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Brain rhythms emerge from the mean-field activity of networks of neurons. There have
been many efforts to build mathematical and computational embodiments in the form of
discrete cell-group activities—termed neural masses—to understand in particular the
origins of evoked potentials, intrinsic patterns of activities such as theta, regulation of sleep,
Parkinson’s disease related dynamics, and mimic seizure dynamics. As originally utilized,
standard neural masses convert input through a sigmoidal function to a firing rate, and
firing rate through a synaptic alpha function to other masses. Here we define a process to
build mechanistic neural masses (mNMs) as mean-field models of microscopic
membrane-type (Hodgkin Huxley type) models of different neuron types that duplicate
the stability, firing rate, and associated bifurcations as function of relevant slow variables -
such as extracellular potassium - and synaptic current; and whose output is both firing rate
and impact on the slow variables - such as transmembrane potassium flux. Small networks
composed of just excitatory and inhibitory mNMs demonstrate expected dynamical states
including firing, runaway excitation and depolarization block, and these transitions change
in biologically observed ways with changes in extracellular potassium and excitatory-
inhibitory balance.

Keywords: excitation-inhibition imbalance, depolarization block, neural mass models, brain networks and dynamic
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1 INTRODUCTION

Neural masses are mean field models of neural cell group activities. Neural mass models were first
introduced byWalter Freeman in the 1970s (Freeman, 1972a; Freeman, 1975) as a model to relate the
activity, represented by the field potentials or EEG from one brain region to the EEG in another
region, without the intricate details of neuron-level connectivity and action-potential dynamics and
timing.

In the past, networks of NMs (neural mass models NMMs) have been constructed and used to
understand the origins of evoked potentials (Jansen et al., 1993; Jansen and Rit, 1995), intrinsic
patterns of activities such as theta (Segneri et al., 2020), regulation of sleep (Diniz Behn and Booth,
2010; Fleshner et al., 2011; Bhattacharya, 2013; Costa et al., 2016; Schellenberger Costa et al., 2016),
Parkinson’s disease related dynamics (Liu et al., 2016; Liu et al., 2017; Basu et al., 2018; Liu et al.,
2021), and instabilities such as seizure dynamics (Wendling et al., 2002; Wendling, 2008; Aarabi and
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He, 2014; López-Cuevas et al., 2015; Kameneva et al., 2017;
Köksal Ersöz et al., 2020). But their firing dynamics are
disconnected from real physiological parameters and instead
are assumed to be sigmoidal functions of their summed input.

It is our objective here to build discrete mean-field model
elements - neural masses (NM) - whose dynamics, detailed
parameters, and interactions with each other and their
environment can be linked quantitatively across scales directly
to membrane-level mechanics of single neurons. Such
mechanistic neural masses can then be used to build network
models that interact with the environment and have measures
that can quantitatively be related to physiological measures. Our
interest here is especially to embody some of the underlying
physiological mechanics that are hypothesized to be involved in
epileptic dynamics.

Epilepsy - the occurrence of recurrent spontaneous seizures -
is a major human health concern, leading to significant deficit in
quality of life, higher mortality, and significant economic impact.
In developed countries, epilepsy rates are close to 1% of the
population. There are pharmacological interventions, but these
provide successful abatement of seizures in only as few as 2/3 of
patients, and often have significant side effects (Löscher and
Schmidt, 2011; Svalheim et al., 2015; Meador and Loring, 2016;
Chen et al., 2017).

At the network level, seizure susceptibility is often described as
resulting from an excitatory-inhibitory imbalance. At the cellular
level, this can mechanistically result from transient inactivation of
inhibitory neurons leading to runaway excitation (McCormick
and Contreras, 2001).

Pre- or post-seizure side effects or related neurological
phenomena include postictal generalized EEG suppression
(PGES) (Somjen, 2004; Poh et al., 2012; Rajakulendran and
Nashef, 2015), post-ictal amnesia (Corcoran and Thompson,
1992; Butler et al., 2007; Lanzone et al., 2018), and sudden
unexplained death in epilepsy (SUDEP) (Ryvlin et al., 2013;
Rajakulendran and Nashef, 2015; Noebels, 2019). Mortality in
persons with epilepsy are nearly two times that of the
population at large (Thurman et al., 2017). In 2015, Aiba
and Nobels demonstrated that spreading depolarization
(SD) invading the brainstem could cause autonomic
shutdown, and therefore might be one of the mechanisms
of SUDEP (Aiba and Noebels, 2015), and once looked for,
spontaneous seizure-associated SD has been observed in
animal models of epilepsy (Ssentongo et al., 2017; Bahari
et al., 2018; Loonen et al., 2019).

Leão discovered spreading depolarization - which he denoted
spreading depression - in 1944 in the context of acute induced
seizure models (Leao, 1944; Leo, 1944; Leo and Morison, 1945).
SD is readily-associated with a range of other neurological
disorders including migraine, stroke, sub-arachnoid
hemorrhage, and traumatic brain injury (Pietrobon and
Moskowitz, 2014; Brennan and Pietrobon, 2018; Tolner et al.,
2019).

Although many mechanisms can contribute to SD, the
fundamental component is that elevation of the extracelluar
potassium concentration leads individual neurons into
depolarization block (DB) - a state in which the potassium

channels are substantially open, but the potassium current is
not enough to repolarize the membrane potential and restore the
channels to the normally closed state. In this state, the potassium
flux can further increase the extracellular potassium
concentration and, through diffusion, induce nearby neurons
into DB (Somjen, 2004).

These mechanics are well known and captured in membrane
and compartment models of single neurons (Kager et al., 2000;
Wei et al., 2014).

In this work we define a process to develop mechanistic
neural mass (mNM) elements derived from single-cell
membrane dynamics. Functionally, these mass elements
should serve as plug-in replacements for commonly-used
elements in existing neural mass models. These differ in
that they parametrize state transitions of the single-cell
models to include depolarization block, their sensitivity to
slow variables such as extracellular potassium and
accommodation state, and their coupling back to those
slow variables. We find that small excitatotry-inhibitory
networks built from those networks embody dynamical
transitions that underlie seizure and spreading
depolarization dynamics.

It is our expectation that network models constructed with the
resulting mechanistic neural masses (mNMs) we develop can
reproduce normal dynamics as well as the pathological dynamics
of seizures and SD in a way that can be linked to measurable
biological features such as extracellular potassium, make
quantitative predictions about their effects, and meaningfully
give insight as to why they have such effects. As an example,
we aim to give insight as to why a modest change in excitatory-
inhibitory balance yields a network that is not continually seizing

FIGURE 1 | Schematic of coupled masses: The figure shows a couplet
of an excitatory (blue) and an inhibitory (pink) mass. The twomasses represent
mean dynamics of ensemble of respective neuron types in terms of mean firing
rates (〈FR〉), mean potassium ion flux (〈KFlux〉) and mean membrane
potential (〈Vm〉). The means of these dynamical quantities for the excitatory(E)
and inhibitory (I) masses are estimated from the canonical excitatory and the
inhibitory neuron models, respectively [K]o is the potassium concentration of
the common extracellular bath of the masses. The masses couple to each
other through their firing with specific coupling strengths and interact with
extracellular potassium ion bath. External inputs are represented by blue and
green arrows.
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or undergoing SD but is significantly more susceptible to these
instabilities.

