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The sport industry has never seen growth such as eSports’. Using synchronized
monitoring of two biological processes on a 25-year-old gamer, we investigated how
his brain (via EEG) and eyes (via pupil dilation) interacted dynamically over time as an
integrated network during NBA2K playing time. After the spectral decomposition of
the different Brain and Eye signals into seven frequency bands, we calculated the
bivariate equal-time Pearson’s cross-correlation between each pair of EEG/Eye
spectral power time series. On average, our results show a reorganization of the
cortico-muscular network across three sessions (e.g., new interactions, hemispheric
asymmetry). These preliminary findings highlight the potential need for individualized,
specific, adaptive, and periodized interventions and encourage the continuation of
this line of research for the creationof general theories of networks in eSports gaming.
Future studies should recruit larger samples, investigate different games, and explore
cross-frequency coordination among other key organ systems.
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1 Introduction

The growth of eSports has been unprecedented (Newman et al., 2022). Esports are video
games played in a structured and competitive manner (Nagorsky and Wiemeyer, 2020).
These games are categorized into different genres, such as fighting games, first-person
shooters, real-time strategy games, and sports simulations.

NBA2K is a popular, E-rated, “Sports Sim” game developed after the game of basketball
andmore specifically the NBA (Darvin et al., 2021). NBA2Kwas developed by Visual Concepts
and 2K Games to be played on PlayStation, Xbox, Switch, and PC. The player, just like a head
coach, can call basketball plays in real time. Also in real time, thanks to recent advancements in
technology, we can collect biofeedback (Martin-Niedecken Anna and Schättin, 2020).

Biofeedback can take several forms, such as in the synchronized monitoring of
electroencephalogram (EEG) and eye tracking (e.g., pupil dilation). EEG is a non-
invasive method to continuously track electrophysiological activity in the brain across
time in the form of frequency bands (Hz), such as delta, theta, alpha, beta, and gamma
(Carlstedt and Balconi, 2018). The pupil dilation (mm) is considered an indirect biomarker
of task demands (van der Wel and van Steenbergen, 2018). Pupillary oscillations have been
used in assessing fatigue and alertness (e.g., McLaren et al., 1992). EEG and eye-tracking
research are not new in NBA2K research (Potwarka et al., 2022). However, how distinct
cortical rhythms in the brain dynamically synchronize their activation with the eyes during
NBA2K remains unexplored.

The quality of human function is defined by the coherence (i.e., a complex, harmonious,
synchronized coordination) of all sub-systems (e.g., from molecules to organs), while each
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functions differently and autonomously (Ho, 2008). In terms of
physiological coherence, the coherent system operates under an
efficient/optimal pattern of activity compared to an erratic/
discordant pattern (Tiller et al., 1996). This system-wide,
integrative approach to physiological coherence has been
proposed by the new field of Network Physiology (Bashan et al.,
2012; Ivanov and Bartsch, 2014; Rizzo et al., 2020; Ivanov 2021;
Balagué et al., 2022; Chen et al., 2022).

After recognizing the high level of efficiency of coherent
systems/networks and the inability of traditional studies to
uncover that network information, Network Physiology has been
attempting to identify and quantify dynamic networks of diverse
systems by avoiding focusing on individual systems. By probing
interactions among various systems, the physiological networks are
identified. These networks are robust in structure (e.g., topology,
function) but transition (e.g., flexible reorganizations) in response to
perturbations (e.g., exercise duration).

Drawing from the field of Network Physiology, the purpose of
this exploratory, pilot study was to investigate how different cortical
rhythms in the brain (via EGG) dynamically interact as a network
with the eyes (via pupil dilation) during NBA2K playing time.

