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Introduction: High-intensity interval exercise (HIIE) is deemed effective for cardiovascular
and autonomic nervous system (ANS) health-related benefits, while ANS disturbance
increases the risk for cardiovascular disease (CVD). Postprandial lipemia and acute-partial
sleep deprivation (APSD) are considered as CVD risk factors due to their respective
changes in ANS. Exercising in the morning hours after APSD and have a high-fat breakfast
afterwards may alter the interactions of the cardiovascular, autonomic regulation, and
postprandial lipemic systems threatening individuals’ health. This study examined
postprandial network interactions between autonomic regulation through heart rate
variability (HRV) and lipemia via low-density lipoprotein (LDL) cholesterol in response to
APSD and HIIE.

Methods: Fifteen apparently healthy and habitually good sleepers (age 31 ± 5.2 SD yrs)
completed an acute bout of an isocaloric HIIE (in form of 3:2 work-to-rest ratio at 90 and
40% of VO2 reserve) after both a reference sleep (RSX) and 3–3.5 h of acute-partial sleep
deprivation (SSX) conditions. HRV time and frequency domains and LDL were evaluated in
six and seven time points surrounding sleep and exercise, respectively. To identify
postprandial network interactions, we constructed one correlation analysis and one
physiological network for each experimental condition. To quantify the interactions
within the physiological networks, we also computed the number of links (i.e., number
of significant correlations).

Results: We observed an irruption of negative links (i.e., negative correlations) between
HRV and LDL in the SSX physiological network compared to RSX. Discussion: We
recognize that a correlation analysis does not constitute a true network analysis due to
the absence of analysis of a time series of the original examined physiological variables.
Nonetheless, the presence of negative links in SSX reflected the impact of sleep
deprivation on the autonomic regulation and lipemia and, thus, revealed the inability of
HIIE to remain cardioprotective under APSD. These findings underlie the need to further
investigate the effects of APSD and HIIE on the interactions among physiological systems.
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1 INTRODUCTION

A plethora of data suggest the cardioprotective effects of exercise
due to its impact either on reducing the associated to
cardiovascular disease risk factors (e.g., hypertension,
lipidemia, diabetes, and insulin resistance, obesity) or having a
direct effect on processes and functions of different physiological
systems (e.g., atherosclerotic process and cardiovascular
function) (Powers et al., 2002; Phrommintikul et al., 2022).
Moreover, exercise presents cardioprotective effects due to
autonomic nervous system (ANS) adjustments on heart rate
variability (HRV) and baroreflex sensitivity (Grant et al., 2012;
Subramanian et al., 2019). High-intensity interval exercise
(HIIE), exercise performed in brief, successive intervals
consisting of a period of high-intensity (e.g., >80% of peak
oxygen consumption) followed by lower-intensity recovery
periods, is proposed as alternative time-efficient exercise
method with wide health related benefits during both fasting
and postprandial states (Gibala, 2007; Wisloff et al., 2007; Tjonna
et al., 2008; Tyldum et al., 2009; Gibala et al., 2012; Weston et al.,
2014; Bond et al., 2015; Sawyer et al., 2016; Ramírez-Vélez et al.,
2018; Tucker et al., 2018). The protective cardiometabolic effect
of HIIE is postulated due to greater induced antioxidant status
both during and after HIIE (Harris et al., 2008; Di
Francescomarino et al., 2009; Fisher-Wellman and Bloomer,
2009; Tyldum et al., 2009; Gabriel et al., 2012). On top of that,
HIIE has a significantly greater impact on ANS (Gibala et al.,
2012; Bhati and Moiz, 2017), with HIIE work to rest (W:R) ratio
of 1:2 to be proposed as highly effective for cardiovascular and
autonomic related health benefits (Heydari et al., 2013; Ramírez-
Vélez et al., 2016; Ramirez-Velez et al., 2020). It has been shown
that ANS disturbance due to exercise, presented as increased
sympathetic tone and parasympathetic withdrawal leads to a
decreased HRV, which in turn increases the risk for
cardiovascular disease (CVD) (Besnier et al., 2017). HIIE
affects simultaneously the interactions among physiological
systems and organs where the strength of these interactions
may represent different physiological states and pathological
conditions. Such pathological conditions may be manifested
due to failure of the system to perform various coupling and
feedback interactions under an integrated physiological system
with linear and non-linear characteristics (Bashan et al., 2012;
Ivanov and Bartsch, 2014; Bartsch et al., 2015).

Postprandial lipemia is an independent risk factor for CVD
(Hyson et al., 2003; Cromwell et al., 2007). Postprandial increased
concentration of low-density (LDL) lipoprotein cholesterol
induces a heightened inflammatory state in the vascular wall
that is highly susceptible to oxidative changes (Littlefield and
Grandjean, 2015) promoting vascular endothelial dysfunction
(Wallace et al., 2010). In apparently healthy men, LDL cholesterol
had inverse relation to HRV (Kupari et al., 1993; Christensen
et al., 1999), which is a marker of ANS activation and linked to
CVD (Thayer et al., 2010; Chung et al., 2020).

