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During the performance of a specific task--or at rest--, the activity of different

brain regions shares statistical dependencies that reflect functional

connections. While these relationships have been studied intensely for

positively correlated networks, considerably less attention has been paid to

negatively correlated networks, a. k.a. anticorrelated networks (ACNs). Although

the most celebrated of all ACNs is the default mode network (DMN), and has

even been extensively studied in health and disease, for systematically all ACNs

other than DMN, there is no comprehensive study yet. Here, we have addressed

this issue bymaking use of three neuroimaging data sets: one of N = 192 healthy

young adults to fully describe ACN, another of N = 40 subjects to compare ACN

between two groups of young and old participants, and another of N =

1,000 subjects from the Human Connectome Project to evaluate the

association between ACN and cognitive scores. We first provide a

comprehensive description of the anatomical composition of all ACNs, each

of which participated in distinct resting-state networks (RSNs). In terms of

participation ranking, from highest to the lowest, the major anticorrelated brain

areas are the precuneus, the anterior supramarginal gyrus and the central

opercular cortex. Next, by evaluating a more detailed structure of ACN, we

show it is possible to find significant differences in ACN between specific

conditions, in particular, by comparing groups of young and old participants.

Ourmain finding is that of increased anticorrelation for cerebellar interactions in

older subjects. Finally, in the voxel-level association study with cognitive scores,

we show that ACN has multiple clusters of significance, clusters that are

different from those obtained from positive correlated networks, indicating a

functional cognitive meaning of ACN. Overall, our results give special relevance

to ACN and suggest their use to disentangle unknown alterations in certain

conditions, as could occur in early-onset neurodegenerative diseases or in

some psychiatric conditions.
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Introduction

It is well known that anatomical networks, such as those built

from diffusion tensor imaging (DTI), introduce statistical

dependencies in the dynamics of connected regions, increasing

their functional connectivity (FC) (Friston, 2011; Diez et al.,

2015). However, FC can also occur between regions with no

direct anatomical connections (Beckmann et al., 2005; Buckner

et al., 2013), due to the effects of common inputs or physiological

elements, or the so-called indirect effects that refer to correlations

between two regions that arise from neighboring regions

(Friston, 2011; Alonso-Montes et al., 2015; Amor et al., 2015;

Diez et al., 2015; Stramaglia et al., 2017; Fernandez-Iriondo et al.,

2021; Safari et al., 2021). Functionally connected networks can be

decomposed into positively correlated networks and negatively

correlated networks, the latter widely known as anticorrelated

networks (ACN). When derived from functional magnetic

resonance imaging (MRI), some preprocessing steps might

enhance the presence of ACN, like performing global signal

regression (Murphy et al., 2009; Saad et al., 2012; Murphy et al.,

2018), but accumulated evidence has shown that CAN could fulfil

a physiological role independently on the details of the

preprocessing (Fox et al., 2005; Fox et al., 2009; Uddin et al.,

2009; Chai et al., 2012; Li et al., 2019). The most celebrated ACN

is the default mode network (DMN), widely shown to be

anticorrelated with multiple-task activation networks (Uddin

et al., 2009; Chen et al., 2017). ACNs might also facilitate

task-switching, as shown for the Dorsal Attention Network

(Elton and Gao, 2014), Salience Network and the Executive

Control Network when switching from resting state to task

performance (Dosenbach et al., 2006; Chiong et al., 2013).

Here, we extend these results by studying each resting state

network (RSN) and its corresponding ACN, hypothesising that

novel relationships can be found between two study groups by

comparing the structure of the ACN, over and above the classic

differences found when comparing them with positive correlated

networks. To confirm our hypothesis, we use the condition of

physiological aging and assess the differences between groups of

old and young subjects in ACN. Finally, to assess the cognitive

relevance of ACN, we study the association between cognitive

performance and ACN, emphasizing some functional role of

ACN in relation to cognitive performance.