2 Methods

The participant was a 25-year-old, right-handed male, who has
been playing the NBA2K basketball games for 5+ years, totaling over
4,000 h. The participant was seated in front of a 24″monitor at roughly
15” distance from a Tobii 5L Eye Tracker (Tobii AB, Sweden). The
monitor was connected to a PlayStation 4 (Sony Interactive
Entertainment, San Mateo, CA) console. The video was captured
through an Elgato HD60 S+ (Elgato Systems GmbH, Germany)
capture card at native 60fps. Using corneal reflection (by
illuminating the eye with infrared light and measuring the reflection
from the cornea and the pupil), pupil diameter data was collected
through Tobii 5L Eye Tracker sampling at 120 hz (For information on
the accuracy and precision of Tobii 5L, please, see Housholder et al.,
2022). EEG data were collected using a Neurosity Crown (Neurosity
Inc., San Francisco, CA) EEGdevice (8 channels, 256 hz). The gamewas
NBA2K 22 Basketball for the PlayStation 4, and the primary game
mode was the Recreational Center, which is a 5-on-5 competitive game
mode but is not ranked. The participant played 11 times in 1 day with
breaks of 10–60 min in between. The recordings took place on 22 April
2022. To investigate the dynamic interactions over time, we chose three
recordings (first, sixth, and eleventh), namely, Sessions 1, 2, and 3.
Session 1 started at 14:51 (Pacific Time), Session 2 started at 19:12, and
Session 3 started at 23:58. They all lasted about 30 min. Lighting was the
same throughout and no stimulants were used.

2.1 EEG/EYE data acquisition and signal
processing

EEG signals were recorded from four brain locations: P03, P04,
CP3, and CP4 via the Neurosity Crown. That EEG device was
connected via Wi-Fi and using the LabStreamingLayer (LSL)
functionality provided by Neurosity. The LSL stream was
connected to CuriaRecorder (Curia LLC, Dublin, CA), which is a

fork of the open-source Labrecorder app provided by LSL. The
CuriaRecorder is designed to subscribe to and record LSL streams,
keeping timestamping and jitter information. The raw data was
stored and preprocessed into native XDF format, after which it was
run through basic de-noising (i.e., data >4SD of the dataset is
removed). Finally, the raw and preprocessed data was made
available and a final processing pass was performed. The
recording was cut into 15-s intervals. Calculations were
performed on these 15-s intervals as single data points. This
technique allows long recordings to show the trends over time
while being broken into discrete ‘bins’ that calculate the data
independently.

For example, in order to collect data on eye movements, the
utilized eye tracking device recorded at a sampling rate of
120 Hz. This resulted in a total of 1800 samples being
collected within a 15-s processing window, representing the
left pupil size in millimeters. The mean of these 1800 values
was calculated and stored as the average for that 15-s window.
Over the course of an 8-h data collection period, this design
resulted in the storage of approximately 3.5 million values for
the left pupil size alone. Given the large number of data points
collected, and the potential for device noise and cumulative error
over the prolonged data collection period, subsampling of the
data was employed to “sparsify” the data and facilitate the
identification of long-term trends while minimizing short-
term variation in any given sample or bin. The subsampled
data was extensively tested against the full sample data for both
accuracy and various parameters, ranging from 5 to 60-s
“chunks”. It was determined that a 15-s processing window
provided the desired benefits in processing without altering
the shape of the data or the trends that emerged when
compared to full sample recordings.

The Tobii 5L Eye Tracker was connected via USB3 to the
collection system and was using Curia-written LSL broadcasters
that take the Tobii datastream from the API and also push it to LSL
as a datastream. Using the same acquisition method (i.e., the
CuriaRecorder), the Tobii LSL streams were recorded with
accurate timestamps and jitter information. They were also
stored in LSL native XDF format. The data were preprocessed
for outliers, stored as raw and preprocessed data, and finally cut
into the same 15-s subintervals for comparison between time
points.

Concerning extraction of outliers, the process for cleaning EEG
data involves performing a 4-SD removal pass, followed by a 2 SD
removal pass. The first step in the process is to calculate a rolling
standard deviation of the data with a 1-s window. A threshold is
then calculated by taking the 0.3 quantile of these values and
multiplying it by 4, resulting in a threshold of 691 μV in this
example. Any values (absolute values) exceeding this threshold,
plus or minus 691 μV, are rejected and set to 0 for subsequent
calculations. For an example channel with 380,000 samples,
866 samples were rejected for exceeding the threshold. The
second pass is a standard z-score and 2 SD removal for each
channel once the first pass is complete. For pupil data, an
exponentially weighted smoothing algorithm is applied to the
pupil and gaze values to compensate for the potential
introduction of noise by the 120 Hz eye tracking device. This
algorithm uses the pandas exponentially weighted mean (EWM)
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functionality, which is similar to a median filter. The smoothing
factor used in this implementation is 0.3 (equivalent to moving the
smoothing slider in “Tensorflow” for Python). The relevant code
section is provided as Supplementary Material.