Short sleep duration has been linked to increased risks of
morbidity and mortality (Hale et al., 2020; Krittanawong et al.,
2020). Acute partial sleep deprivation (APSD), of less than 5 h of
sleep, is associated to CVD (Tobaldini et al., 2017; Liew and Aung,

2021). This association to CVD is attributed to changes in
autonomic nervous system (ANS) (Miller and Cappuccio,
2013; Tobaldini et al., 2014; Wright et al., 2015; Tobaldini
et al., 2017; American Sleep Association, 2018; Seravalle et al.,
2018; Liu and Chen, 2019; Oliver et al., 2020). Under APSD such
detrimental health effects may represent the breakdown of
dynamic network interactions among organs systems and
metabolic processes, such as ANS and postprandial lipemia
and their failure to ensure a healthy vital status (Bartsch et al.,
2015; Ivanov et al., 2016; Balague et al., 2020; Lehnertz et al.,
2020). It seems that after sleep deprivation the pronounced HR
and HRV reduction reflect the inability of the cardiovascular
system to respond and adapt to such a trigger (Zhong et al., 2005;
Sauvet et al., 2010). When there is failure in the interaction and
coordination between the parasympathetic activity (PA)
withdrawal and decreased total HRV (i.e., decreased high
frequency, increased low frequency, increased low frequency/
high frequency ratio) then sleep deprivation may pose as a risk
factor for CVD (Zhong et al., 2005; Tobaldini et al., 2014;
Johnston et al., 2020).

It is possible that APSD prior to exercise to mask the intended
health benefits of HIIE (Gibala, 2007; Wisloff et al., 2007; Harris
et al., 2008; Tjonna et al., 2008; Di Francescomarino et al., 2009;
Fisher-Wellman and Bloomer, 2009; Tyldum et al., 2009; Gabriel
et al., 2012; Gibala et al., 2012; Heydari et al., 2013; Weston et al.,
2014; Bond et al., 2015; Ramírez-Vélez et al., 2016; Sawyer et al.,
2016; Ramírez-Vélez et al., 2018; Tucker et al., 2018; Ramirez-
Velez et al., 2020), especially for those who are regular good
sleepers particularly as it is related to postprandial HRV and
cardiometabolic health (Christensen et al., 1999; Gielen and
Hambrecht, 2005; Mestek et al., 2006; Mestek et al., 2008;
Gielen et al., 2010; Gielen et al., 2011; Chung et al., 2020).
Research questions related to the immediate HRV responses
after acute HIIE following reference sleep and APSD are still
under investigation. Previous work from our lab has examined
such research questions (Papadakis et al., 2020; Papadakis et al.,
2021a; Papadakis et al., 2021b) under the traditional Exercise
Physiology approach, which focuses on a single physiological
system by reducing complex multicomponent systems on their
respective parts (Machamer et al., 2000; Bechtel and Richardson,
2010; Balague et al., 2020). We reported that the expected HRV
disturbance as a response to an acute HIIE was not influenced by
APSD (Papadakis et al., 2021a), HIIE after APSD was still
cardioprotective for the postprandial endothelial function
(Papadakis et al., 2020), and lastly that fasted HIIE and
performance were not affected by sleep conditions (Papadakis
et al., 2021b).

The human organism though, is comprised by
multicomponent physiological systems that operate through
non-linear feedback mechanisms at several spatio-temporal
scales generating complex dynamics that continuously adapt to
various intrinsic and extrinsic stimuli (Bashan et al., 2012; Ivanov
and Bartsch, 2014; Bartsch et al., 2015). Accordingly, exercising in
the morning hours after APSD may impact negatively
interactions among physiological systems (e.g., cardiovascular
and ANS) and, therefore, generate a differentiated network of
physiological interactions compared to exercising after a full
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night sleep. It is possible, that many people after exercise, may
consume a typical American high-fat convenience breakfast
(Bourland and Vogt, 2009; Lang et al., 2014), a behavior that
adds another level in the complex interactions between the
aforementioned physiological systems. Such behavior, may
disrupt the network interactions among the cardiovascular,
autonomic regulation, and postprandial lipemic systems
ultimately jeopardizing their health.

Therefore, this paper attempts to revisit our previous work
(Papadakis et al., 2020; Papadakis et al., 2021a; Papadakis et al.,
2021b), through the prism of Network Physiology of Exercise
(NPE) (Balague et al., 2020), a new branch of the interdisciplinary
field of Network Physiology (Ivanov et al., 2016; Ivanov, 2021;
Ivanov et al., 2021). NPE addresses the fundamental question of
how physiological systems coordinate and synchronize their
dynamics as a network to optimize organism function, and
how these network interactions change in response to exercise
and training. NPE utilizes novel methods and approaches in
Network Theory, Nonlinear Dynamics, Computational and
Statistical Physics, and Biomedical Informatics to represent
localized integrated organ systems and their interactions across
various scales with the respective nodes (examined variables) and
edges/links (respective interactions) in their dynamic network
(Bartsch et al., 2014; Ivanov and Bartsch, 2014; Bartsch et al.,
2015; Ivanov et al., 2016; Ivanov et al., 2017; Balague et al., 2020;

Lehnertz et al., 2020; Meyer, 2020; Rizzo et al., 2020).
Accordingly, we aimed to examine the postprandial network
interactions between autonomic regulation through HRV and
lipemia through low-density lipoprotein (LDL) cholesterol in
response to APSD and HIIE.