As a primary step, we outline the procedure for deriving
mechanistic neural masses and demonstrate it for two
canonical neuron types: a non-accommodating mammalian
inhibitory neuron, based on the Wang-Buzsáki (WB) neuron
(Wang and Buzsáki, 1996), and an excitatory one with
accommodation based on the Pinsky-Rinzel (PR) pyramidal
neuron (Pinsky and Rinzel, 1994).

We then demonstrate that a two-mass inhibitory-excitatory
network built from these elements, illustrated in Figure 1 already
express the range of normal balanced firing, runaway excitation
and depolarization block that form the fundamentals of normal
and pathological dynamics for transitions into seizure and SD,
and how changes in extracellular potassium modifies these
transitions. Furthermore, small changes in static excitatory-
inhibitory balance, as might occur from interneuron damage,
significantly change the susceptibility of this network to such
transitions - explicilty making the network more sensitive to
small changes in extracellular potassium. We leave for future
work larger networks and coupling these mNMs to the
extracellular space and its ion concentrations and to glial
networks.

2 METHODS

Neural masses (Freeman, 1972a; Freeman, 1972b; Wilson and
Cowan, 1972; Lopes da Silva et al., 1974; Freeman, 1975; Jansen
and Rit, 1995; Cona et al., 2014) are simplifications of mean-field
dynamics that are thought to represent the input-output
dynamics of a sub-population of neurons. In NMMs, the input
to one NM is a sum over the output from the other masses.
Classically, the output of a NM is its firing rate (FR), and its
contribution to input on downstream masses is the FR convolved
in time with a synaptic response function, described by an alpha
function (Rall et al., 1967), to yield an instantaneous input
current. Classically, the FR is taken as a sigmoidal function of
the total input current.

Neural mass dynamics are supposed to represent the activity
of groups of hundreds to millions of neurons (Freeman, 1972a).
While this could be done by integrating a like number of
membrane-type models, it is quite computationally intensive.
Alternately, one could replace the mass with a small number - or
even one - membrane-type model, but the resulting output would
suffer from the precise action potential timing of the elements
which would dominate the dynamics.

Critical in the process of creating neural masses is that the
dynamics are significantly simplified from the detailed firing/
action potential dynamics of Hodgkin-Huxley type membrane
dynamics. The simplifications achieved with neural mass
dynamics are very low computational load, and loss of action
potential timing sensitivity by conversion to firing rates.

To achieve this mean field approach from Hodgkin-Huxley
type single neuron models - to create mechanistic neural masses -
we utilize a time-scale separation approach in which the fast
dynamics associated with the action potentials are separated from

slower dynamics by treating those other dynamics as quasi-static.
We then parameterize the dynamics of that fast model, explicitly
fitting as output the firing rate, mean membrane potential, and
potassium flux, as a function of those quasi-static inputs. These
outputs are then used in the evolution dynamics of the slow input
variables, as well as the coupling of the mass to its environment
and to other masses.

2.1 Procedure to Obtain Mechanistic Neural
Mass
A key idea behind the development of mNMs, is that the time-
averages of the fast dynamics of the neuron models can be
expressed as simple functions of the total current and quasi-
static (slow) state variables. Hence, instead of looking at detailed
firing response of neurons in terms of instantaneous changes in
membrane potentials, potassium fluxes and firing rates, we look
steady-state response of the neuron models and use them to
characterize the corresponding neural masses. These steady state
responses are then parametrized (fitted) with simple analytic
functions of the net input current and the slow state variables.
These analytical functions fully characterize our neural mass
outputs in terms of mean firing rate, mean membrane
potential, and mean potassium flux.

We are interested in dynamics of the masses in the bifurcation
space of injected current and changes in the transmembrane
potassium Nernst potential (]K) from its nominal value. If the
nominal and actual Nernst potentials are ]̂K and ]K, respectively,
the change in it is expressed as Δ]K.

Δ]K � ]K − ]̂K

� RT

F
ln

K[ ]o
K[ ]i( ) − ln

K̂[ ]
o

K̂[ ]
i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
� RT

F
ln

K[ ]o
K̂[ ]

o

⎛⎝ ⎞⎠ − ln
K[ ]i
K̂[ ]

i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
≈
RT

F
ln

K[ ]o
K̂[ ]

o

⎛⎝ ⎞⎠
(1)

Here RT
F � kbT

e ≈ 26.64. [.]o and [.]i represent extracellular
and intracellular concentrations, respectively. The nominal
values for Nernst potentials for excitatory and inhibitory
masses are −75 mV and −90 mV, respectively. For these
]̂Ks and chosen [K]i of 140 mM, this gives nominal
extracellular concentrations as 4.77 mM and 8.38 mM,
respectively. Because, the intracellular volume fraction is
much larger than the extracellular volume fraction, and the
intracellular potassium concentration is much larger than the
extracellular concentration, the fractional changes in
intracellular concentration is generally negligible. Hence,
Δ]K is dominantly due to fractional changes in
extracellular potassium concentration, as expressed by last
line of Eq. 1.

Given a Hodgkin-Huxley type single cell neuron model
(i.e., the Single-compartment Excitatory Accommodating
Neuron (SEAN) and Wang- Buzsáki (WB) models, described
next), the procedure for developing the corresponding mNMs is:

Frontiers in Network Physiology | www.frontiersin.org September 2022 | Volume 2 | Article 9110903

Tripathi and Gluckman Mechanistic Neural Mass (mNM) Development

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Identify the dynamical regimes of interest. We obtain the
dynamics of the neuron model at different values of
injected currents (Iinj) and ]K to obtain membrane potential
traces. Following this, we find the corresponding mean firing
rate (〈FR〉), and mean membrane potential (〈Vm〉) and mean
potassium flux (〈Kflux〉) for each values of Iinj and ]K by
averaging the dynamics. As shown in Figure 2 for both the
WB and the SEAN models for discrete choices of Iinj and ]K
values, this subdivides (Iinj, ]K) parameter space into regions of
not-firing (NF), firing (F), and depolarization block (DB).

The depolarization block region that occurs at higher values of Iinj
and ]K is characteristically different from not-firing region that
occurs at low Iinj values. While the NF region has either negative
or zero 〈Kflux〉, the DB region has finite and positive 〈Kflux〉.
Similarly, the 〈Vm〉 shows very negative values in the NF region,
whereas it shows higher values in the DB region.

Identification of bifurcation boundaries. After identification of
the three dynamical regimes of interest, we then analytically
identify the bifurcation boundaries.