Of note, in the present study, we employed two distinct methods
to address noise (i.e., any undesired or extraneous signal that is not
generated by the brain) and outlier (i.e., data points that deviate
significantly from the rest of the data and may indicate errors in the
recording or data processing) removal from EEG data. The
fundamental difference between the two methods is that the 4-
SD removal pass was solely directed towards noise reduction in the
raw data, while the combined usage of 4-SD and 2-SD removal
passes were primarily employed for removing outliers from
preprocessed data.

As stated above, the sampling frequency of the Tobii 5L eye
tracker and Neurosity Crown EEG were 120 Hz and 256 Hz,
respectively. In order to facilitate a comparison between the two
datasets, it was necessary to establish a common sampling
frequency. Utilizing the “scipy” resample function within the
Python programming language, the eye tracking data, stored in a
Pandas dataframe, was upsampled to 256 Hz to align with the EEG
data. The decision to upsample the eye tracking data rather than
downsample the EEG data was made based on the tradeoffs between
frequency resolution and the potential loss of information.
Therefore, the sampling frequency for both Neurosity Crown and
Tobii 5L Eye Tracker was 256 Hz.

Section 2.2–Section 2.5 summarize the main steps for the
spectral decomposition and cross-correlations analysis (for a
detailed explanation of the entire procedure, please see Garcia-
Retortillo and Ivanov 2022; Garcia-Retortillo et al., 2020).

2.2 Spectral decomposition

We first segmented the previously pre-processed signals (see
Section 2.1. for details) from each brain location and eye into 2-s
time windows with a 1-s overlap across each session.Within each 2-s
time window, we extracted the spectral power S(f) from each EEG/
EYE signal using the ‘pwelch’ function in Matlab, based on the
discrete Fourier transform (DFT) and the Welch’s overlapped
segment averaging estimator. For each time window, we obtained
a spectral power value in bins of 0.5 Hz (fbin) for the range from
near 0 Hz to the Nyquist frequency, fN, of 128 Hz (i.e., the half of the
sampling frequency of 256 Hz), which renders the total number of
spectral estimates, N, for each window of 2 s N = fN * (1/fbin) = 256;
that means that N = 256 is the number of spectral power data points
for each window of 2 s. To probe specific contributions from
different frequency bands fi to the spectral power within each 2-s
time window of the EEG/Eye signal, we considered seven frequency
bands corresponding to the commonly utilized cortical rhythms: δ
(0.5–3.5 Hz), θ (4–7.5 Hz), α (8–11.5 Hz), σ (12–15.5 Hz), β
(16–19.5 Hz), γ1 (20–33.5 Hz), and γ2 (34–98.5 Hz) (Rizzo et al.,
2020; Rizzo et al., 2022). We calculated the average power < S(f)>
across all frequency bins within each frequency:
< S(f)> : � ∑N

i�1S(fi)/N, where fi are all frequencies
considered in each frequency band. Thus, we obtained seven
time series of EEG/Eye band power < S(f)> with 1-s resolution
for each Brain Location/Eye.

2.3 Cross-correlations between EEG/EYE
spectra of different frequency bands

Based on the exploratory nature of this research (e.g., investigating
the linear relationship between two time series data sets), for each
protocol session and each pair of Brain location-Eye (a total of eight
different Brain Location/Eye combinations), we calculated the bivariate
equal-time Pearson’s cross-correlation for all pairs of time series
representing EEG/Eye spectral power in the frequency bands fi,
where i = 1, . . . ,7. This led to 49 (7 × 7) cross-correlation values
Ci,j for each pair of Brain Location-Eye, as shown in the cortico-ocular
cross-correlationmatrices (Figure 1). The cross-correlation values range
from Ci,j = −1 (fully anti-correlated) to Ci,j = 1 (fully correlated), with
Ci,j = 0 indicating the absence of a linear relationship between the power
spectra of two EEG/EYE frequency bands.

