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Early warnings signs (EWSs) can anticipate abrupt changes in system state, known
as “critical transitions,” by detecting dynamic variations, including increases in
variance, autocorrelation (AC), and cross-correlation. Numerous EWSs have been
proposed; yet no consensus on which perform best exists. Here, we compared
15 multivariate EWSs in time series of 763 hemodialyzed patients, previously
shown to present relevant critical transition dynamics. We calculated five EWSs
based on AC, six on variance, one on cross-correlation, and three on AC and
variance. We assessed their pairwise correlations, trends before death, and
mortality predictive power, alone and in combination. Variance-based EWSs
showed stronger correlations (r = 0.663 ± 0.222 vs. 0.170 ± 0.205 for AC-
based indices) and a steeper increase before death. Two variance-based EWSs
yielded HR95 > 9 (HR95 standing for a scale-invariant metric of hazard ratio), but
combining them did not improve the area under the receiver-operating curve
(AUC) much compared to using them alone (AUC = 0.798 vs. 0.796 and 0.791).
Nevertheless, the AUC reached 0.825 when combining 13 indices. While some
indicators did not perform overly well alone, their addition to the best performing
EWSs increased the predictive power, suggesting that indices combination
captures a broader range of dynamic changes occurring within the system. It
is unclear whether this added benefit reflects measurement error of a unified
phenomenon or heterogeneity in the nature of signals preceding critical
transitions. Finally, the modest predictive performance and weak correlations
among some indices call into question their validity, at least in this context.
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1 Introduction

Critical transitions are defined as abrupt and irreversible changes of the state or integrity
of a complex system, leading to either disruption of the system or emergence of an
alternative state (or regime shift). Although sudden in appearance, critical transitions are
preceded by a characteristic phase, named critical slowing down, during which several
dynamic changes in the system can be detected. The most notable features of the critical
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slowing down are a slower rate of recovery from perturbations
(Wissel, 1984), as well as a persistent increase in variance,
autocorrelation (AC), and cross-correlation among different
elements of the system (also called spatial correlation in ecology;
Scheffer et al., 2009). Early warning signals (EWSs) have been
developed to capture these dynamic changes, usually reflecting
B-tipping scenarios indicating bifurcation of the system (Ashwin,
1999; Ashwin et al., 2012; Perryman andWieczorek, 2014), and have
been widely used to study critical transitions in diverse systems,
including ecosystems (Wouters et al., 2015; Pedersen et al., 2017; Xu
et al., 2023), financial markets (Diks et al., 2019; Tu et al., 2020;
Ismail et al., 2022), and climate systems (Dakos et al., 2008;
Dylewsky et al., 2023). Application to clinical contexts is also
gaining a growing interest, with applications in tumor detection
(Xu et al., 2022; Zhong et al., 2022; Huang et al., 2023), detection of
emerging infectious diseases (Chen P. et al., 2019; Brett et al., 2020;
Li et al., 2022; Proverbio et al., 2022), mental disorders (van de
Leemput et al., 2014; Bayani et al., 2017; Bos et al., 2022), sepsis
(Tambuyzer et al., 2014; Almeida and Nabney, 2016; Ghalati et al.,
2019), environmental health (Wang et al., 2018), alcohol use
disorders (Foo et al., 2017), epileptic seizures (Maturana et al.,
2020; Karasmanoglou et al., 2023), intestinal health (Lahti et al.,
2014), and chronic diseases (Venegas et al., 2005; Li et al., 2014; Liu
et al., 2021; Cohen et al., 2022). Moreover, Nazarimehr et al. (2020)
review on EWSs offers useful perspective on their applications and
limitations, including in biological systems.

From a network physiology perspective (Ivanov, 2021; Schöll,
2022), multivariate EWSs are of interest because they may reflect the
integration of multiple physiological signals related to stability of the
organism and/or shifts between discrete physiological states
(Nakazato et al., 2020; Liu et al., 2021; Cohen et al., 2022). While
critical transitions may reflect system collapse, they might also
reflect controlled transitions between states such as breeding and
non-breeding or awake and asleep (Yang et al., 2016; Ivanov and
Bartsch, 2022); understanding the dynamics of critical transitions in
physiology and how to predict them thus has relevance for
understanding which physiological transitions are the results of
programming along a clear pathway, and which are emergent
phenomena from the system dynamics. It also, obviously, has
relevance for understanding the dynamics of physiological
collapse and risk of death (Cohen et al., 2022). In particular,
previous findings show that at least some physiological systems
show synchronization of variability across system compartments
prior to critical transitions; multivariate EWSs thus may shed light
on synchronicity in network physiology (Cohen et al., 2022; Garcia-
Retortillo and Ivanov, 2022; Hasselman et al., 2023).