FIGURE 2 | Dynamics of WB and SEAN models: Shown for the WB (A) and SEAN (B) models are the mean firing rate 〈FR〉 (top row); mean membrane potential
〈Vm〉 (middle row), and mean potassium flux 〈KFLux〉 (bottom row). For the red portions of the colour maps in the first row (〈FR〉 = 0), the models are either not firing (NF)
or in DB. The difference in firing (F) and DB regions can be understood in terms of 〈Vm〉, and 〈KFLux〉 colour maps. While the NF region shows very low negative values for
〈Vm〉, the DB region has them at higher negative values. Similarly, in NF region, the 〈KFLux〉 is either negative or zero, in the DB region it is finite and always positive.
The nominal values of the Nernst potentials correspond to Δ]K = 0 for both the models, and these are ]K = −90 mV for the WB model, and ]K = −75 mV for the
SEAN model.
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For the WB and SEAN models, we identify the F and DB
thresholds in Iinj and ]K state space. For this, we find stability of
the fixed points of the models using eigenvalues of the model
Jacobian. In practice the fixed points in these models are more
easily solved as functions of Vm. The point where the largest

eigenvalue crosses zero marks the transitions between stable and
unstable regions. The two boundaries of the unstable triangular
region are shown as blue (ISSF) and red (ISSDB) lines in top row of
Figure 3 for both the models. The boundaries are the steady state
currents at F onset and DB onset. We can observe from this figure

FIGURE 3 | Parametrization of the neural masses for the WB (A) and SEAN (B)models: In the top row are shown the boundaries of the firing (F) region in terms of
steady state current (ISS) and change in potassium Nernst potential Δ]K . The blue and red boundaries (ISSF and ISSDB, respectively) are obtained from the steady state
analysis of the WB model (refer to the supplementary). We parametrize the maximal firing rate, and related outputs along the green line (ISSDB − Δ). Shown in the
subsequent rows are the mean firing rate <FR>, mean transmembrane potential <Vm>, and mean potassium flux <Kflux>, as a function Δ]K along the boundary at
(ISSDB − Δ) (closed symbols), along with the polynomial fits (solid lines), used to parameterize the masses. The nominal values of the Nernst potentials correspond to
Δ]K � 0 for both the models. The nominal values areΔ]K � −90 mV for the WB model, and Δ]K � 75 mV for the SEAN model.

Frontiers in Network Physiology | www.frontiersin.org September 2022 | Volume 2 | Article 9110905

Tripathi and Gluckman Mechanistic Neural Mass (mNM) Development

https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


that for each ]K (also each row in the heat map in Figure 2), there
are two values of currents that mark the firing (unstable) region.
At the lower of these current values the 〈FR〉 is zero and at the
higher values the 〈FR〉 is at its maximum value, for that ]K.

Note that while the dynamics in the lower triangular region
bounded by the ISSF and ISSDB lines is characterized by unstable
fixed point dynamics, the upper triangular regions (at high Δ]K
are characterized by two stable fixed points - one that is NF and
the other in DB.

Find mean dynamical quantities near bifurcation boundaries.
After having obtained the thresholds, we find the mean of
dynamical variables (〈FR〉, 〈Vm〉, and 〈Kflux〉) near the
thresholds (ISSF and ISSDB). We use these means to
parameterize these quantities within the enclosed firing region.
Outside these regions the means are analytically defined by the
stable fixed point solutions.

The mean firing rate is a smooth, nearly square-root shaped
function of ISS, except near the DB boundary (refer
Supplementary Figure S1), where it increases sharply and the
models produce incomplete action potentials. Therefore, in
practice, we compute these averages on a line that is slightly
shifted to (ISSDB(]K) − Δ), as shown in green in Figure 3.
Moreover, by using this left shifted boundary, we avoid taking
very noisy and high firing rates with incomplete action potentials
that likely do not produce synaptic transmission to postsynaptic
cells. Averages quantities along the green boundary, for a range of
changes in ]K, for these models are shown in next three rows of
Figure 3. We treat the 〈FR〉 and other mean dynamical quantities
at ISSDB − Δ as their “maximum” values in the firing region before
the model goes into DB.

Neural Mass parametrization: Finding functional fits to
time-averaged dynamical quantities. After obtaining the fairly
smooth boundaries of unstable region and mean dynamical
quantities as a function of Δ]K, we find and polynomial functions
that parameterize the bifurcation boundaries ISSF(]k) and ISSDB, as
well as 〈FR〉, 〈Vm〉, and 〈Kflux (]k)〉 along these boundaries. So, for
any given ]k, these analytical functions would give the F, DB
thresholds, and “maximum” values of the dynamical quantities.
These functions are then used to parametrize the dynamical
quantities between the boundaries, which appear with nearly
square-root behavior. These resulting equations form our mNM
behavior.

Check Fidelity of neural mass parametrization. Within the
firing region, defined by the parametrized boundaries
ISSF(Δ]K) and ISSDB(Δ]K), we find that the neural mass
outputs FR, Vm, and Kflux, are well approximated by
square root functions of the normalized injected current
times the parametrized maximal value of the quantity
found along the DB boundary. To check fidelity of this
parameterization, we then compare the neural mass outputs
with the means of the same quantities obtained from the
ordinary differential Equation (ODE) simulations of the
respective neuron models to ascertain if the mNM outputs
are in the reasonable limits of the error.

2.2 The Wang-Buzsáki and
Single-Compartment Excitatory
Accommodating Neuron Neuron Models
Used
In the next two sections we give the ODE equations and details of
the WB and SEAN neuron models that we use to obtain the I and
E neural masses.

2.2.1 Wang-Buzsáki Model for Inhibitory Neuron
The model equations of the Wang-Buzsáki (Wang and Buzsáki,
1996) neuron are as follows:

dVm

dt
� 1
Cm

Iinj − GK Vm − ]K( ) − GNa Vm − ]Na( ) − GL Vm − ]l( ) − Ipump( )
dn

dt
� ψ αn Vm( ) 1 − n( ) − nβn Vm( )( )

dh

dt
� ψ αh Vm( ) 1 − h( ) − hβh Vm( )( )

(2)

where,

GK � gkn
4

GNa � gNam
3
∞h

GL � gL

Ipump � ρ

1 + exp([N̂a]i − [Na]i
3

)( ) 1 + exp([K̂]o − [K]o)( )
(3)

The expression for the pump current and the value of pump
strength ρ = 1.25 is taken from (Wei et al., 2014). Nominal ion
concentrations for intracellular sodium and extracellular
potassium are [N̂a]i � 25 mM, [K̂]o � 4.77 mM, and the
nominal Nernst potentials for these ions are
]̂K � −90 mV, ]̂Na � 55 mV. The Nernst potential for sodium
ion is assumed to be constant, i.e., ]Na � ]̂Na. Non-hatted
versions of concentrations incorporate the changes in Nernst
potentials. In this work, we assume that the intracellular
concentration remain constant at all times, hence in the pump
current (Ipump), the changes in ]K is fully accounted by [K]o.

The activation functions for the ion channels are given by the
following equations:

αm Vm( ) � a1W Vm + V1W( )
1 − exp − Vm + V1W( )/b1W( )( )

βm Vm( ) � a2W exp − Vm + V2W( )/b2W( )
αn Vm( ) � a3W Vm + V3W( )

1 − exp − Vm + V3W( )/b3W( )( )
βn Vm( ) � a4W exp − Vm + V4W( )/b4W( )
αh Vm( ) � a5W exp − Vm + V5W( )/b5W( )
βh Vm( ) � 1

1 + exp − Vm + V6W( )/b6W( )( ) (4)

The values of the model parameters are given in the first
column of Supplementary Table S1. The mean outputs of the
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model obtained from the ODE simulations are depicted as
colour maps in Figure 2A. The 〈KFlux〉 current has
contributions from active potassium current (GK(Vm − ]K))
and the pump current.