2 MATERIALS AND METHODS

2.1 Study Design and Participants
As stated, this paper is revisiting data collected as part of a bigger
project that involved parameters related to sleep, exercise, and
cardiovascular function and outcomes of these investigations
presented in detail elsewhere (Papadakis et al., 2020; Papadakis
et al., 2021a; Papadakis et al., 2021b). Briefly, a within-subject
randomized crossover experimental design with three 3)
experimental conditions (i.e., a reference sleep—no exercise
“control condition” (RS) in which a standardized test meal
was ingested in the morning after 9–9.5 h of time-in-bed in
which at least 8 h of sleep was attained; a “reference sleep and
high-intensity interval exercise condition” (RSX), similar to RS
condition in terms of the meal and the obtained sleep time with
the exception of a high-intensity interval exercise with 3:2
intervals at 90 and 40% of VO2 reserve that averaged 70% of
VO2 reserve and expended 500 kcals of energy, and; a “short and

FIGURE 1 | Original Experimental conditions.
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disrupted sleep and high-intensity interval exercise—acute partial
sleep deprivation condition” (SSX), similar to RSX in terms of the
meal and the performed exercise with the exception of the sleep
time that was regulated to 3–3.5 h of time-in-bed limited to no
more than 3.5 h of sleep) was employed to answer the research
questions as depicted earlier (Figure 1). All experimental
conditions began after 48 h of controlling activities of daily
living, medication use, standardized diet to what the
individuals consumed during the first experimental condition,
and supplementation of any kind with a minimum 72-h and
maximum 2 weeks washout period between each condition.
Thirty healthy males (25–55 years) with normal and
overweight body mass index (BMI) met the following
inclusion criteria: 1) being recreationally physically active, but
not engaging in training for long-distance endurance events, 2)
non-smokers, 3) not taking any medications known to alter blood
pressure, lipidemic and glucose profile, and 4) not taking any
medications known to alter sleep. Participants had to be “good”
sleepers as indicated by a score of ≤5 on the Pittsburgh Sleep
Quality Index (PSQI) (Buysse et al., 1989). Study was approved by
the Institutional Review Board and performed in agreement to
the Declaration of Helsinki with all participants having read and
signed an informed consent form prior to participation.

Experimental conditions completed on two consecutive days
and began after 48 h of physical inactivity, no medication use, and
the consumption of a diet standardized to what the individual
consumed during the first intervention and free from
supplementation of any kind. Conditions involved one pre-
sleep standard meal consumed in the evening of the first
experimental day, six hear rate variability (HRV) recordings,
and a morning standard meal surrounding the sleep and
exercise interventions. Conditions included: 1) a reference
sleep—no exercise “control condition” (RS) in which a
standardized test meal was ingested in the morning after
9–9.5 h of time-in-bed in which at least 8 h of sleep was
attained) a “reference sleep and high-intensity interval exercise
condition” (RSX) in which the test meal was ingested in the
morning after reference sleep and after a session of high-intensity
interval exercise (3:2 intervals at 90 and 40% of VO2 reserve that
average 70% of VO2 reserve) to expend 500 kcals of energy, and;
3) a “short and disrupted sleep and high-intensity interval
exercise condition—acute partial sleep deprivation” (SSX) in
which an experimental test meal was ingested in the morning
after 3–3.5 h of time-in-bed limited to no more than 3.5 h of sleep
and after a session of high-intensity interval exercise to expend
500 kcals of energy. Participants arrived at 7p.m. at the laboratory
and stayed around 8:30p.m. During this time blood was collect
(indicated by the syringe) and an HRV measurement was taken
before the evening meal. We discharged participants from the lab
accounting for commuting time and bed-preparation time so at
9p.m. all to be in bed. Participants stayed in their homes until the
awake time that it was set at 6:00a.m. During this time only data
from Sensewear were collected to verify the sleep duration.
Participants had to be at the lab at 7:00a.m. the next day.
Between 7 and 9a.m., another blood draw was performed and
a HRV measurement was taken around 7:00a.m., followed by the
exercise condition and another blood draw immediate post-

exercise. Around 8:30–9:00a.m. the morning meal was
provided followed by another blood draw and a HRV
measurement. Every 2 hours post-exercise a blood draw was
performed and an HRV measurement was taken until round
3:00p.m.

2.2 Pre-Experimental Conditions
2.2.1 Body Composition and Cardiovascular Fitness
Preliminary measurement of participants’ body composition via
dual-energy X-ray absorptiometry (DXA) (Discovery DXA™,
Hologic®, Bedford, MA) was performed. After that, an
individualized maximal graded exercise test using a modified
ramped treadmill protocol to determine participants’
cardiovascular fitness (VO2) via collection of respiratory gases
(TrueOne 2400™, ParvoMedics®, Sandy, UT) was executed.
Results of this test were used to calculate the experimental
exercise intensities as illustrated in Figure 1 (i.e., 3:2 intervals
at 90 and 40% of VO2 reserve that average 70% of VO2 reserve;
VO2 reserve was calculated as (VO2 max—VO2 rest) X %
intensity + VO2 rest; with VO2 rest to be 3.5 ml/kg/min)
(American College of Sports Medicine, 2013), and also to
familiarize participants with exercise intervals to ascertain
their comfort during the experimental conditions.

2.2.2 Sleep and Physical Activity Monitor—Diet
Records
On top of using the PSQI scale to identify the “regular good
sleepers”, participants’ sleep was monitored by the Sense Wear
armband (Sense Wear™, Body Media®, Pittsburgh, PA), which is
a validated method to assess both sleep and physical activity
parameters (Almeida et al., 2011; Van Wouwe et al., 2011; Sharif
and Bahammam, 2013; Soric et al., 2013; Shin et al., 2015).
Participants had to wear the monitor on their non-dominant
arm for 23 h/day each day, for 1 week prior to experimental
conditions and for 2 days leading up to experimental conditions.
Information from the monitor was used to characterize
participants’ sleep duration, sleep consistency, sedentary time,
levels of physical activity and to ensure the homogeneity of
study’s sample in terms of sleep and physical activity patterns.
Moreover, participants’ diet was controlled as they were asked
2 days prior and during the experimental conditions to maintain
their typical dietary habits and consume food that were easily
reproducible. Dietary intake and macronutrient composition was
analyzed using the ChooseMyPlate® (U.S. Department of
Agriculture, Washington, DC). Ensuring a stable diet, sleep,
and physical activity patterns-habits was paramount to reduce
their respective influence on changes in the dependent variables.