2.4 Cortico-ocular cross-correlation
matrices

Cortico-ocular cross-correlation matrices represent pairwise
coupling strength between the seven frequency bands fi of one brain
location with the same bands derived from one Eye (i.e., eight distinct
pairs: CP3-Eye Left, CP3-Eye Right, P03-Eye Left, P03-Eye Right, P04-
Eye Left, P04-Eye Right, CP4-Eye Left, and CP4-Eye Right) during a
given session (Figure 1A). Matrix elements indicate the coupling
strength between the band-wise power of EEG signal in a given
Brain Location and the pupil diameter dynamics in one Eye.

2.5 Cortico-ocular interaction networks

To visualize the information provided by the cortico-ocular cross-
correlation matrices, we mapped the matrices in Figure 1 into
different networks for Session 1, Session 2, and Session 3. Each
brain location and the Eye is represented by a semicircle/circle,
where color nodes represent distinct frequency bands fi. Network
links correspond to the values of cross-correlationmatrix elements Ci,j

in Figure 1. Link strength is marked by line color and width. To
illustrate the differences in network organization, we used the
following link strength classification: positive links [Ci,j > 0.17;
dark red); weak positive links (0.12 < Ci,j < 0.17; light red);
negative links (Ci,j < −0.17; dark blue)] and weak negative links
(−0.17 < Ci,j < −0.12; light blue). Links corresponding to cross-
correlation values −0.1< Cij < 0.1 (Figure 2) are not shown in the
network maps. Note that this set of thresholds was arbitrarily selected
to provide the best visualization for the main results of the study
shown in the cross-correlation matrices (Figure 1). To visualize the
hierarchical organization of cortico-ocular network interactions
among Brain Locations and Eyes, all multiplex networks (Figure 2)
are presented separately as sub-network maps for all pairs of Brain
Location-Eye (Figures 3, 4). Each sub-network map corresponds to a
pair for a given Brain Location-Eye and follows the same color code as
in the original network. Due to space limitations, we only present the
sub-networks for the right hemisphere: P04-Eye Left, P04-Eye Right,
CP4-Eye Left, and CP4-Eye Right (Figures 3, 4). The results for the left
hemisphere (P03-Eye Left, and P03-Eye Right, CP3-Eye Left, CP3-Eye
Right) are shown in Supplementary Figures S1, S2.
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FIGURE 1
Cortico-ocular cross-correlation matrices during Session 1, Session 2, and Session 3. (A) Each matrix represents a given sub-network (i.e., pair of
Brain location-Eye): CP3-Eye Left, CP3-Eye Right, P03-Eye Left, P03-Eye Right, P04-Eye Left, P04-Eye Right, CP4-Eye Left, and CP4-Eye Right). Matrix
elements represent pairwise coupling strength between the 7 frequency bands of one Brain Location with the same bands derived from one eye. (B)
Normalized spectral power of frequency bands at CP4 EEG and Eye Right channels (left panels). The right panel shows a 60-s segment for F7 in
CP4 and F1 in Eye Right—note that these time series present an anticorrelated behavior as indicated by the correspondingmatrix element within the CP4-
Eye Right cross-correlation matrix in (A).

FIGURE 2
Cortico-ocular interaction networks during Session 1, Session 2, and Session 3. Networkmaps are obtained based on the cross-correlationmatrices
shown in Figure 1. Network links correspond to the matrix elements and represent the coupling strength between distinct frequency bands of one brain
location with the same bands derived from one eye. Each brain location is shown as a semi-circle and eyes are represented as circles, where color nodes
represent frequency bands (Section 2.2,Methods). Links strength is marked by line color and width: positive links (Ci,j > 0.17; dark red); weak positive
links (0.12 <Ci,j < 0.17; light red); negative links (Ci,j < −0.17; dark blue)) andweak negative links (−0.17 <Ci,j < −0.12; light red). Links corresponding to cross-
correlation values −0.1< Cij < 0.1 (Figure 2) are not shown in the network maps.
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2.6 Statistical tests

To examine the changes in the relationships between the
frequency bins of each subnetwork pair across time, we used a

multi-step process. It should first be noted that the correlation
between sub-network pairs at each time point was based on
900 observations (i.e., one observation every 2 seconds for each
30-min session), which rendered statistical significance even for very