Materials and methods

Participants

Data were selected from the 1,000 functional connectomes

project and downloaded from the FCP Classic Data Table

(available at http://fcon_1000.projects.nitrc.org/fcpClassic/

FcpTable.html) (FCP, 2022). To identify and analyse ACN, we

chose the Beijing Eyes-Open Eyes-Closed II (Beijing EOEC2)

dataset (Chao-Gan, 2017), selecting N = 192 subjects with no

history of neurological or psychiatric disorders (age range

18–26 years, mean 21.17, std. dev 1.83; males = 74). To

analyse the differences in ACN produced by aging, we chose

The Max Planck Institute Leipzig Mind-Brain-Body

dataset–LEMON (Babayan et al., 2019; Mendes et al., 2019),

selecting 20 young participants (range 20–25 years; 10 male,

10 female) and 20 old participants (range 70–80 years;

10 male, 10 female). To analyse the relevance of ACN in

relation with cognitive performance, we used the Human

Connectome Project (HCP) dataset (Connectome

Coordination Facility, 2011), WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil;

1U54MH091657) funded by the 16 NIH Institutes and Centers

that support the NIH Blueprint for Neuroscience Research; and

by the McDonnell Center for Systems Neuroscience at

Washington University. In particular, raw images and

cognitive scores were taken from N = 1,000 healthy adult

subjects (ages range 22–37 years, mean = 28.68, std. dev = 3.

69; males = 464).

Cognitive measurements

To measure cognitive performance, we used the scores total and

crystallized cognition adjusted by age (CogTotalComp_AgeAdj and

CogEarlyComp_AgeAdj) from HCP, well-known for encompassing

multiple cognitive functions from theNIHToolbox for Assessment of

Neurological and Behavioral Function (available at www.nihtoolbox.

org) in a single score. The Total Cognitive Function Composite

(CogTotalComp) was obtained by averaging the normalized scores

of each of the Fluid (CogFluidComp) and Crystallized

(CogCrystalComp) cognition tests. In particular, CogFluidComp is

the combination of Flanker, Dimensional Change Card Sort, Picture

Sequence Memory, List Sorting and Pattern Comparison; and

CogCrystalComp is the combination of Picture Vocabulary and

Reading Tests. The Early Childhood Composite (CogEarlyComp)

was obtained by averaging the normalized scores Picture Vocabulary,

Flanker, DCCS and Picture Sequence Memory. The Age-adjusted

Scale (AgeAdj) was chosen within the age-appropriate band of the

Toolbox Norming Sample.

Brain imaging acquisition and analyses

Beijing dataset
The MRI data were acquired on a SIEMENS Trio 3-Tesla

scanner at Beijing Normal University. Functional data were

acquired using the following parameters: TR = 2s; TE =

30 ms; 33 axial slices with thickness/gap = 3/0.6 mm;

volumes = 230; functional resolution was 3.125 × 3.125 ×

3 mm with in-plane resolution of 64 × 64 voxels and FOV =

200 × 200mm2. The T1-weighted sagittal three-dimensional
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magnetization-prepared rapid gradient echo (MPRAGE) sequence

was acquired using the following imaging parameters: 128 slices; TR =

2,530ms; TE = 3.39 ms; slice thickness = 1.33 mm; flip angle = 7°;

inversion time = 1,100ms; FOV = 256 × 256mm2.

LEMON dataset
MRI raw and pre-processed images are available at (Index of/

pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON, 2018) and

although the full details of data acquisition are given at (Max

Planck Institute, 2013; Mendes et al., 2019), we summarize here

the main acquisition parameters. High-resolution structural

images were acquired through a 3D MP2RAGE sequence

(Marques et al., 2010) using the following parameters: voxel

size = 1.0 mm isotropic, FOV = 256 × 240 × 176mm, TR = 5,000ms,

TE = 2.92 ms, TI1 = 700ms, TI2 = 2,500ms, flip angle 1 = 4°, flip

angle 2 = 5°, bandwidth = 240 Hz/Px, GRAPPA acceleration with

iPAT factor 3 (32 reference lines), pre-scan normalization, duration =

8.22 min. Functional images were acquired through four rs-

functional(f)MRI runs, all in an axial orientation using T2*-

weighted gradient-echo echo planar imaging (GE-EPI) with

multiband acceleration. The acquisition parameter for all four runs

were: voxel size = 2.3 mm isotropic, FOV = 202 × 202mm2, imaging

matrix = 88 × 88, 64 slices with 2.3 mm thickness, TR = 1,400ms,

TE = 39.4 ms, flip angle = 69°, echo spacing = 0.67 ms, bandwidth =

1776Hz/Px, partial Fourier 7/8, no pre-scan normalization,

multiband acceleration factor = 4,657 volumes, duration = 15min

30 s. During the resting-state scans, the participants were instructed to

remain awake with their eyes open and to fix their vision on a

crosshair.