The fixed point of the system of WB model equations for a
given membrane potential are given by (Vm, n∞(Vm), m∞(Vm),
h∞(Vm)), and its stability is computed from the Jacobian of the
dynamics at that point. At the fixed point, the input current ISS
for a given Vm and ]K is given by:

ISS � gKn
4
∞ Vm( ) Vm − ]K( ) + gNam

3
∞ Vm( )h∞ Vm( ) Vm − VNa( )

+ gL Vm − Vl( ) + Ipump

(5)
The boundaries of the unstable region in terms of the Firing

boundary (ISSF) and Depolarization block boundary (ISSDB) are
calculated using the above expression and depicted in the left column
of Figure 3.

2.2.2 Single-Compartment Excitatory Accommodating
Neuron Model
We obtain the SEAN model from the Pinksy-Rinzel model
(Pinsky and Rinzel, 1994) by converting it to a single-
compartment model and retaining major active currents
along with the accommodation (IK−AHP) and the pump
current (Ipump).

The equations of the SEAN model are as follows:

dVm

dt
� 1
Cm

Iinj − GK Vm − ]K( ) − GNa Vm − ]Na( ) − GL Vm − ]l( ) − Ipump − IK−AHP( )
dn

dt
� αn Vm( ) 1 − n( ) − nβn Vm( )

dh

dt
� αh Vm( ) 1 − h( ) − hβh Vm( )

(6)

where,

GK � gkn
4

GNa � gNam
3
∞h

GL � gL

Ipump � ρ

1 + exp([N̂a]i − [Na]i
3

)( ) 1 + exp([K̂]o − [K]o)( )
IK−AHP � GK−AHPq∞(Ca)(Vm − ]K)

(7)
where ρ = 1.25 is the pump strength. [N̂a]i � 25 mM, [K̂]o �
8.38 mM stand for intracellular sodium and extracellular
potassium concentrations for nominal Nernst potentials
for these ions (]K = −75 mV, ]Na = 60 mV). Non-hatted
versions of these quantities incorporate the changes in
Nernst potentials.

The activation variables of different ions as a function Vm are:

αm Vm( ) � −a1S V1S + Vm( )
exp − V1S + Vm( )/b1S( ) − 1.0( )

βm Vm( ) � a2S Vm + V2S( )
exp Vm + V2S( )/b2S( ) − 1.0( )

αn Vm( ) � −a3S V3S + Vm( )
exp − V3S + v( )/b3S( ) − 1.0( )

βn Vm( ) � a4S exp − V4S + Vm( )/b4S( )
αh Vm( ) � a5S exp − V5S + Vm( )/b5S( )
βh Vm( ) � a6S

1.0 + exp − V6S + Vm( )/b6S( )( ) (8)

The potassium after-hyper-polarization current IK−AHP is
the current responsible for accommodation in this model and
calcium activation variable q is assumed to be at its steady
value:

q∞ Ca( ) � αq

αq + βq( ) (9)

where αq = min (0.00002pCa, 0.01) and βq = 0.001.
As in (Pinsky and Rinzel, 1994), the calcium dynamics

themselves evolve relatively slowly according to:

dCa

dt
� −0.13 ICa − 0.075 Ca (10)

We then make the follow approximation to separate the effects
of the IK−AHP into fast dynamical (IK−AHP,fast) effects computed at
the nominal state and slow modulatory effects that depend on
calcium (IK−AHP,slow (Ca)):

IK−AHP � gK−AHP q̂ + q∞ Ca( ) − q̂( ) Vm − ]K( )
� gK−AHP q̂ Vm − ]K( ) + gK−AHP q∞ Ca( ) − q̂( ) Vm − ]K( )
≈ gK−AHP q̂ Vm − ]K( ) + 〈gK−AHP q∞ Ca( ) − q̂( ) Vm − ]K( )〉
≈ gK−AHP q̂ Vm − ]K( ) + gK−AHP q∞ Ca( ) − q̂( ) 〈Vm〉 − ]K( )
� IK−AHP,fast + IK−AHP,slow Ca( )

(11)
In practice, the mNM parametrization is computed just using

the fast dynamics IK−AHP,fast, where we have chosen
q̂ � q∞(Ca � 0.2). The slow dynamics appear as an additive
correction to the input current Iinj,eff = Iinj + IK−AHP,slow.

The values of the model parameters are given in the
second column of Supplementary Table S1. The mean
outputs of the model obtained from the ODE
simulations are depicted in Figure 2B. The 〈KFlux〉
current has contributions from the active potassium
current (GK(Vm − ]K)), the pump current, and the
accommodation current.
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The model fixed points are determined similarly as the
previous model. The steady state value of the current at given
(Vm and ]K) are determined as:

ISS � gKn∞ Vm( ) Vm − ]K( ) + gNam
3
∞ Vm( )h∞ Vm( ) Vm − VNa( )

+ gL Vm − Vl( ) + Ipump + IK−AHP

(12)
The firing onset (ISSF) and DB (ISSDB) boundaries in terms of
steady state current are depicted in Figure 3.

2.3 Mechanistic Neural Mass
Parametrization
We use the functional fits to the firing and DB thresholds, and the
mean of dynamical variables at (adjusted) DB threshold (ISSDB −
Δ) to parameterize the mNMs. For both the neuron models, we
use polynomial functions up to 3rd order to fit these quantities as
a function of ]K (x). For instance, for functional fit to ISSF of WB
model, we obtain the best linear fit (y = ax + b) with a = 0.014, b =
1.746 as parameters. All the functional best fits for both the
models are shown in Supplementary Figures S2 and S3. The
order of polynomial was simply chosen so as to fit the profile of
the simulated data (see Supplementary Figures S2 and S3), and
python’s Scipy (docs.scipy.org) module was used to obtain the
best fit. These functions are used in ascertaining the limits of the
three dynamical quantities, for a given ]K.

As a next step we separately identify another set of simple
functions that would approximate the values of the dynamical
variables of the mass, within the predetermined limit, as a
function of the injected current. These functions (example
y � M

��
x

√ + C) use the input current (injected current) as
independent variable (x) and the predetermined limits of
dynamical variables (M) to yield mean dynamical output (y)
in terms of mean firing rate, mean membrane potential, or, mean
potassium flux.

In summary, for any given combination of (Iinj, ]K), we first
determine the threshold currents, and maximum values of
mean dynamical variables from the first set of analytical
functions. Next, we use the Iinj, as the independent variable
in the next set of functions and find the dynamical variables
corresponding to the mass. The choice of these functions was
guided by the profiles of average firing rate 〈FR〉, membrane
potential 〈Vm〉, and potassium flux 〈Kflux〉 of individual
neuron models as function of Iinj. These are shown for
three different ]K values for both the neuron models in
Supplementary Figure S1.

After the neural masses are characterized, we check their
fidelity by comparing the mass outputs with that of mean
outputs from the ODE simulations of the neuron models
across the ranges of Iinj and ]K.

2.3.1 Determination of Thresholds for a Given Change
in the Nernst Potential
The thresholds current values and maximum of the means of FR,
Vm, and KFluxwithin the firing range are determined using simple

linear and polynomial functions of ]K of the two masses. Hence,
firstly, for a given change in the potassium Nernst potential Δ]K,
the corresponding (new) Nernst potentials of the two masses are:

]KI � ]̂KI + Δ]K (13a)
]KE � ]̂KE + Δ]K (13b)

The hatted versions of the Nernst potentials (]̂KI and ]̂KE)
are the nominal Nernst potential values of the two masses.
Note that amount of change in Nernst potential is assumed to
be caused only due to change in extracellular potassium
concentrations for the two masses, and these masses share a
common extracellular bath (see Figure 1). Hence Δ]K is same
for both the masses.