Some discrepancy among the findings on EWSs still exists
(Milanowski and Suffczynski, 2016; Wilkat et al., 2019; O’Brien
and Clements, 2021; Schreuder et al., 2022). For instance, earlier
applications in physiology, mostly performed using univariate
measures, showed variance and AC measures of heart rate
variability as good predictors of mortality (Ho et al., 1997), but
less conclusive results for an AC measure of EEG signals to
anticipate the onset of epileptic seizures (Martinerie et al., 1998).
Furthermore, application to real-world data raises several new
challenges not considered in theorical models (Brett et al., 2018;
Southall et al., 2021; Dablander et al., 2022), such as variation in
temporal resolution (Clements and Ozgul, 2018), as well as random

(Hillebrand et al., 2020) and extrinsic noise (Qin and Tang, 2018).
Although various EWSs have been proposed, with a growing interest
for multivariate EWSs over the past years (Eason et al., 2016; Chen S.
et al., 2019; Laitinen and Lahti, 2022), few studies opted for a
comparative approach (but see Dakos et al., 2012a; Weinans
et al., 2021). As the performance of EWSs might well be context-
dependent (Boettiger and Hastings, 2012; Weinans et al., 2021),
comparative approaches to specific contexts/datasets could be very
informative.

Over the past few years, we have developed two different
multivariate EWSs, both highly predictive of mortality in a
retrospective cohort of patients with chronic kidney disease (CKD)
on long-termhemodialysis (Liu et al., 2021; Cohen et al., 2022). The first
one, named “MMD” for multivariate moving distance, is based on
statistical distance, using the previous observation as the reference in the
calculation to measure intra-individual change over time (Liu et al.,
2021). High MMD is indicative of high variance but low
autocorrelation. The second consists of the scores of the first axis of
a principal component analysis (PCA) on all the coefficients of variation
(CVs) of selected biomarkers, thus called “CVPC1” (Cohen et al., 2022).
It is thus a summary of the overall variability of the system.While some
EWSs have been compared in simulation studies (Dakos et al., 2012a;
Weinans et al., 2021), comparisons with these newly developed EWSs
have yet to be performed, and none have been compared in
empirical data.

Here, we aimed to compare these new indicators to other well-
known EWSs, using the same list of indicators already compared in
simulated data by Weinans et al. (2021; see Figure 1). We divided the
EWSs based on the statistical parameters they are based on, namely
variance, temporal AC (often referred to as lag-1 AC), cross-correlation,
or a mix of the above. Then we assessed the correlations among the
different indicators, their trends before death, and their performance in
predicting mortality, using the same cohort of 763 CKD patients as
before (Liu et al., 2021; Cohen et al., 2022).

We have demonstrated that MMD and CVPC1 are both
effective predictors of all-cause mortality in this cohort (Liu
et al., 2021; Cohen et al., 2022), all-cause mortality being used as
a proxy of physiological collapse as a critical transition. Empirical
datasets such as this one present advantages both on the practical
and clinical sides. Data from patients on long-term hemodialysis
represent easily accessible time series data, due to the regularity of
blood measurements. Blood biomarkers, which can be used to
construct EWSs, are measured roughly every 2 weeks as part of
the routine clinical follow-up procedure. Moreover, in most cases,
patients are kept on hemodialysis until kidney transplant or death,
thus offering follow-up to the very end for a substantial subset. On
the clinical relevance side, our previous work suggests that critical
slowing down starts approximately 3 months prior to death in these
patients (Cohen et al., 2022), allowing sufficient time for either
corrective interventions or end-of-life planning.

2 Materials and methods

2.1 Data

The retrospective cohort used here has been described in detail
elsewhere (Liu et al., 2021; Cohen et al., 2022). Briefly, it consists of
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electronic medical records extracted from the database of the CHUS
hospital in Sherbrooke (Quebec, Canada) for all patients having had
hemodialysis between 1997 and 2017. After excluding patients with
acute kidney failure diagnosis, hemodialysis for less than 6 months,
irregular visits and/or insufficient biomarker data, we retained
763 of the initial 2,565 patients. We restricted ourselves to the

following 11 biomarkers with the highest time resolution, measured
roughly every 2 weeks: hematocrit, hemoglobin, mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentration
(MCHC), mean corpuscular volume (MCV), platelet count,
potassium, red blood cell (RBC) count, red cell distribution width
(RDW), sodium, and white blood (WBC) count.