HCP dataset
For each HCP subject, MRI acquisition was performed using

a 3T Siemens Connectome Skyra with a 100mT/m and 32-channel

receive coils. High-resolution T1-weighted images were acquired with

a 3D magnetization prepared rapid acquisition gradient echo

(MPRAGE) and the following scanning parameters: TR =

2,400ms, TE = 2.14 ms, voxel size = 0.7 × 0.7 × 0.7 mm3, slice

thickness = 5.0 mm, flip-angle = 8o, FOV = 224 × 224mm2 and

acquisition-time = 7 min and 40 s. Resting state functional data was

acquired through an EPI sequence with a duration of 14min 33 s and

the following parameters: 1,200 brain volumes, TR = 720ms, TE =

33.1 ms, FOV = 208 × 180mm2, flip-angle = 52o, voxel size = 2 × 2 ×

2mm3, matrix = 104 × 90, slice thickness = 2.0 mm, and 72 slices per

volume.

Image preprocessing

Beijing and LEMON datasets
Functional images of the two datasets were pre-processed

using the Functional Connectivity (CONN v18b) toolbox

(Whitfield-Gabrieli and Nieto-Castanon, 2012), applying the

default pipeline for volume-based analyses that consists of

functional realignment and unwarping, translation to a

common reference of functional images, slice timing

correction, artefact detection tool based identification of

outlier scans with a 97% percentile threshold, functional

segmentation and normalization, translation to a common

reference of structural images, structural segmentation and

normalization, and functional smoothing with a Gaussian

kernel of full width at half maximum equivalent to 8 mm. De-

noising included regressing out 5 white matter components and

5 components of the cerebral spinal fluid, 12 realignment time

series, scrubbing, linear de-trending and applying a band-pass

filter between 0.008 and 0.09 Hz. Global signal regression was not

performed.

HCP dataset
The N = 1,000 functional images were pre-processed in a

previous work (Fernandez-Iriondo et al., 2022) by correcting for

gradient distortions and normalized to the standard

MNI152 template of voxel size equal to 2 × 2 × 2 mm3 using

the HCP pipelines fMRIVolume and fMRISurface. After image

normalization, we eliminated nuisances with a procedure that

combines a volume censoring strategy and motion-related time

course regression, along with physiological signal regression. For

this, the volumes were marked as censored when the frame

displacement (FD) was greater than 0.2 or the root mean

square derivative of the variance was greater than 0.75%,

following previous recommendations (Power et al., 2013;

Power et al., 2014; Parkes et al., 2018). In addition, the

volume before the censored one and the two after they were

also marked as censored. Next, the entire time series was divided

into segments of 5 volumes in length, to finally eliminate all the

segments that contained at least one contaminated volume, as

well as the first segment. After that, nuisances were removed

while simultaneously applying a bandpass filter between 0.01 and

0.08 Hz. Nuisance signals were the first five principal

components of the CSF and WM signals; linear and quadratic

trends; and the 24-parameter motion-related time series. Global

signal regression was not performed. Finally, each filtered image

was spatially smoothed with a 6 mm FWHM Gaussian kernel.