The functions that determine the firing threshold (iIth1),
depolarization threshold (iIth2), maximum 〈FR〉 (MI

1),
maximum 〈Vm〉 (MI

2), and maximum 〈KFlux〉 (MI
3), as

functions of ]KI for the I mass are:

iIth1 � aIFRT ]KI + bIFRT (14a)
iIth2 � aIDBT ]KI + bIDBT (14b)
MI

1 � aIFR ]3KI
+ bIFR ]2KI

+ cIFR ]KI + dIFR (14c)
MI

2 � aIVm ]2KI
+ bIVm ]KI + cIVm (14d)

MI
3 � aIKF ]KI + bIKF (14e)

Similarly, the firing threshold (iEth1), depolarization threshold
(iEth2), maximum 〈Vm〉 (ME

1 ), maximum 〈Vm〉 (ME
2 ), and

maximum 〈KFlux〉 (ME
3 ) functions (of ]KE) that determine the

threshold values for the E mass are:

iEth1 � aEFRT ]KE + bEFRT (15a)
iEth2

� aEDBT ]KE + bEDBT (15b)
ME

1 � aEFR ]2KE
+ bEFR ]KE + cEFR (15c)

ME
2 � aEVm

]2KE
+ bEVm

]KE + cEVm
(15d)

ME
3 � aEKF ]3KE

+ bEKF ]2KE
+ cEKF (15e)

The values of the parameters appearing in the above equations
Eqs. 14 and 15 are presented in Supplementary Table S2. The
functions are plotted against actual thresholds for a range of ]K
values and shown in Supplementary Figures S1 and S2, for the I
and the E mass, respectively, in the SI.

2.3.2 Neural Mass Functionals
The parameters of the above linear and polynomial functions
can be used to determine these thresholds for any arbitrary
Δ]K. These thresholds are further used in another set of
functions to determine the mean dynamical outputs of the
mass for any given injected current. As these functions fully
characterize the neural mass with respect to the bifurcation
parameters (Iinj and ]K), we address them as the neural mass
functionals. We present these functionals below for the I and
the E masses.

The mean firing rate function (FRI), mean membrane
potential function (VmI), mean potassium flux functions (KFI)
for the I mass are:
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FRI � MI
1

���
QI

√
(16a)

VmI � −MI
2

���
QI

√( ) + C1 (16b)
KFI � MI

3

���
QI

√( ) (16c)
where, C1 = −60, MI

1, M
I
2, and MI

3 are the maximum of the
respective quantities as determined for a given ]KI from Eq. 14.QI

is the normalized total current that the mass receives and is
expressed as:

QI � XItot − iIth1
iIth2 − iIth1

(17)

Notice that, for the isolated mass this total current (XItot) is
just the injected current (IIinj). Alternatively, when this mass is
coupled to other mass (es), the total current is the sum of injected
current and the current due to finite 〈FR〉 of other mass (es).
Hence, the expression for the total current for the mass (U), that
couples to another mass (V) is:

XUtot � IUinj + IUpump Δ]K( ) + gVUFRV (18)
The mean firing rate function (FRE), mean membrane

potential function (VmE), mean potassium flux functions (KFE)
for the E mass are:

FRE � ME
1

���
QE

√
(19a)

VmE � −ME
2 Q0.62

E( ) + C1 (19b)
KFE � ME

3 Q0.28
E( ) + C2 (19c)

where,C1 = −65 andC2 = 0.1 and normalized total current (QE) is
expressed as:

QE � XEtot − iEth1

iEth2
− iEth1

(20)

Here again, the total current XEtot can have up to three
contributions as expressed in Eq. 18.

2.4 Synaptic Coupling of Masses
So far, we have presented how we develop the neural masses of
both kinds (E and I) from their respective neuron models.
Next, we would like to understand how does the coupled E − I
model, in which the two masses interact with each other
through synaptic coupling, behaves under the conditions of
changing injected currents and changes in the ]K of both the
masses.

Mass coupling can also be understood from an averaging
approach from classic Hodgkin-Huxley (HH) type compartment
models. We write this out both for completeness, and to illustrate
a slight change from existing NMMs.

In the HH like models originally input is only in the form of
current. In neuronal networks, this is mediated by synaptic
currents, whose impulse-response function in response to
neurotransmitter release at time tap has been characterized by
alpha functions α(t) (Rall et al., 1967; Brown and Johnston, 1983;
Traub and Miles, 1991).

I t − tap( ) � G α t( ) Vm − ]s( )
α t( ) � te−t/τs

(21)

Note that the time constant τs is particular to a type of
neurotransmitter, and we will in the future denote as a
generalization αx(t) to have time constant τx. Note that the
term Vm − ]s is the difference between membrane potential
Vm and the Nernst-potential of carrier ions through the
channel of type s. Commonly used time constants include τp =
10 ms for pyramidal neurons, τI,f = 2 ms for fast (γ-aminobutyric
acid GABAA) inhibitory, and τI,s = 20 ms for slow (GABAB)
inhibitory interneurons (Traub and Miles, 1991).

For a single neuron, denoted as neuron i, with firing times
at its soma of Tk, its synapses onto neurons will occur at
axonal terminals, and there will be a delay time D mostly
proportional to the distance such that action potentials will be
seen at the synapse at times Ti,k + Di,b. Critically, delay time
Di,b is specific to the connection distance between neurons i
and b.

We note that a particular neuron type, such as pyramidal
neuron, will only release a single neurotransmitter type. Then
the time course of postsynaptic currents from firing of that
neuron to postsynaptic neuron b, will have the form:

Ib t( ) � Gi,b Vm,b − ]b( ) ∑
k

αi t − Ti,k −Di,b( ) (22)

It is now convenient to introduce a pre-synaptic centric
conductance function ha,i(t) for the ith single cell from
population a, assumed to be all of the same cell type:

ha,i t( ) ≡ ∑
k

αa,i t − Ta,k( ) (23)

In this form, any postsynaptic current in neuron b from action
potentials in i will be characterized as,

Ib t( ) � Ga,b Vm,b − ]b( )ha,i t −Da,b( ) (24)
In our neural mass formalism, we now average over a

population a, composed of neurons i, all with the same
neurotrasmitter type, and assumed to have common time
delay Da,b. As such αa,i = αa. As a result we arrive at an
equivalent averaged conductance function ha(t),

ha t( ) �〈∑
i,k

αa,i t − Ti,k( )〉i,k
(25a)

�〈∑
i,k

∫ dταa t − τ( )δ τ − Ti,k( )〉i,k
(25b)

� ∫ dταa t − τ( )〈∑
i,k

δ τ − Ti,k( )〉i,k
(25c)

� ∫ dταa t − τ( )Fa τ( ) (25d)

Here we’ve defined the firing rate for the neuron group defined by
a as Fa(τ).
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It can be shown that ha(t) can be computed without the time
convolution by instead integrating the second order ordinary
differential equation:

€ha � Fa − ha
τ2a

− 2 _ha
τa

(26)

Note that under this parametrization, under steady state
conditions Fa(t) = Fa and _ha � 0 then ha = Fa.