2.3 Experimental Conditions
2.3.1 Standard Evening Meal
The standardized consumed evening meal of day 1 (~805 kcal)
was turkey and cheese sandwich on whole grain bread, a medium
banana, a 150 g cup of Greek yogurt, and a 24 oz Gatorade®
drink. It was the last meal that all participants had from 7p.m.
until 9p.m., before they went to bed and until the following
morning. Participants remained at the lab until they returned to
their residence to go to sleep.
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2.3.2 Sleep
Participants completed all the sleep elements of the study at their
residence in order to eliminate any disturbances that may
occurred if they slept in an unfamiliar laboratory place. Per
research design, the RS and RSX conditions allowed for 9.5 h
of time-in-bed in the hopes that at least ≥8 h of sleep would have
achieved. In the SSX, the research design allowed for 3.5 h of
time-in-bed limiting the sleep to ≤3 h. Researchers instructed
participants to return to their residence once they left the lab, as
all the experimental conditions were calculated to allow enough
time for commute and sleep preparation/hygiene routine. No
other food was allowed, no watching television neither engaging
in computer activities were allowed as participants were
preparing for sleep. Participants had also to record both the
time that they entered the bed and the time they woke up.

2.3.3 High-Intensity Interval Exercise
High-intensity interval exercise sessions were performed on
Trackmaster® TMX 428CP treadmill. Following the research
design, sessions began at least 10–12 h after the evening meal
and completed 1 h before the test meal. After a 5-min warmup at
2 mph and 0% grade, the HIIE sessions were completed in 3-min
running intervals at 90% of VO2 reserve separated by 2-min
intervals of jogging/walking at 40% of VO2 reserve until 500 kcal
were expended. The average intensity of all HIIE sessions was
equated to 70% of VO2 reserve. The applied HIIE protocol of 3:
2 min work to rest ratio was a modified one from previous studies
(Kaikkonen et al., 2008;Matsuo et al., 2014; Osuka et al., 2017; Ito,
2019).

2.3.4 Standard Morning Meal
A standard commercially available meal was provided to
participants 60 min after completing the HIIE sessions of
day 2. The meal included a Jimmy Dean® sausage, egg, and
cheese biscuit (~410 kcals; 29 g fat; 26 g carbohydrate; 11.5 g
protein); a Jimmy Dean® fully-cooked pork sausage patty
(~270 kcals; 24 g fat; 2 g carbohydrate; 10.5 g protein); a Little
Debbie® honey bun (~483 kcals; 27 g fat; 55 g carbohydrate; 5.5 g
protein), and; a cup of whole milk (~146 kcals; 8 g fat; 11 g
carbohydrate; 7.5 g protein). The test meal had a total of
1,309 kcals (88 g fat; 94 g carbohydrate; 35 g protein). For the
RS condition of day 2, the meal was provided 60 min after their
arrival at the lab and matched their respective HIIE sessions.

2.3.5 Cardiac Autonomic Regulation—Heart Rate
Variability
A standardized HRV protocol and methodology for circadian
influence on cardiac autonomic assessment was followed as
previously described (Malik, 1996; Sammito and Böckelmann,
2016; Riganello et al., 2019; Johnston et al., 2020). Participants
after being in supine position for 10 min in a quiet and
temperature-controlled environment (~21–24°C and 40–60%
relative humidity), heart rate (R-R intervals) using a Polar belt
(FT1™, Polar Wearlink® Lake Success, NY) was recorded for
5 min at a sampling rate of 1,000 Hz. We used this heart rate
recording to calculate the R-R interval and obtain the related

heart rate variability indices as previously described (Achten and
Jeukendrup, 2003; Engström et al., 2012; Buchheit, 2014). Cardiac
autonomic modulation through HRV was assessed the night
before (D1), the morning of the next day (D2), 0, 2, 4, and 6-
h post-exercise (PE) (Figure 1). We followed previously
published guidelines to reduce anxiety of measurement and
control for recording errors (Malik, 1996; Sammito and
Böckelmann, 2016; Johnston et al., 2020). CardioMood®
smartphone application for iPhone was used to process the
recorded data as described (Flatt and Esco, 2015; Markov
et al., 2016; Baevsky and Chernikova, 2017; Perrotta et al.,
2017). A total of five HRV parameters and time intervals were
selected based on the literature (Malik, 1996; Trimmel et al., 2015;
Abreu et al., 2019; Johnston et al., 2020). Specifically, 1) the
standard deviation of RR interval (SDNN; i.e., marker of the
sympathovagal balance influenced by the sympathetic activity)
and 2) the root mean square of successive normal RR interval
differences (RMSSD; i.e., marker of parasympathetic activity)
were examined from the time domain of HRV indices. In
addition, 3) the high frequency power (0.15–0.40 Hz) (HF;
i.e., marker of parasympathetic activity), 4) total power
(0–0.4 Hz) (TP; i.e., marker of the sympathovagal balance
influenced by the sympathetic activity), and 5) low frequency
power (0.04–0.15 Hz) (LF; i.e., that reflects sympathovagal
balance, baroreceptor reflex activity or neither) (Akselrod
et al., 1981; McCraty et al., 2001; Rahman et al., 2011; Martelli
et al., 2014) were examined from the frequency domain of the
HRV indices.