Statistical analysis

We analysed eight different brain networks using seed-based

correlation analysis (SBC). One seed was chosen within each of

the networks available in the networks atlas incorporated in

CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012) and

composing of 32 Regions of Interest (ROIs). In addition, a

different CONN atlas was used for the anatomical description

of significant clusters with 132 ROIs resulting from the

combination of the FSL Harvard-Oxford atlas cortical and

subcortical areas (Makris et al., 2006) and the AAL cerebellar

areas (Tzourio-Mazoyer et al., 2002). After applying SBC, we
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built ACNs for each of the following RSNs: Default Mode

Network (DMN), Fronto Parietal Network (FPN),

Sensorimotor Network (SMN), Dorsal Attention Network (DAN),

Visual Network (VN), Language Network (LN), Salience Network

(SN), and Cerebellar Network (CN). The seeds used for SBC to

generate each network were the medial posterior cingulate cortex

(DMN), the left lateral prefrontal cortex (FPN), the left lateral

sensorimotor (SMN), the left ipsilateral region (DAN), the medial

visual (VN), the left inferior frontal gyrus (LN), the anterior cingulate

cortex (SN), the cerebellum posterior region (CN), respectively.

For the first analysis of ACN anatomical description

(using the Beijing dataset), a one-sample t-test was

performed to build ACN. Voxel-level multiple correction

was performed using p-FDR-corrected (p-False Discovery

Rate) with a significance threshold of 10̂−14 and peak

p-FWE-corrected (p-Family Wise Error) with a threshold

equal to 10̂−14. For the second analysis of group ACN

comparison between old and young participants (using

the LEMON dataset), we performed two-sample t-test.

Voxel-level correction was performed with p-FDR-

FIGURE 1
Seed based correlation analysis provides major resting state networks. Positive correlated networks (C > 0; yellow-orange) and anticorrelated
networks (C < 0; blue-purple) for each of the eight networks: DMN, Default Mode Network; FPN, Fronto Parietal Network, SMN, SensoriMotor
Network; DAN, Dorsal Attention Network; VN, Visual Network; LN, Language Network; SN, Salience Network; CN, Cerebellar Network. For each of
the networks, the text in red and blue indicates the names of the brain structures appearing in both the positive and negative correlated
networks, respectively (the name of the structure appears if the brain map overlaps with it by at least 10% or more). Abbreviations: Prec, Precuneus;
FP, Frontal Pole; TP, Temporal Pole; PCG, Posterior Cingulate Gyrus; SubC, Subcallosal Cortex; IC, Insular Cortex; IFG, Inferior Frontal Gyrus; SFG,
Superior Frontal Gyrus; PrG, Precentral Gyrus; ASuprG, Anterior Supramarginal Gyrus; MFG, Middle Frontal Gyrus; Cer, Cerebellum; ACG, Anterior
Cingulate Gyrus; PostcG, Postcentral Gyrus; SPLob, Superior Parietal Lobule; COpC, Central Opercular Cortex; ILOC, Inferior Lateral Occipital
Cortex; LinC, Lingual Cortex; SLOC, Superior Lateral Occipital Cortex; SuprG, Anterior and Posterior Supramarginal Gyrus; OP, Occipital Pole; LinG,
Lingual Gyrus; OFG, Occipital Fusiform Gyrus; Put, Putamen; FMC, Frontal Medial Cortex; POper, Parietal Operculum. Voxel-level multiple
correction of p-FDR-corrected < 10̂−14 and cluster peak p-FWE corrected <10̂−14.
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corrected<0.05 and cluster size p-FDR-corrected<0.05. For
the association of ACN with cognitive scores (using the

HCP dataset), we fitted generalized linear model (GLM)

independently for each voxel. Voxel-level significance was

assessed by p-uncorrected<0.05 and cluster size p-FDR-

corrected<0.05.

TABLE 1 Major structures fulfilling an anticorrelated role in different RSNs. The Table shows the structures most frequently present in ACN and their
volumes (in brackets), measured in number of voxels with size 2 × 2 × 2 mm3. The name of the RSN with which the structures establishes an
anticorrelation, and the relative degree of overlap (%) between the brain structure and each RSN is also shown.