For computational efficiency, for masses that are coupled into
networks with both near and far connections, we only compute the
synaptic dynamics once permass, and accommodate the delays in their
connections. Explicitly, for NM for population b, whose presynaptic
masses are denoted as members a, will have a total input current

Ib,in t( ) � Ib,pump +∑
a

Ga,b 〈Vm〉 − ]b( )ha t −Da,b( ) (27)

and idealized instantaneous firing rate defined by our
parametrization fb (Ib,in(t), θb(t)).

Note that because synaptic current is slow with respect to the
fast dynamics, and appears after averaging across the post-
synaptic network, the term Vm in Eq. 21 is replaced with the
NM state 〈Vm〉. This is commonly further replaced with a
nominal value (as in (Deschle et al., 2021)) V̂m,b. This may
be rationalized by assumption that the synapses, which typically
appear distant from the neural Soma modeled, are not well-
described by the mean Soma membrane potential. In the latter
case the term Ga,b(V̂m,b − ]b) is constant, and replaced with an
overall coupling constant ga,b.

Ib,in t( ) � Ib,pump +∑
a

ga,b ha t −Da,b( ) (28)

3 RESULTS

As described, we have developed mNMs as parameterizations
of single-neuron Hodgkin-Huxley style neurons for both
inhibitory and excitatory neuron types, based on the WB
and SEAN models. As results, we first demonstrate that the
individual mNMs parametrizations reproduce the outputs of
the demonstrated models.

We then investigate the dynamics of the simple 2-element
excitatory/inhibitory network illustrated in Figure 1 and
demonstrate that as a function of both input and extracellular
potassium, it reveals dynamics expected to underlie seizure and
spreading depression dynamics.

3.1 Mechanistic Neural Mass Fidelity
To check the fidelity of the mechanistic neural mass
parametrization, we compare the outputs obtained from
the I and E neural functionals with that of mean outputs
from the WB and SEAN neuron ODE models. For both the
neurons, we begin by choosing a range of injected currents
for which the neurons fire and obtain the mean quantities
(〈FR〉ODE, 〈Vm〉ODE, and 〈KFlux〉ODE) at three different ]K
values. We also find out these three quantities (〈FR〉mass,
〈Vm〉mass, and 〈KFlux〉mass), using the neural mass
functionals for the same range of injected currents and for
the same ]K values. We plot these mean quantities, one from
solving the ODE and other from the mass functionals against
one another as in Figure 4. The green line depicts y = x line in
all the six subplots. For a perfect match between the ODE and
mass results quantities, the points would lie along this line.
We observe a good match between the results for both kinds
of masses for 〈FR〉 and 〈Vm〉 with error of less than 10% for
most of the firing range of the ODE models. There are a few
exceptions, however, at the onset of firing and at the DB
onset, where the output of the ODE model is not exactly
approximated by the mass functionals.

FIGURE 4 | Fidelity of mass parametrization: The figures show a
comparison of mean dynamical variables obtained from ODE simulations with
those obtained from neural mass parametrization at three different values of ]K
for the I mass (A) and the E mass (B), respectively. The green line in all
the plots depicts a 1:1 line for the ODE and neural mass outputs. The colours
of the dots in the figure are indicative of different potassium Nernst potential
values, as depicted in the middle subplots. The points parallel the x axis in the
subplots at firing onset and at DB onset, depict areas where themassmodel is
not exactly approximating the mean outputs from the neuron models.
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3.2 Dynamics of the Coupled Model:
Ordinary Differential Equation Formulation
Using the methodology as described in Coupled Model section
in Methods, we couple the two kinds of masses to each other,
so as to study the dynamical behaviour of the E − I couplet.
Here we investigate the system behaviour in terms of the E and
I mass firing rates variations in potassium ion concentration,
injected current and coupling strength between the masses.
Hence, the mean FR of each of the masses is a function of total
current expressed as combination of injected current and the
mean FR of the other masses that it couples to. The ODEs of
the E − I coupled model are expressed in terms of FRE and
FRI as:

_FRE � ΦE IE t( )( ) − FRE( )/λE (29)

_FRI � ΦI II t( )( ) − FRI( )/λI (30)

This form, which is a discretized version of the Wilson-Cowan
model (1972) (Wilson and Cowan, 1972), was adopted to
acknowledge that firing rates - which are an observation of the
system - cannot change instantaneously. λE and λI are the time
constants of the respective masses. The functions Φ are FR
functions of the total currents to these masses, as given in
Eqs. 16a and 19a. IE(t) and II(t) are the total contributions to
the E and I masses, respectively, expressed as:

IE t( ) � IE,inj + IE,pump − gI,E hI t( ) (31)
II t( ) � II,inj + II,pump + gE,I hE t( ) (32)

where the currents Ix,inj denote the input currents from outside
the network, Ix,pump denotes the pump currents, and the

coupling constants gxy and synaptic functions hx(t), and the
differential equations that govern them, follow the definitions
in Section 2.4. Note that the sign of these synaptic inputs are
written out explicitly, with inhibitory input appearing as a
negative current.

The values of the parameters used for the simulations are, in
ms, λE = λI = 1, τE = 10, τI = 20, which corresponds to slow
(GabaB-type) synapses. Nominal coupling constants used here
are ĝEI � 0.2 and ĝIE � 0.04. Excitatory to inhibitory coupling
was kept at the nominal value, and inhibitory to excitatory
coupling was varied with respect to the nominal value.
Additionally, no external input was applied to the inhibitory
mass II,inj = 0.

Some of the fundamental dynamics of this E − I network,
under external injected current input IE,inj, are shown under
four different state conditions in Figure 5. Here the external
input is a series of current pulses with a 250 ms ramp input, and
0.75 duty cycle, with increasing amplitudes (lower traces). The
upper left panel corresponds to nominal ]K and gIE. At very low
pulse height, this small network oscillates. We expect that
addition of fast (GABA-A) inhibition could be used to tune
that behavior.

At moderate pulse height, we observe balanced firing of
both the excitatory and inhibitory masses. As the pulse height
increases, the inhibitory mass is driven into DB (at
approximately time t = 12 s). At this point the excitatory
mass fires at an even higher rate, and is equivalent to the
Run-away excitation (RAE). At even higher pulse height, the
excitatory mass is driven into depolarization block and both
their firing rates go to zero during the pulse. We denote this
network state as DB. Note that upon pulse initiation, because
the pulses have a sloped front end, both masses initially fire
before reaching DB.

FIGURE 5 | Dynamics of the coupled model: The figures show the dynamical response of the coupled masses in terms of their mean firing rates (FRE and FRI) for a
square wave stimulus (shown in black in the bottommost subplots) for Δ]k = 0 (left) and Δ]k = 15 (right). The top subplots are for nominal I to E coupling strength gIE � ĝIE
and the middle subplots show the dynamics when gIE � ĝIE

2 .
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In the left, middle panel, we have decreased gIE by a factor of
two. The result is that the transition to RAE occurs at a lower
pulse input height.

In the right column we show the results for slightly elevated
extracellular potassium (Δ]K = 15 mV, or ~ 75% increase). In this
case the transitions to both RAE and DB occur at lower input
currents, are further compressed with decreased gIE.