FIGURE 1
Histograms of index distributions organized by parameters on which they are based. Distributions are presented after indices were transformed and
corrected for the number of observations included in the calculation. The number of calculated valueswas 4,550 for all indices except MAF_ac (n= 1,811),
MAF_var (n= 1,811), andMMD (n= 3,756). As shown in Supplementary Figure S2, distributions further away from a normal onemight impact the predictive
power of the index.
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2.2 Index calculation

We calculated 15 indices in total, 13 from Weinans et al. (2021;
see Figure 1) and two from our previous work (Liu et al., 2021;
Cohen et al., 2022; see Figure 1): one is based on cross-correlation,
six on variance, five on AC, and three on both variance and AC.
Indices were calculated as described before (Liu et al., 2021; Weinans
et al., 2021; Cohen et al., 2022; see Supplementary Materials and
Methods for details), every 6 months, starting from death or last
available observation for censored individuals (or using a different
time window if specified otherwise). Because MMD is calculated at
each available observation rather than over a given time window, we
averaged MMD values over the same time window (i.e., 6 months,
unless specified otherwise) for ease of comparison with other
indices. We also included all available MMD values (hereinafter
referred to as “MMD_all”) in some cases to illustrate the effect of
averaging on the index performance.

To calculate CVPC1, MMD, and NMV, biomarkers were first
log- (glucose, RDW, and WBC) or square root- (platelet count)
transformed to meet the assumption of an approximate normal
distribution. We performed sensitivity analyses with and without
biomarker transformations and for most indices, variable
transformation did not significantly affect the results (see
Supplementary Figure S1); however, for a few indices, there was
an appreciable impact. In such cases, we selected index versions that
seemed to best approach a normal distribution (for instance, see the
effect of transforming variables beforehand on NMV calculation in
Supplementary Figure S2). For all indices except CVPC1,
biomarkers were then z-transformed to give similar importance
to all biomarkers regardless of their scale. After their calculation,
indices were also transformed themselves, if needed (see
Supplementary Methods); nevertheless, some indices were still far
from a normal distribution even after transformation (e.g., MAF_
var; see Figure 1). Finally, we had shown before that CV values (in
CVPC1 calculation) are biased by the number of observations
included in the calculation (i.e., that CVs with fewer observations
tended to be smaller), and had thus proposed a correction for this
bias (Cohen et al., 2022). This problem emerges from irregularities
in the data: although a blood test is prescribed every 2 weeks for
patients on hemodialysis, the data we received from electronic
medical records contained many gaps, leading to varying
numbers of observations between individuals (and even between
time intervals for a given individual). Here, we also tested if this bias
was present for other indices too and, since it was the case, we
controlled each index with the model that best fitted the values (see
details in the Supplementary Materials and Methods).

2.3 Statistical analyses

We calculated Pearson correlations among each pair of indices.
To visualize the trend before death, we plotted the average index
values along with the 95% confidence interval (CI) in the 5 years
preceding death for the subset of uncensored individuals (n = 511).
We ran change point analyses on the indices calculated every
3 months and the “mcp” package (Lindeløv, 2020), allowing
slopes to vary across individuals. Regression models were
performed on all available index values, but results of the change

point analyses are shown alongside trends before death calculated
using 6-month time windows. We compared the performance of
indices in predicting mortality with Cox proportional hazards
models (coxph function from the survival package version 3.5–5;
Therneau, 2020), controlling for age, sex, diabetes diagnostic, and
length of follow-up. Age was modelled using a cubic spline with five
degrees of freedom (“bs” function, “splines” package version 4.3.1).
We clustered multiple observations per individual and included the
square root of the number of observations used in each index value
as a weight in the model, to account for the lower precision in
estimation with fewer observations included in the calculation. Cox
models were performed either using each index alone or combined
all together into one model. We present hazard ratios as “HR95”,
which represents the difference in hazard ratio (HR) between an
individual at the 97.5th percentile and an individual at the 2.5th
percentile of the index distribution. This approach was suggested to
compare indices on different scales (Milot et al., 2014). Finally, we
calculated the area under the receiver-operating characteristic
(ROC) curve (AUC) for best performing indices, alone and in
combination. To do so, we used the “roc” function from the
“pROC” package, version 1.18.2 (Robin et al., 2011). We also
assessed the effect of sequentially adding each index to control
variables (the same as for the Cox models) on the AUC. The order in
which we added the indices was determined through pairwise
Pearson correlations (“correlate” and “rearrange” functions,
“corrr” package version 0.4.4; Kuhn et al., 2022). All statistical
analyses were performed with the R statistical language (Team,
2007) versions 4.1.3 (for index calculation and change point
analyses) and 4.3.1 (for all other analyses) and source codes are
available on the Cohen lab github page at https://github.com/
cohenaginglab/EWS-comparison.