Brain structure Anticorrelated with Percentage
anticorrelation (%)

Precuneus (5,598) Sensorimotor Network; Dorsal Attention Network; Salience Network; Fronto Parietal Network 30.17 16.32 11.90 9.64

Anterior Supramarginal Gyrus (1729) Visual Network; Default Mode Network; Fronto Parietal Network; Cerebellar Network 22.90 14.34 11.91 9.48

Central Opercular Cortex (935) Default Mode Network; Fronto Parietal Network; Cerebellar Network 57.65 56.25 16.58

FIGURE 2
Group differences in ACN between young and old adults. Based on the contrast Young > Old (coloured in pink), the different ACN maps
provided significant differences in DMN and DAN. When comparing the groups with the contrast Young < Old (coloured in green), we found
significant ACN differences in DAN and CN. Voxel-level multiple correction of p-FDR-corrected < 0.05 and cluster size p-FDR-corrected < 0.05.
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Results

SBC was used to build eight different RSNs: DMN, FPN,

SMN, DAN, VN, LN, SN and CN (Figure 1). The anatomical

description of each RSN is provided (Supplementary File S1).

When we looked at which brain structures participated across all

different ACNs (Figure 1 provides detailed voxel-level statistical

t-test brain maps), we found that some structures were

participating more than others. The anatomical structure with

highest participation was the precuneus, which displayed

significant anticorrelation in four of the eight RSNs analysed

(Table 1), appearing most strongly in the SMN and reducing

progressively through the DAN, SN and FPN. The next structure

with the second most participation was the Anterior

Supramarginal Gyrus, which was also present in the ACN of

four of the eights RSNs, namely the VN, DMN, FPN and CN. The

next dominant structure was the Central Opercular Cortex

participating in the CAN corresponding to DMN, FPN and CN.

In relation to our hypothesis that the structure of an ACN can

differentiate between brain conditions, we asked if ACN could

reveal novel aspects in aging. To achieve this goal, we analysed

the ACN of the eight different RSNs obtained from a sample of

young and old participants (Figure 2, providing statistical t-test

brain maps resulting from the group differences). Notably, we

found that cerebellar regions showed greater anticorrelation with

multiple brain areas in older adults than in younger adults, and

this occurred in four of the eight ACNs analysed. Specifically,

stronger cerebellar anticorrelations were evident in the older

population in SN, DAN, FPN, and LN (Supplementary File S2).

We also found a greater anticorrelation in DMN with cerebellar

regions in young adults, in contrast to what was observed in the

rest of the networks, namely, that the cerebellum had a stronger

anticorrelated role in the older individuals. Moreover, we also

found that precentral gyrus had significantly stronger

anticorrelations with DAN in the young as opposed to the

older participants, although the opposite contribution was

found for caudate and cerebellum, as they were more strongly

anticorrelated with DAN in older participants than in younger

participants. When comparing ACN from CN, we found the

following brain structures participating more in older

participants: precentral gyrus, frontal pole, putamen and

supramarginal gyrus (for details see Supplementary File S3).

To assess the association between ACN and cognitive scores,

we made use of N = 1,000 subjects of the human connectome

dataset (Table 2). As a control for this analysis, we also

investigated the association of the same scores (total and early

cognition) with the positive correlated networks (PCNs). For

PCN, the size of the significantly associated clusters was (in

average) larger than that for ACN. In particular, PCN

provided significantly larger clusters for DMN, SMN and

DAN as compared to those for ACN. However, FPN, VN,

LN, SN and CN provided similar cluster size for both PCN

and ACN. Of note, for the Early Childhood composite score

and CN network, ACN provided had bigger clusters

than PNC.

Discussion

Most studies of functional connectivity at rest have analysed

positive correlation networks, meaning that ACN have to some

extent been neglected. Here, we describe the complete structure

of ACN, obtaining a different network for each of the well-known

RSNs analysed. Our data show that the spatial distribution of

anticorrelation structures is very heterogeneous, and

encompasses brain structures throughout the entire brain,

with the strongest anticorrelation contribution found for

precuneus, anterior supramarginal gyrus and central opercular

cortex.

The anticorrelating role of the precuneus as part of the DMN

has been proposed previously, as DMN anticorrelates with the

activation of multiple regions for tasks that demand attention

and mental control (Fransson, 2005; Kelly et al., 2008; Uddin

et al., 2009; Crosson, 2013; Raichle, 2015; Sormaz et al., 2018).