FIGURE 3
Links strength profiles in the P04-Eye Left (A) and P04-Eye Right (B) sub-networks. Left panels: dynamic cortico-ocular networks where network links show
the coupling strength (degree of synchronous activity) for the P04-Eye sub-networks. Right panels: the P04-Eye sub-networks topology is defined by basic
modules, each representing the interaction of a given frequency band from P04 with all frequency bands from Eye Left/Eye Right. Frequency bands of P04 are
marked by circles on the horizontal axis of each bar chart, and the frequency bands of the Eye Left/Eye Right are marked by black squares within each
module. Bars color in each profile corresponds to the color of the node associated with a given frequency band in the P04 brain location.
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FIGURE 4
Links strength profiles in the CP4-Eye Left (A) and CP4-Eye Right (B) sub-networks during Session 1, Session 2, and Session 3. Left panels: networks
represent the cross-correlation matrices (Figure 1), where network links correspond to the matrix elements and show the coupling strength (degree of
synchronous activity) for the CP4-Eye sub-networks. Links strength is marked by line color and width (Section 2.5,Methods). Right panels: the CP4-Eye
sub-networks topology is defined by basic modules, each representing the interaction of a given frequency band fromCP4with all frequency bands
from Eye Left/Right. The frequency bands of CP4 are marked by circles on the horizontal axis of each bar chart, and the frequency bands of the Eye Left/
Eye Right are marked by black squares within each module. Bars color in each profile corresponds to the color of the node associated with a given
frequency band in the CP4 brain location.
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small correlations. Thus, we examined the changes in standardized
estimates of association (i.e., Cohen’s q) across time. For all sub-
networks examined, the correlation between frequency bin 1 for one
node and frequency bin 7 for the second node of each pair changed
considerably over time (see Supplementary Figure S3). For example,
the correlation in the P04-Left Eye sub-network changed from
0.12 in Session 1 to −0.51 in Session 3.

3 Results

We identified and quantified a network of cortico-ocular
interactions during NBA2K gaming and investigated changes in
the synchronous activity of cortical/eye rhythms and network
organization across repeated sessions. Below, we present the
results per session.

3.1 Default network of cortico-ocular
interactions (Session 1)

The default network of cortico-ocular interactions is
characterized by a specific ensemble of interaction sub-networks
(distinct heterogeneous matrices; Figure 1) representing all pairs of
brain-eye interactions, where each sub-network exhibits a particular
pattern of synchronization among cortical rhythms in the brain and
frequency bands in the Eye Left/Eye Right. Specifically, all frequency
bands for all brain locations and sub-networks are weakly and
positively coupled with all frequency bands in the eyes (matrix
elements in light blue and yellow colors; C ≈ 0.1; Figure 1), except for
F1. In contrast, interactions between all frequency bands for all brain
locations and F1 in the eyes (first column in the matrices; Figure 1)
are markedly different: F3-F5 for all brain locations are negatively
coupled with F1 in Eyes Left/Eyes Right (matrix elements in dark
blue; C ≈ −0.1).

Accordingly, the network of cortico-ocular interactions
(Figure 2) during Session 1 shows weak and very sparse links.
Remarkably, the only visible links in the network are those
representing negative interactions between F3-F5 in the different
brain locations and F1 in both left and right eyes—low-frequency
band F1 in the eyes represents the main mediator of interactions
with the brain (see first dark blue bars for F3-F5; bar charts in
Figures 3, 4).

3.2 Network of cortico-ocular interactions:
Reorganization over time (Sessions 2 and 3)

Our analyses show that with repeated gaming sessions, the
global cortico-ocular network (Figure 2) undergoes
reorganization, where sub-networks representing pairs of Brain
Location-Eye interactions (Figures 3, 4) exhibit a complex
response to continuous play. Specifically, during Session 3 the
network becomes i) denser with increased strength for positive
links (≈300%; see matrix elements with warmer colors in
Figure 1 and bar charts in Figures 3, 4) and ii) asymmetric—sub-
networks in the right hemisphere (P04-Eye Left, P04-Eye Right,
CP4-Eye Left, CP4-Eye Right) show stronger links compared to the

left hemisphere (CP3-Eye Left, CP3-Eye Right, P03-Eye Left, P03-
Eye Right; see Figures 1, 2).