The network dynamics are hysteretic with respect to injected
current. This is apparent from the detailed response of the
model to a symmetric ramp current function as shown in
Figure 6. Here the output is not the same for increasing
input as for decreasing input. A first indication of this is that
the ramp points where the I mass goes in and out of DB occur at
different values of IEinj. This is better observed in Figure 6B
where the firing rates are plotted as a function of IEinj, and the
sign of _IEinj is denoted with solid (positive) or dashed (negative)
line types. Therefore, in state space, there is bistable region in
which the network can either be in stable firing (F) or RAE. We
denote this region as BS.

3.3 Analytical Boundaries of the IE Network
Dynamics
As explored in the previous section, the coupling of the E mass
and I mass models can result in four dynamical states as
defined not-firing NF, stable firing F, RAE, and DB, and
potentially can have bistable state-space regions that can
have either. In this section, we delineate analytically the
boundaries between these behaviors in parameter-space
composed of Δ]K, gIE, and IE,inj.

In the NF state, the masses do not fire due to insufficient total
current for E mass firing. In the DB state the E mass does not fire
because of very high total current. In the RAE state the E mass
shows uncontrolled (pathological) firing due to failure of the I
mass to inhibit its firing. This in turn is because the Emass’s firing
rate is high enough to put the I mass into DB. In the BS region, the

E mass shows two stable firing patterns for the same injected
current depending on whether the I mass is in DB or not - and
this depends on history. When the I mass is in the F state and
injected current is on, the E mass shows one FR (lower), while
when I mass is in the DB state, and the same injected current is
still on, the E mass shows another FR (higher). This property
marks the bi-stable region in the IEinj - Δ]K bifurcation space.
Also, at the boundaries of the bi-stable region, the FRs of the E
mass are the same. The F state corresponds to the E mass normal
firing.

The analytical boundaries of these regions are shown in
Figure 7. Note that in absence of coupling to the I mass, the
blue and red lines in the figure enclose the unstable fixed points
region of the E mass. On the left of the blue boundary, the state is
NF, the state beyond the red boundary is DB. When the coupling
between E and I mass is on, the orange region limited by the blue
line (firing boundary) on the left and orange line (bistability
boundary) on the right is the firing region (F state). The yellow
region between the orange and the green line (RAE boundary) is
the bistable region (BS state). The red region between the green
line and the red line (DB boundary) is the RAE region.

Steps to obtain the Firing onset (FO), Bi-stability (BS), Run-
away excitation (RAE) and Depolarization block (DB)
boundaries are calculated as follows, where the Nernst
potentials are adjusted using Eq. (13).

1) The FO boundary is obtained using the parameters to the
functional fits as in the equation of Eq. 15a:

iEth1
� aEFRT ]KE + bEFRT

2) The RAE boundary is characterized by a point where I mass
goes into depolarization, after reaching its maximum firing
rate and as a result the E mass fires in uninhibited manner.
Hence, we first find the total current to the I mass (QI) that
results in its maximum FR using Eq. 16a.

FIGURE 6 | Dynamics of the coupled model to ramp stimulus: The figures show the dynamical response of the coupled masses in terms of their mean firing rates
(FRE and FRI) for a ramp stimulus (shown in black in part (A)) for Δ]k = 0 and gEI � ĝEI/2. As the injected current to the E mass increases the firing rates increases
proportionally, until the I mass goes into DB, which results in unbalanced firing of E mass or run-away excitation. As the current is further increased the E mass goes into
DB, at around IEinj � 81 μA/cm2. This is also accompanied by a simultaneous spike in FRI, owing to momentary drop in current (from its DB threshold) it received
from E mass firing. This non-zero FRI is not sustained any further as the E mass goes into DB due to very high injected current. This is repeated in reverse as the current
goes down from its maximum value in the second half of the stimulus. However, the point at which the I mass recovers from DB (during second half of the current), and at
which it goes into DB (in the first half) are not exactly same. These hysteretic dynamics result in bi-stable (BS) region as is shown with the other three regions (F, RAE, and
DB) in part (B) as a function of injected current.
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QI � FRI

MI
1

( )2

(33)

Using the obtained QI, and Eq. 18, we find FRE for the above
QI as below. Notice that there is no injected current to the I mass
(0 in the equation below).

FRE � 1/gEI( ) QI − 0 + IIpump( ) (34)
Using the above obtained FRE, we obtain the total current to

the E mass, i.e., QE using Eq. 19a,

QE � FRE

ME
1

( )2

(35)

Now since we know the total current, we can again use
equation. 18, to find injected current which is our IRAE, as follows.

IRAE � QE + IEpump + gIEM
I
1 (36)

3) The bi-stability boundary is obtained by invoking the
condition: FRE(BS) = FRE(RAE), which implies that QBS =
QRAE. Using Eq. 18, we arrive at:

IBS − gIE FRIBS − IEpump � IRAE − gIE MI
1 − IEpump (37)

Since FRI at BS zero, the second term on the left hand side of
the above equation goes to zero.

Hence, we arrive at:

IBS � −gIE MI
1 + IRAE (38)

4) The DB boundary is using the parameters of the fit to the DB
threshold as in Eq. 15b.

iEth2
� aEDBT ]KE + bEDBT (39)

These four boundaries separate the Δ]K vs. IEinj state space into
five regions as shown in Figure 7.

FIGURE 7 | Analytical bounds of dynamical regimes of the coupled model: The figures (A–D) show the analytical boundaries for not firing, firing, bi-stability, run-
away excitation and depolarization block regions as a function of couplings gIE and Δ]K. The boundaries and regions enclosed by them for a range of values of Δ]K at two
fixed couplings gIE are shown in (A,C). (B,C) show the firing rates of the twomasses as a function of ramp current at the two Δ]K values 0 and 15 mV (marked in grey line
in parts (A,C)). The solid lines are firing rates for the increasing current and the dotted lines show the firing rate for the decreasing current.
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In Figure 7A is shown this state space for the default
inhibitory-excitatory coupling value gIE/ĝIE � 1. As ]K
increases all these boundaries shift to lower IEinj values. This
contraction of the firing and bistable regions upon increase in
extracelluar potassium is readily illustrated by the hysteretic
dynamics in response to a symmetric ramp function,
computed from integrating the ODEs as before, shown in
Figure 7B. Note also that the transition times observed in the
hysteresis correspond well with the analytically computed
boundaries, which in turn assume steady state inputs and
dynamics. Note also that at this modestly increased potassium
level - equivalent to increasing from [K]o = 3.5 mM to [K]o =
6.2 mM - that the region of bistability is very small.

In Figure 7C is shown this state space for the decreased
inhibitory-excitatory coupling value gIE/ĝIE � 0.5, with
accompanying hysteresis curves for ramp input shown in
Figure 7D. Although at nominal extracellular potassium the
input current needed to drive the network into DB is only
modestly lower (about 18% lower) than for the nominal
coupling, at the elevated potassium level is lowered by another
factor of about 30% compared to the nominal coupling at elevated
potassium.