The connectivity of the precuneus is extensive and widespread,

involving cortical and subcortical structures that participate in

the processing of highly integrated and associative information,

rather than direct processing of external stimuli (Cavanna and

Trimble, 2006). Furthermore, the precuneus is functionally

specialized for spatially guided behavioural processing

(Selemon and Goldman-Rakic, 1988) and the activation of the

precuneus precedes the onset of imagined movement, indicating

that precuneus may be involved in generating spatial information

related to imagined peripheral and bodymovements (Ogiso et al.,

2000). Other studies have shown deactivation of the precuneus

can be driven by different visual tasks, including visual attention

(Ossandón et al., 2011) and perception (González-García et al.,

2018), visual working memory and episodic memory (Sormaz

et al., 2018). In psychiatric disorders, such as depressive

disorders, it was also shown the anticorrelated role of the

precuneus with the ventrolateral Prefrontal Cortex (Aryutova

et al., 2021). This deactivation would be consistent with our

findings, highlighting the critical role of the precuneus as the

main anticorrelated hub across human brain networks.

The second structure with an important anticorrelation role

was the anterior supramarginal gyrus, which overlaps with the

SN. The supramarginal gyrus has been shown to play a key role in

eliciting affective, self-other distinctions and empathic responses

(Bukowski et al., 2020). Anticorrelation between SN and DMN

has also been shown (Gopinath et al., 2015), in part due to the fact

that SN is involved in attention demands for tasks that require

cognitive control and where the insula reflects the main core for
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its implementation (Dosenbach et al., 2006). As part of the

vestibular system, the supramarginal gyrus is also involved in

anticorrelation with VN, integrating multisensory signals and

playing an important role in visual integration (Dieterich and

Brandt, 2018). In addition, we found anticorrelation for the

supramarginal gyrus within FPN (also known as the Central

Executive Network), consistent with a Granger causality analysis

showing that SN mediates the switch between DMN and FPN

(Uddin, 2015). Our findings also reveal anticorrelation from the

supramarginal gyrus within CN, in agreement with previous

studies relating the vestibular system and cerebellum (Hilber

et al., 2019), with the cerebellum being crucial for the

development of an internal model of action (Hétu et al.,

2013), and the vestibular system relevant for perception,

navigation and motor decision-making. Finally, the central

opercular cortex is the third most relevant anticorrelation

structure. Located in the Cingulo-Opercular Network (CON),

it also represents a part of SN (Sestieri et al., 2011), and it is

activated during the performance of some tasks like trial

initiation and target detection, while it is also widely involved

in a broad range of cognitive processes (Dosenbach et al., 2006).

In the second part of our work, we compared in relation to

ACN two different conditions of young and old participants.

Previous studies showed a decrease in the intra-network

functional connectivity and increased functional inter-network

connectivity in older as opposed to younger adults (Chan et al.,

2014; Damoiseaux, 2017). Furthermore, decreased activation of

DMN has been seen in older adults (Damoiseaux, 2017), as well

as weaker anticorrelated interactions between DMN and DAN in

older as opposed to younger adults (Spreng et al., 2016). Our

results show higher anticorrelation in DMN of younger adults

occurring in cerebellum lobule VII, which corresponds with

cognitive demand functions (Stoodley et al., 2012), and with

cerebellum lobule VIII that is involved in sensorimotor tasks

(Stoodley et al., 2012; Fernandez-Iriondo et al., 2021). In relation

to the cerebellar participation in DAN, older adults also showed

stronger anticorrelation in cerebellum crus I, cerebellum crus II

(corresponding to sensorimotor tasks) and the vermis VII that is

involved in the proprioception of the body (Stoodley et al., 2010).

We also showed stronger caudate anticorrelations in DAN for

older adults, which is known to be implicated in motor

processing (Nestler et al., 2020).

In the third part of this work, we have performed an analysis

to measure the cognitive-relevance of ACN using N =

1,000 subjects of the human connectome dataset. For this aim,

we have used two different cognitive scores, Total Cognitive

Function Composite and Early Childhood Composite. While it is

true that, in general, the significant (average) cluster size for

TABLE 2 Cognitive relevance of ACN. The table shows for each RSN (first column), the results of the voxel-level association of a given cognitive score
(second column) with both PCN (third column) and ACN (fourth column). In particular, for each addressed association (a row in the table), results
are given by the number of significant clusters (#Clusters), encompassing all voxels with statistically significant association, and the average size of
those clusters measured in mm3.