Importantly, the negative links between F3-F5 in all brain
locations and F1 in Eye Left/Eye Right observed in Session 1, are
preserved for all sub-networks during Sessions 2 and 3 (Figures 3, 4).
Further, additional negative and stronger links appear from Session
2 between F6-F7 for all brain locations and F1 in the left/right
eyes—these links are approximately 300% more negative compared
to Session 1 (Figures 3, 4). Note that during Session 3, low-frequency
band F1 in the eyes still actuates as the main mediator of interactions
with the brain (see first dark blue bars for F3-F7; bar charts in
Figures 3, 4).

4 Discussion

Drawing from the field of Network Physiology, we used
synchronized monitoring of two biological processes to explore
an analytical approach that has not been applied previously for
this specific problem: the interaction of the brain and the eyes in a
game of a sports industry that is booming. In more detail, we
presented preliminary results of the interactions of brain electrical
and pupil diameter dynamics and brain in a male NBA2K gamer
during several sessions. We demonstrated that each session is
associated with a specific network of interactions (i.e., topology,
node connectivity, number/strength of network links). Our results
are the first empirical evidence on this kind of network and could
become the basis of identifying universal behaviors (e.g., track how
changes of one system can dynamically affect the behavior of other
systems) in continuous play of sports simulation games.

Regarding the progress of our investigated system over time, our
findings are specifically pointing toward one main direction:
reorganization. On average, that reorganization was manifested via
new interactions, F1 being a hub, hemispheric asymmetry (right over
left), and a higher level of density (positive and negative links), reflecting
increased network connectivity during Session 3.

Similar work has not been conducted in eSports. Therefore, we are
not in a position to make direct comparisons with previous findings.
However, our results are in accordance with findings from Network
Physiology research. As previously described (Balagué et al., 2020), both
underexpressed (weak) and overexpressed (strong) network
connectivity could reflect dysfunctional/pathological states. More
specifically, overexpressed/excessive connectivity as observed in
Session 3, could be associated with a transitory underexpression of
coupling network connectivity (i.e., imbalance: some processes are
overexpressed and others underexpressed). Pathological conditions
(e.g., neuro-muscular disorders) could increase the density and/or
strength of interactions among certain nodes, pushing the system
toward a rigid order which, in turn, could reduce its adaptability to
environmental constraints (Ivanov et al., 2001; Stergiou et al., 2006;
Stergiou and Decker, 2011). In addition, La Rocca et al. (2021) showed
new brain-eye interactions based on stimuli (i.e., rest vs. task). In fact,
the increase in functional connectivity (manifested intra- and inter-
hemispherically) was strengthened with training. Similarly, Ivanov and
Bartsch (2014) mapped a complex dynamic network including cerebral
and ocular systems. As part of that work, transitions on a global and
individual topological level were identified. To better understand the
physiological mechanisms underlying cortico-ocular interactions in
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eSports, future studies should additionally assess how networks
properties (degree of complexity, heterogeneity and asymmetry)
change during the game. Techniques, such as Node-Based
Multifractal Analysis (Xiao et al., 2021), would be suitable to encode
the complex topology and structural interactions within a physiological
networks.