2.3.6 Blood Collection and Biochemical Analysis
Blood samples were drawn using universal procedures (WHO,
2010) as follows: on the evening before rest/sleep (D1); on the
following morning just prior to exercise (D2); following exercise
immediate post-exercise (IPE) and immediately prior to eating a
standard test meal (0h-), and; again at two (2h-), four (4h-), and
6 h post-exercise (6h-PE) after eating the test meal (Figure 1). All
assays were performed in duplicate on first thaw of the samples
after being stored at -80°C. All blood samples were analyzed for
lipemia related variables (e.g., triglycerides, low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol,
total cholesterol) using commercial ELISA kits (Wako Pure
Diagnostics® Richmond, VA). Standard curves for all assays
were developed to determine the concentrations in the study
samples. All blood variables were corrected for plasma volume
shifts known to occur with exercise. All assays for each subject
were run on the same day with the same reagent batch to
minimize intra- and inter-variability and keep high the
internal quality control of our laboratory analysis.

2.4 Data Analyses
As noted earlier, the dataset for this manuscript was based on
previous work and all the related statistical analyses are described
in detail elsewhere (Papadakis et al., 2020; Papadakis et al., 2021a;
Papadakis et al., 2021b). We used LDL cholesterol, a marker of
cardiovascular risk, due its important clinical significance in
cardiovascular disease (Cromwell et al., 2007; Trejo-Gutierrez
and Fletcher, 2007), exercise (Durstine et al., 2002), and HRV
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interactions (Kupari et al., 1993; Christensen et al., 1999; Thayer
et al., 2010; Chung et al., 2020; Vijayabaskaran et al., 2022). Since
we wanted to investigate the postprandial network interactions
between autonomic regulation via HRV and lipemia via LDL
under APSD and after HIIE, we constructed one correlation
analysis and one physiological network only for the experimental
conditions of RSX and SSX. The RSX network was defined as the
healthy network. We used two groups of parameters: 1) the five

HRV parameters (SDNN, RMSSD, HF, TP, and LF) assessed in
six different occasions (D1, D2, 0, 2, 4 and 6-h post-exercise), and
2) LDL obtained in seven different moments (D1, D2, IPE, 0, 2, 4,
and 6-post-exercise) (total of 37 parameters).

To obtain the correlation analysis (Figure 2A), the Pearson
correlation coefficient was used to calculate the correlations
between all possible pairs of the aforementioned HRV and
LDL parameters, including inter-HRV/LDL (between HRV

FIGURE 2 |Correlation Matrices and Physiological Networks representing postprandial network interactions for Reference Sleep + Exercise (RSX) and Short Sleep
+ Exercise (SSX). (A) Matrix elements in the correlation matrix represent pairwise coupling strength between each possible pair of HRV and LDL parameters (Pearson
correlation coefficient; see Methods). Non-significant correlations are represented in green. Color code is shown in vertical color bars. (B) Nodes in the physiological
network represent the different HRV and LDL parameters, and the network links correspond to the correlation matrix elements, reflecting the coupling strength
between HRV and LDL parameters. Links strength is marked by line color and width and are divided into six types: strong positive links (Pearson coefficients >0.8),
intermediate positive links (0.6 < Pearson coefficients < 0.8), weak positive links (0.4 < Pearson coefficients < 0.6); weak negative links (−0.4 > Pearson coefficients >
−0.6); intermediate negative links (−0.6 > Pearson coefficients > −0.8), and strong negative links (Pearson coefficients < −0.8). HRV, heart rate variability; LDL, Low-
density lipoprotein; HF-1, High-frequency power at time point -1; SDNN-1, standard deviation of RR interval at time point-1; RMSSD-1, the root mean square of
successive normal RR interval differences at time point-1; TP-1, total power at time point-1; LF-1, low-frequency at time point-1.
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and LDL), intra-HRV (within HRV) and intra-LDL (within LD)
parameters. To visualize the information provided by the
correlation analysis, we next mapped the previously obtained
correlation analysis into one physiological network (Figure 2B).
This graphical approach is essential to identify patterns in the
postprandial network structure and to track the differences in
network characteristics for the different experimental conditions.
The physiological network was constructed utilizing only the
statistically significant correlations in the correlation analysis.
The physiological network was comprised by two sub-networks:
the HRV and the LDL sub-networks, where color nodes (30 for
HRV and seven for LDL) represent the different HRV and LPL
parameters, and the network links correspond to the correlation
analysis elements reflecting the coupling strength between a given
pair of parameters. Links strength is marked by line color and
width and are divided into six types: strong positive links
(Pearson coefficients >0.8), intermediate positive links (0.6 <
Pearson coefficients <0.8), weak positive links (0.4 < Pearson
coefficients <0.6); weak negative links (−0.4 > Pearson
coefficients > −0.6); intermediate negative links (−0.6 >
Pearson coefficients > −0.8), and strong negative links
(Pearson coefficients < −0.8). With the aim of quantifying the
interactions within the physiological network, we computed the

number of links (i.e., number of significant correlations;
Figure 3). Specifically, we calculated 1) the total number of links
in the entire physiological network, 2) the number of links between
theHRV and LDL sub-networks (inter-HRV/LDL); 3) the number of
links within the HRV sub-network (intra-HRV); and 4) the number
of links within the LDL sub-network (intra-LDL). Correlation

FIGURE 3 | Bar Charts Panel representing the number of links (i.e., significant correlations) within each physiological network for Reference Sleep + Exercise (RSX)
and Short Sleep + Exercise (SSX). The heigh of the bars in (A) and (B) indicate 1) the total number of links in the entire physiological network, 2) the number of links
between the HRV and LDL sub-networks (inter-HRV/LDL); (iii) the number of links within the HRV sub-network (intra-HRV); and (iv) the number of links within the LDL sub-
network (intra-LDL). Panel (C) shows the details for the number of inter-HRV/LDL negative links. HRV, heart rate variability; LDL, Low-density lipoprotein; HF, High-
frequency power; SDNN, standard deviation of RR interval; RMSSD, the root mean square of successive normal RR interval differences; TP, total power; LF: low-
frequency.