RSN Cognitive score PCN ACN

#Clusters Average size (mm3) #Clusters Average size (mm3)

DMN Early 5 993,78 15 53,35

DMN Total 4 783,41 10 42,16

FPN Early 18 72,16 12 59,59

FPN Total 16 82,20 14 42,60

SMN Early 9 193,29 4 83,75

SMN Total 8 228,59 9 49,69

DAN Early 6 527,46 2 42,56

DAN Total 12 198,71 8 47,03

VN Early 9 63,07 2 45,06

VN Total 1 51,75 1 40,50

LN Early 15 105,46 27 47,93

LN Total 19 103,77 25 69,74

SN Early 13 64,28 6 51,69

SN Total 8 70,50 4 56,31

CN Early 7 67,54 4 98,22

CN Total 9 73,96 9 56,03

Abbreviations: RSN, resting state network; PCN, positive correlated networks; ACN, anticorrelated networks, a.k.a. negative correlated networks; Early, Early Childhood Composite; Total,

Total Cognitive Function Composite. Only clusters larger than 50 voxels are considered in this analysis.
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positive correlated networks is larger than that of ACN

(indicating a higher significant cognitive association for

the former compared to the latter), however, this was not

the case for all RSNs. In particular, the clusters in the positive

correlated network of DMN, SMN and DAN were higher

than those in ACN. However, for other networks such as

FPN, VN, LN, SN and CN, a similar amount of significant

association with cognitive performance (measured by the

average size of clusters of significant voxels) were found for

both positively correlated and anticorrelated networks.

Therefore, it can be concluded that ACN have an

important role in the underlying of cognitive performance.

Additional studies in clinical populations, for example, in

psychiatric or behavioral disorders, would be very interesting

to be addressed by assessing ACN.

An important ACN role has been found for CN. In

particular, the findings of stronger CN anticorrelations in

older adults might explain some of the functional alterations

that occur with age (Deng et al., 2019), particularly in several

cognitive functions like movement control, executive

coordination or emotional regulation (Fernandez-Iriondo

et al., 2021) but also, it might be related to changes in

cerebellar morphometric volume (Han et al., 2020). In line

with these results, our analysis of cognitive association with

ACN provided higher clusters for CN.

To summarize, our results have shed some light into the

structure and organization of ACNs, have revealed that

their study may be useful to approach aging, and this is

extensible to other pathologies, and furthermore, that

ACN has a significant association with cognitive

performance. In the same way that multiple studies have

addressed the activation relation between task-fMRI and

resting networks for positively correlated networks

(Smith et al., 2009; Di et al., 2013; Cole et al., 2014;

Rasero et al., 2018), future complementary studies might

also address the relation of ACN in task-specific fMRI as

compared to rest.
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SUPPLEMENTARY FILE S1
Eight RSNs with positive correlated and anticorrelated structures
(considered if their volume overlapped with the networks at least 10% or
more) obtained from the Beijing dataset. The seed chosen for each
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network is indicated; the positive correlated structures are shown in red
while the anticorrelated are in blue. Furthermore, the spatial localization
of cluster centroid, the cluster size and the used statistics are described
for each cluster.

SUPPLEMENTARY FILE S2
A table showing the description of each structure (in number of
significant voxels) involved in positive correlated and anticorrelated
networks for each RSN according to the different used seeds and
obtained from the Beijing dataset. In the case in which the structure is
bilateralised (left and right), we report the average size between both

hemispheres. The seed chosen is also shown, the positive correlated
structures are shown in red, and the anticorrelated structures in blue.

SUPPLEMENTARY FILE S3
The anticorrelated clusters for each of the eight different RSNs
obtained from the LEMON dataset are described. The seed chosen for
each network is shown, the pink text refers to significant structures
resulting from the contrast Young > Old, while the green text
represents the opposite contrast. The spatial localization of cluster
centroid, the cluster size and the different statistics measured are
described for each cluster.
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