10.1093/brain/awu133
https://doi.org/10.1093/brain/awu133
https://doi.org/10.1016/B978-0-12-385963-1.00027-7
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1063/1.2930766
https://doi.org/10.1523/ENEURO.0283-21.2021
https://doi.org/10.1523/ENEURO.0283-21.2021
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.7554/eLife.47314
https://doi.org/10.5281/zenodo.2590760
https://doi.org/10.3389/fninf.2014.00038
https://doi.org/10.1523/jneurosci.3733-05.2006
https://doi.org/10.1523/jneurosci.3733-05.2006
https://doi.org/10.1038/srep18854
https://doi.org/10.1038/srep18854
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles

	RateML: A Code Generation Tool for Brain Network Models
	1 Introduction
	2 State of the Art
	3 The RateML Framework
	3.1 RateML Syntax
	3.1.1 Derivatives
	3.1.2 Coupling
	3.1.3 Stochastics

	3.2 XML to Model
	3.3 Driver Generation

	4 Use Case: The Montbrió Model
	4.1 Implementing the Model
	4.2 Validation

	5 Performance
	6 Discussion
	7 Conclusion and Future Work
	Data Availabilty Statement
	Author Contributions
	Funding
	References