TABLE 1 | Baseline screening.

Variable Mean ± SE Min Max

Age (yrs.) 31 ± 5 24 40
Height (cm) 179.3 ± 6.6 167.6 187.9
Weight (kg) 83.3 ± 10.9 70.7 105.7
BMI (kg/m2) 25.8 ± 2.7 21.1 29.9
%BF 21.0 ± 6.2 11.4 35.3
Max VO2 (L/min) 4.0 ± 0.7 3.2 5.6
Max VO2 (ml/kg/min) 49.1 ± 8.2 35.5 65.6
Resting HR (bpm) 55 ± 7 42 63
Resting MAP (mmHg) 85 ± 10 70 100
PSQI 4 ± 0.9 2 5

All values are presented as mean ± standard error. VO2, volume of oxygen consumption;
HR, heart rate; %BF, percent body fat; BMI, body mass index; MAP, mean arterial
pressure was calculated as systolic blood pressure plus 2/3 of diastolic blood pressure;
PSQI, Pittsburgh sleep quality index.
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matrices and physiological networks were processed and obtained by
means of Matlab R2016b (Mathworks, Natik, MA, United States).
The visualization framework used in our results is based on previous
studies analyzing network interactions among physiological systems
during different physiological states (Bashan et al., 2012; Bartsch et al.,
2015; Lin et al., 2020; Prats-Puig et al., 2020).

3 RESULTS

From the 30 individuals who signed consent participation forms,
only 15 participants were able to adhere to study’s requirements
and/or completed the study. Baseline screening of
anthropometric and physiological characteristics are presented
on Table 1. No differences at p = 0.05 were observed between
conditions for the pre-experimental collected data of sleep, diet,
and physical activity.

Experimental data for sleep and physical activity are presented
in Table 2.

Experimental data for exercise are presented in Table 3.
Percentage of coefficients of variation (CV%) for LDL
cholesterol were calculated for RSX and SSX for all seven
timepoints. The CV% for RSX was 9.8% and for the SSX was
10.5%, respectively.

Figure 2 shows the correlation matrices and physiological
networks representing postprandial network interactions for RSX
and SSX conditions. Matrix elements in the correlation analysis
represent pairwise coupling strength between each possible pair
of HRV and LDL parameters. Nodes in the physiological network
represent the different HRV and LDL parameters, and the
network links correspond to the correlation analysis elements,
reflecting the coupling strength between HRV and LDL
parameters. We observed a clearly differentiated network of
postprandial interactions between RSX and SSX due to the
irruption of negative links in the SSX network.

As depicted in Figure 3, the total number of links in the
physiological network increased by 86.9% under SSX compared
to RSX (356 vs 191 links) due to 1) the manifestation of weak and

intermediate negative inter-HRV/LDL links, and 2) an increase of
positive intra-HRV links.

No inter-HRV/LDL links were observed between the HRV
and LDL sub-networks in RSX. However, a remarkable
incursion of weak and intermediate negative links was
observed between the HRV and LDL sub-networks in SSX.
These negative association were present for all HRV
parameters, with higher number of links between LDL and
RMSSD, SDNN and HF (see Figure 2C).

Regarding the intra-HRV and intra-LDL links, the HRV sub-
network was characterized by an increased number of
intermediate positive links in SSX (136%) compared to RSX.
No remarkable differences were observed between RSX and SSX
for intra-LDL links in the LDL sub-network.

4 DISCUSSION

This study investigated postprandial network interactions
between autonomic regulation through HRV, and lipemia
through low-density lipoprotein (LDL) cholesterol in response
to APSD and after HIIE. We reported an irruption of inter-HRV/
LDL negative links in the physiological network of SSX compared
to RSX, which a priori we defined as the healthy network. The
presence of weak and intermediate negative links between the
HRV and LDL sub-networks in SSX reflected the impact of sleep
deprivation on the autonomic regulation and lipemia. Further,
increased connectivity was noted within the HRV sub-network in
SSX, with no differences documented for the LDL sub-network.
These findings revealed the inability of HIIE to remain
cardioprotective under APSD state, and underlie the need to
further investigate the effects of APSD and HIIE on the
interactions among physiological systems.

The presence of negative links between HRV and LDL for SSX
is supported by evidence indicating that impaired balance of the
ANS may be the mechanistic explanation linking APSD to CVD
(Zhong et al., 2005; Tobaldini et al., 2014). Literature indicates

TABLE 2 | Sleep and physical activity levels—conditions.

Variable RSX SSX

SL 8:11:04 ± 1:01:48 3:18:09 ± 0:52:02*
SD 6:57:09 ± 0:47:38 2:39:30 ± 0:40:11*
SLE 86 ± 8 81 ± 12
EE 2.8 ± 2.2 2.5 ± 2.0
Sedentary 0.8 ± 0.1 0.7 ± 0.1
Light 0.2 ± 0.1 0.2 ± 0.1
Moderate 0.1 ± 0.0 0.1 ± 0.0

All values and presented as mean ± standard error. Means with * are significantly
different. Values are significant at p < 0.05. Sleep time values are in h:mm:ss format,
except sleep efficiency that is in percentage. SL, sleep plus laying down in hours and
minutes; SD, sleep duration in hours and minutes; SLE, sleep efficiency expressed as
percentage of sleep duration over laying down time; Activity levels are labeled as
Sedentary (up to 1.5 METs), Light (1.5–3.0 METs), and Moderate (3.0–6.0 METs); METs,
metabolic equivalents; EE, energy expenditure in METs; RSX, reference sleep and high-
intensity interval exercise condition; SSX, short and disrupted sleep and high-intensity
interval exercise condition—acute partial sleep deprivation.