Our brief research report is not immune to limitations. These are
preliminary, observational, and exploratory data collected from one
participant. Therefore, we cannot infer causality or generalize our
findings. In addition, our EEG collected data from four channels
only, limiting resolution, while the selected cortical locations
(i.e., CP3, CP4, PO3, and PO4) are a delimitation related to
equipment. Lastly, no data were collected regarding circadian
rhythms, sleep, nutrition, or other potential confounders. Based
on these shortcomings and the novelty of this research, we will avoid
over-interpretation (e.g., provide specific physiological
interpretations). For this reason, future studies should replicate
this design using different video games and/or add more than
one participant and/or days of playing. Alternative analysis
methods (e.g., the Granger method, convex optimization,
machine learning) are also suggested. Moreover, EEG with more
channels/electrodes would increase the resolution and, thus,
enhance the spatial sampling density. Additionally, the possibility
of the observed network reorganization being related to player
performance should be considered. Furthermore, causality cannot
be inferred based on the design of our study. However, our study can
stimulate future, hypothesis-driven studies to investigate the
mechanisms (e.g., fatigue) of these dynamic relationships (e.g.,
regulation) and their effect on performance metrics (practice vs.
competition). If, for example, fatigue is the main cause for this
reorganization and that affects negatively the player’s rebounds per
game, then these metrics could be used (in addition to existing
markers; e.g., Djaoui et al., 2017) to proactively notify the NBA2K
player/coach in real time (e.g., by capturing personal and
environmental constraints) that they need a break/snack.
Accumulation of fatigue is associated with overtraining syndrome
(OTS). Although OTS is difficult to diagnose and treat effectively
because it involves numerous factors that interact with each other in
complex ways, Armstrong et al. (2022) recommend using a new
approach to study OTS, known as complex systems analysis. That
involves exploring patterns of interaction among various
predisposing factors, rather than looking at individual factors in
isolation. The two proposed methodological approaches to clarify
the dynamics of physiological networks involved in OTS could
potentially be used in future eSports research: Assessing cellular
functions across multiple levels of complexity (e.g., the genome,
epigenome, proteome, metabolome) and/or using machine learning
to develop predictive models of OTS. In general, in a sport
industry that grows at a pace we have never seen before, the
practical implications of individualized, specific, adaptive, and
periodized interventions (e.g., functional diversity) are
numerous (Balagué et al., 2020). Additionally, further
research is needed to explore cross-frequency coordination
among other key organ systems (e.g., heart, muscle).
Therefore, this framework can have not only practical but
theoretical applications as it can lead toward the creation of
general theories and principles about inter-organ interactions in
eSports gaming. Lastly, emergence and self-organization are

concepts that have garnered significant attention in statistical
physics, and more recently, in the study of complex systems and
complex networks, such as microbial communities and flocks of
birds (e.g., Testa and Kier, 2000; De Wolf and Holvoet, 2005;
Mariani et al., 2019). These phenomena are of great interest due
to their ability to produce collective behavior and properties that
cannot be explained solely by the interactions of individual
components. The study of emergence and self-organization
has thus become an important avenue for exploring the
behavior and dynamics of complex systems, and has broad
implications for various scientific fields. Can the phenomenon
of reorganization be linked to the concepts of emergence and self-
organization?While acknowledging the potential relevance of the
concepts of self-organization and emergence to the current
findings on physiological network dynamics, it is important to
note that further investigation is needed to elucidate the nature
and scope of these phenomena in the context of Network
Physiology and eSports.
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SUPPLEMENTARY FIGURE S1
Links strength profiles in the CP3-Eye Left (A) and CP3-Eye Right (B) sub-
networks during Session 1, Session 2, and Session 3. Left panels: networks
represent the cross-correlation matrices (Figure 1), where network links
correspond to the matrix elements and show the coupling strength (degree
of synchronous activity) for the CP3-Eye sub-networks. Links strength is
marked by line color and width (Sections 2, 2.5). Right panels: the CP3-Eye
sub-networks topology is defined by basic modules, each representing the

interaction of a given frequency band from CP3 with all frequency bands
from Eye Left/Eye Right. Frequency bands of CP3 are marked by circles on
the horizontal axis of each bar chart, and the frequency bands of the Eye Left/
Eye Right are marked by black squares within each module. Bars color in
each profile corresponds to the color of the node associated with a given
frequency band in the CP3 brain location.

SUPPLEMENTARY FIGURE S2
Links strength profiles in the P03-Eye Left (A) and P03-Eye Right (B) during
Session 1, Session 2, and Session 3. Left panels: dynamic cortico-ocular
networks where network links show the coupling strength (degree of
synchronous activity) for the P03-Eye sub-networks. Right panels: the P03-
Eye sub-networks topology is defined by basic modules, each representing
the interaction of a given frequency band from P03 with all frequency
bands from Eye Left/Eye Right. Frequency bands of P03 aremarked by circles
on the horizontal axis of each bar chart, and the frequency bands of the Eye
Left/Right are marked by black squares within each module. Bars color in
each profile corresponds to the color of the node associated with a given
frequency band in the P03 brain location.

SUPPLEMENTARY FIGURE S3
(A,B) Total Change in Standardized Correlation Estimates Across Time. In all
correlograms, the y-axis represents the Eye (Left or Right) while the x-axis
the Brain Location (CP3, P03, P04, and CP4). The darker the shade of red,
the higher the total change. Note. The total change in standardized
correlation estimates across time was calculated by taking the difference
between the maximum and minimum observed correlations between
frequency bands within each sub-network.
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