The state space as a function of gIE/ĝIE vs. IEinj is shown
in Figure 8 for values of Δ]K = 0, 15 mV. Here again the
boundaries between behaviors are smooth, monotonically
increasing functions. Higher ]K leads to smaller areas of
the dynamical regions F, BS, and RAE. Beyond the
point where the RAE boundary (in green) crosses the DB
boundary, the E mass goes into DB right after bistablity.
Hence, we shift the DB (in red) boundary to the RAE
boundary in the figures.

We note that because of the smooth monotonically increasing
shape of these boundaries, that the choice of our nominal value
for ĝIE and comparison with a halved value would have lead to
the same pattern of decreases in region space as discussed in the
previous paragraphs.

4 DISCUSSION AND CONCLUSION

In the present work our aim was to establish and demonstrate a
method to develop computational models of neuronal ensembles -
neural masses - that stem from biophysical and coupling
characteristics of membrane dynamics resolved cellular models of
neurons, whose states and output could quantitatively be mapped
across modeling scales, whose bifurcations realistically included
depolarization block, and whose dynamics realistically
bidirectionally couple to the neurons’ environment.

The developed neural mass models are parametrized through
simple mathematical functions, show physiologically interpretable
behaviors and dynamical transitions from one state to another, as a
function of key parameters of neural environment.

In this work, we have demonstrated this development process
for both an inhibitory neural mass, based on the Wang-Buzsáki
(Wang and Buzsáki, 1996) (WB), and an accommodating
excitatory neuron (SEAN), based on a simplification of the
Pinsky-Rinzel (Pinsky and Rinzel, 1994) model. The masses
are characterized in terms of time-averaged outputs of the
corresponding neuron models, and represent the mean
dynamics of populations of these neurons.

These mass descriptions can serve as plug-in replacements
for existing NM elements used in other models, in that they
produce firing rates as a function of synaptic input from other
masses.

These masses also receive as input slow variables in the form of
extracellular potassium, for both, and accommodation state for
SEAN, and as output provide the coupling to those slow variables
in the form of average membrane potential and transmembrane
in our models, instead of using a sigmoidal function as the base
relation between the input and firing rate, we use a fit for actual
firing rates measured from ODE implementations of the original
compartment models with each’s firing range, and explicitly the
thresholds for firing and depolarization block as a function of the
slow variables.

FIGURE 8 | Shift in analytical Bounds as a function of coupling constant: The figures show the shift in dynamical region boundaries as the ratio gIE
ĝIE

is varied from 0.1
to 10, for Δ]k = 0 mV in (A), and Δ]k = 15 mV in (B). The grey horizontal lines depict the two coupling constants for which the region boundaries are shown in Figures
7A,C. The dotted blue and red lines in both the figures represent firing onset and DB onset boundaries of the E mass, when it is not coupled to the I mass.
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Inclusion of depolarization block has not been included in the
classic NMMs (Freeman, 1972a; Freeman, 1972b; Wilson and
Cowan, 1972; Lopes da Silva et al., 1974; Freeman, 1975; Jansen
and Rit, 1995; Cona et al., 2014) before. Depolarization block was
introduced into continuum Wilson-Cowen dynamics (Meijer
et al., 2015) in a roughly ad-hoc fashion, but not dependent
on [K]o.

The explicit parametrization of depolarization block enables
these new implementation of neural masses to express the
underlying mechanisms of depolarization blocks and runaway
excitation (McCormick and Contreras, 2001) needed for
networks built from these elements to express realistic
transitions to seizure and spreading depolarization. The
sensitivity of both firing rates responses and DB transitions to
extracellular potassium concentration then embodies a critical
components that are known to play roles in epileptic dynamics
and demonstrates the method to incorporate related volume
transmitted signaling (Agnati et al., 1992).

Because these mass elements are built to parameterize these
from the original cellular models, these variables map directly to
measurable variables in brain. We investigated the dynamics of a
simple two element network formed from coupling an excitatory
and an inhibitory mass in which input was delivered only to the
excitatory mass. This network itself displays key features that
underlie epilepsy. In particular, as a function of input to the
network it transitions in a hysteretic manner from firing to
runaway excitation to depolarization block. Importantly, as
extracellular potassium is increased, the input threshold to
unstable dynamics is decreased. More importantly, as the
inhibitory coupling to the excitatory network is decreased, this
sensitivity to increases in extracellular potassium is greatly
enhanced. This latter observation is consistent with the
observation that epileptic networks are not seizing all the
time, but are more susceptible to seizures and spreading
depolarizations.

4.1 Limitations of the Model
The dynamics of the masses we developed are computationally
efficient and can be used as direct plug-ins in existing NMM
networks, yet their properties (firing rate vs input and
environment) are closer to realistic.

This manuscript was built from two well known and
established Hodgkin-Huxley style compartment models—that
by Wang-Buzsáki (Wang and Buzsáki, 1996) and a reduced
version of the Pinsky-Rinzel model (Pinsky and Rinzel, 1994) of
a pyramidal neuron. This was done not because these models are the
most accurate, but because they are recognizable and understood.

With this choice comes the limitations of these models. For
example, we achieve firing rates from our SEAN model that far
exceed themaximum firing rate of read pyramical neurons, which
is a feature also noted in (Pinsky and Rinzel, 1994) for their soma-
only reduction. In addition, by reducing this to a single
compartment model we have eliminated burst-firing from this
model as it is more complex.

We note that both the WB and SEAN models follow canonical
Type 1 transition behavior, with roughly square-root firing rate
behavior following. In our modeling, we have only parametrized
that behavior and the subsequent transition to depolarization block.
We leave for future work parametrization of the host of different
transitions that have been articulated for example in (Izhikevich,
2000). Such efforts will further need to deal with the relationship
between within burst dynamics and rate of axonally transmitted
action potentials and resulting post-synaptic current generation.
Likewise, a method to deal with hysteretic firing onset transitions
such as observed with the simplest type 1 neurons (Izhikevich, 2000)
may be needed.

For the current generated NMMs, we have parametrized the
average response of a population of homogeneous neuron types
formed with identical detailed parameters. Even when subdivided
into common cell types, neurons in real biology will have a
distribution of shapes, sizes and even ion channel or pump
densities. These different within cell differences will lead to
changes in the detailed input/output dynamics that we have
parametrized in our models. Given a distribution of such
parameters, it is straightforward to build the average mass
response based on an average of the parameterized responses
given such cell-parameter variations. As long as such cell-
parameter variations do not change the firing rate from the
square-root shape observed, these will translate simply to
shifts in the positions of ISSF and ISSDB and the maximum
firing rate as function of ]K. As illustrated in Supplementary
Figure S4, such averages primarily smooth out the distinct
transitions at firing onset and DB offset. We do not expect
that such changes will substantially alter the hysteretic
network dynamics of firing, runaway excitation, and
depolarization block. We anticipate the hardest part of
incorporating the heterogenetity into such models is to
establish and justify what distribution of cell parameters are
realistic and should be used.

4.2 Future Directions
An interesting future work with these neural masses will include
linking them to spatial networks of extracellular space that
include tracking and diffusion of potassium as well as glial
buffering and cell swelling. These elements should reveal
components that spread seizure and SD events as well as
express normal physiological rhythms. Through the procedure
used to include other slow variables including intracellular
sodium concentration, synaptic vesicle reserve, and oxygen
dependent ATP production for driving the ionic pumps, it will
also be possible to investigate the role of mutated channel
dynamics at the network level.
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