TABLE 3 | Exercise data.

Trials Baseline RSX SSX

Weight (kg) 83.3 ± 10.9 83 ± 11.5 83 ± 11.5
Max Exercise VO2 (L/min) - 4 ± 0.6 4 ± 0.6
Max Exercise VO2 (ml/kg/min) - 46 ± 8.1 45 ± 8.1
Avg Exercise VO2 (L/min) - 3 ± 0.4 3 ± 0.5
Avg Exercise VO2 (ml/kg/min) - 33 ± 5.1 33 ± 5.8
Resting HR (bpm) 55 ± 7.0 58 ± 13.0 58 ± 10.0
Avg Exercise HR (bpm) - 153 ± 12.0 150 ± 12.0
90% VO2 reserve (ml/kg/min) - 42 ± 7.3 41 ± 7.3
40% VO2 reserve (ml/kg/min) - 20 ± 3.2 20 ± 3.2
Resting MAP (mmHg) 85 ± 10.0 85 ± 8.0 83 ± 7.0
Exercise Duration (min) - 24 ± 2.6 24 ± 2.7

All values are presented asmean ± standard error. Means with * are significantly different.
Values are significant at p < 0.05. VO2, volume of oxygen consumption; HR, heart rate;
MAP, mean arterial pressure was calculated as systolic blood pressure plus 2/3 of
diastolic blood pressure; RSX, reference sleep and high-intensity interval exercise
condition; SSX, short and disrupted sleep and high-intensity interval exercise
condition—acute partial sleep deprivation.

Frontiers in Network Physiology | www.frontiersin.org April 2022 | Volume 2 | Article 8697878

Papadakis et al. Sleep-HIIE Postprandial Network Interactions

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


that APSD increases the sympathoadrenal influence, has a greater
impact on metabolic and cardiovascular functions that result to
increased catecholamine levels, dampened glucose metabolism,
increased heart rate (HR) and blood pressure (BP) (Gottlieb et al.,
2006; Hall et al., 2008; Meerlo et al., 2008). In addition, it alters the
hypothalamic-pituitary-adrenal (HPA) axis activity towards to a
higher glucocorticoid release and subsequent systemic
inflammatory and oxidative stress response (Meerlo et al.,
2008). Therefore, it is apparent that physiologically speaking,
APSD has detrimental health effects, which may be observed after
very short-term exposure (Alvarez and Ayas, 2004; Gangwisch
et al., 2006; Atkinson and Davenne, 2007; Knutson et al., 2007;
Buxton and Marcelli, 2010; Centers for Disease and Prevention,
2011; Dettoni et al., 2012; Wu et al., 2012; Calvin et al., 2014).
Moreover, acute exercise induces changes in autonomic tone and
disturbs the ANS (Thompson et al., 2007; Fukuda et al., 2015),
with the HIIE to disturb even more the ANS, and possible to
contributing to an unhealthy cardiometabolic status, even after a
single episode of HIIE (Besnier et al., 2017).

Considering RSX as the reference healthy and functional
network, the HRV sub-network for SSX was characterized by
an increment of intermediate positive links, reflecting an
increased connectivity due to a reduced sleep time. As
previously described (Balague et al., 2020) both
underexpressed (weak) and overexpressed network
connectivity could reflect unfunctional/pathological states.
More specifically, overexpressed/excessive connectivity as
observed within the HRV sub-network for SSX, could be
associated with a transitory underexpression of coupling
network connectivity (i.e., imbalance: some processes are
overexpressed and others underexpressed). An example of
such imbalance is the rigidity and reduction of diversity
potential provoked by exercise-induced fatigue (Vazquez et al.,
2016; Vazquez et al., 2020). Similarly, some pathological
conditions (e.g., neuro-muscular disorders) could increase the
density and/or strength of interactions among certain nodes,
pushing the system toward a rigid order which, in turn, could
reduce its adaptability to environmental constraints (Ivanov et al.,
1998; Ivanov et al., 2001; Stergiou et al., 2006; Stergiou and
Decker, 2011). The results of this study support the notion of
characterizing a healthy network based on the number of
network links.

Several sleep protocols have examined the sleep deprivation
effects on healthy individuals in respect to cardiovascular changes
and autonomic control via HRV (Tobaldini et al., 2014; Tobaldini
et al., 2017). Some reported no differences in HRV with just 4 h
sleep (Muenter et al., 2000), while other showed an increase in
sympathetic activity (SA) as demonstrated in total decreased
HRV, increased low-frequency (LF), and decreased high-
frequency (HF) compared to control of 8 h sleep (Dettoni
et al., 2012). Our results are in agreement with those that
showed an impact of short sleep duration on autonomic
regulation (Dettoni et al., 2012) as we reported negative
associations for all the HRV parameters and lipemia.

It is important though to mention that studies that examine
sleep, HRV, exercise and cardiometabolic health due to
differences in the employed research designs, settings,

examined variables, sleep durations, sample characteristics etc.,
yield heterogenous results that are difficult to compared and
provide clear and comprehensive outcomes (Malik, 1996;
Elsenbruch et al., 1999; Kaikkonen et al., 2008; Al Haddad
et al., 2009; Dettoni et al., 2012; Myllymaki et al., 2012;
Uchida et al., 2012; Heydari et al., 2013; Tobaldini et al., 2013;
Oda and Shirakawa, 2014; Michael et al., 2017; Tobaldini et al.,
2017; van Leeuwen et al., 2018; Abreu et al., 2019; Barroso et al.,
2019; Costa et al., 2019; Schneider et al., 2019; Vitale et al., 2019).
Therefore, research questions related to the immediate HRV
responses after acute HIIE following reference sleep and APSD
are still under investigation. Previous work from our lab has
examined such research questions (Papadakis et al., 2020;
Papadakis et al., 2021a; Papadakis et al., 2021b) using the
traditional reductionistic approach focusing on a single
physiological system and investigated the mechanistic
interactions with other single systems by reducing complex
multicomponent systems on their respective parts (Machamer
et al., 2000; Bechtel and Richardson, 2010; Balague et al., 2020).
We reported that HIIE was cardioprotective and APSD did not
influence the HRV (Papadakis et al., 2021a), neither the
postprandial endothelial function (Papadakis et al., 2020), nor
the exercise performance (Papadakis et al., 2021b).

Investigating though the same research questions under the
Network Physiology of Exercise perspective we showed that
APSD and HIIE had an impact on the HRV and LDL. It
seems though that our previous investigations were not able to
capture the synchronization and integration among autonomic
nervous and cardiometabolic systems. Recent work from Ivanov
and Bartsch, (2014) and Ivanov et al., (2017) highlighted the fact
that physiological states emerge due to specific network
organization, topology, and their respective network of
dynamic interactions. Moreover, such network of dynamic
interactions is moving past the concepts of interconnectivity
across of physiological systems and the statistical inference of
static associations that govern physiological states (Sieck, 2017;
Head, 2020). As such, our previous analyses (Papadakis et al.,
2020; Papadakis et al., 2021a; Papadakis et al., 2021b), failed to
provide a comprehensive understanding of the dynamic
interaction of the involved physiological systems and their
subsystems to generate dynamic integrated response at the
organism level (Balague et al., 2020). The findings of this
study reinforce previous works suggesting that the commonly
utilized physiological parameters (e.g., VO2max) provide little
information on the nature of the dynamic interactions among
physiological systems and their common role in an integrated
network. Coordinative variables, such as cardio-respiratory
coordination or other psychophysiological parameters, can
detect qualitative changes related to the coordinated activity
among physiological systems, and their changes under
exercise-related constraints (Balagué et al., 2013; Esquius et al.,
2019; Garcia-Retortillo et al., 2019).

A major limitation of this study is that it cannot be considered
as a true network analysis, as no time series of physiological
variables were recorded and analyzed. Note that to capture
interactions among physiological systems, time series analysis
and the detection of coordinative variables would be the most
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appropriate strategy. This study was not initially conceived to
investigate postprandial network interactions between autonomic
regulation and lipemia, but to mimic real life settings between
APSD and HIIE under the traditional framework of Exercise
Physiology. The applied correlation analysis does not have the
power to identify dynamic interactions between the investigated
physiological systems. Therefore, this study has inherited all the
limitations of the traditional Exercise Physiology framework, that
is, the tacit assumption that results obtained by a sample can be
generalized to a population level based on the representative
observed changes of a “typical” (i.e., average) individual. This
assumption though can be true only if the system is ergodic and
its evolution in time is stationary and the structure of the
interindividual multivariate dynamics is the same across all
individuals (Balague et al., 2020). Moreover, since this is
reanalysis of data collected for another purpose, it carries the
limitations of our previous investigations (e.g., absence of APSD
and noHIIE, only apparently healthymen whowere good sleepers,
environmental stress and factors outside of controlled laboratory
settings, indirect method of measuring the cardiac autonomic
activity, time of day and chronotype of our sample) (Papadakis
et al., 2020; Papadakis et al., 2021a; Papadakis et al., 2021b). At the
same time though, this study’s strength is the application of the
NPE approach to examine a research question with controversial
results when examined through the traditional Exercise Physiology
framework. This study is providing preliminary evidence on the
sensitivity of the NPE approach to capture interactions among
different physiological systems. In this line, further research
utilizing time series of physiological variables (Garcia-Retortillo
et al., 2020) is needed to investigate the effects of APSD and HIIE
on postprandial network interactions.

5 CONCLUSION

The human organism is composed of various integrated networks
and sub-networks of interconnected organs, systems, and
functions, a disruption or failure of one system can trigger a
cascade of failures that can be manifested as a disease state
(Ivanov and Bartsch, 2014; Goldman et al., 2015; Liu et al.,
2015; Ivanov et al., 2017; Sieck, 2017; Liu and Chen, 2019;
Balague et al., 2020; Barajas-Martinez et al., 2020; Corkey and
Deeney, 2020). We investigated postprandial network
interactions between autonomic regulation through HRV, and

lipemia through LDL cholesterol in response to APSD and HIIE.
We observed an increase of inter-HRV/LDL negative links in the
SSX physiological network compared to RSX. These results
reflected the impact of sleep deprivation on the autonomic
regulation and lipemia and, revealed the inability of HIIE to
remain cardioprotective under APSD.

5.1 Resource Identification Initiative
To take part in the Resource Identification Initiative, please use
the corresponding catalog number and RRID in your current
manuscript. For more information about the project and for steps
on how to search for an RRID, please click here.
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