3 Results

3.1 Pairwise correlations among indices

Figure 2 shows all pairwise correlations among indices, for
which we obtained an overall mean r of 0.278 ± 0.255.
Correlations were nearly always positive (96 out 105), and
negative correlations were weak (all below −0.05, except for
MAF_var vs. MAF_ev; r = −0.19, p < 0.001). Variance-based
indices were more highly correlated with each other than indices
based on AC (r = 0.663 and 0.170, respectively for indices based
solely on variance or AC). The three indices based on both variance
and AC all behave in different ways. MMD was highly correlated to
most variance-based indices (mean r of 0.633, p < 0.001 for all six
indices), particularly with Av_Var and CVPC1 (respectively r =
0.791 and 0.752), but to a lesser extent with Ex_var (r = 0.244). Df
was highly correlated with Av_Ac (r = 0.693, p < 0.001) but much
less strongly with all other indices (mean r of 0.235). On the other
hand, MAF_var was poorly correlated with all other indices (mean r
of 0.60). Finally, the only index based on cross-correlation (Av_ab_
cc) was poorly to moderately correlated with other indices (mean r
of 0.248), with the highest correlations found with Ex_var and Av_
Ac (respectively r = 0.449 and r = 0.504, both with p < 0.001). When
using shorter (2–4 months) or longer (1 year) time windows to
calculate the indices, the pairwise correlations among them tended
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to get higher as the time window increased (Supplementary Figure
S3), especially for a given set of indices (e.g., Ex_var, MMD, and
NMA; see Supplementary Figure S4).

3.2 Trends before death and change point

Five indices showed a clear and sudden increase in the months
preceding death (Figure 3): CVPC1, NMV, Av_Var, Max_cov, and
MMD. The change point for these indices was roughly the same, at
~3 months prior to death: 2.12 [0.00–7.11], 3.96 [2.70–5.58],
2.95 [0.00–9.64], 4.04 [0.00–10.92], and 3.55 [0.00–12.06]
months, respectively for CVPC1, NMV, Av_Var, Max_cov, and
MMD. Other indices showed either a moderate increase before
death (e.g., PC_var) or no marked increase at all (e.g., MAF_ev).
Trends were similar for indices calculated using shorter
(2–4 months) or longer (1 year) time windows (Supplementary
Figure S5). Nonetheless, for CVPC1, the increase was reduced for
the version calculated with a 2-month time window compared with
other versions. For NMV, Av_Var, and Max_cov, and MMD to a
lesser extent, the opposite was true: the increase tended to be steeper

with shorter time windows. MAF_ac and MAF_var could not be
calculated with a 2-month time window since their computation
required at least 13 observations per time window. Even with 3- and
4-month time windows, trends were very noisy due to the small
number of observations per time point: 4 (IQR = 2, 6) and 9.5 (IQR =
4.75, 14.5), respectively.

3.3 Mortality prediction

Overall, results for mortality prediction were consistent with the
observed trends before death (Figure 4). When included in separate
Cox regression models (Figure 4A), the five indices with the steeper
increase before death in Figure 3 also had the highest HR95 (i.e., the
difference in HR between the 97.5th and the 2.5th percentile):
14.6 [10.5, 20.4], 9.9 [7.1, 13.7], 4.8 [3.8, 6.0], 4.4 [3.1, 6.2],
4.3 [3.6, 5.3], respectively for CVPC1, Av_Var, Max_cov, MMD,
and NMV. In agreement with this, indices with moderate increase
before death were also moderately powerful in predicting mortality;
for example, PC_var had a HR95 = 3.0 [2.3, 4.1]. When unaveraged,
MMD (“MMD_all”) was the strongest predictor of mortality, with a

FIGURE 2
Pairwise correlations among indices. Indices were categorized according to the parameter(s) they are based on. Xs represent correlations not
significant at α = 0.05. Abbreviations: AC, autocorrelation; Var, variance. Variance-based indices are mostly highly correlated with one another, whereas
AC-based indices show poor tomoderate correlations. Correlations among different index categories are at best moderate, suggesting that they capture,
at least in part, different biological signals.

Frontiers in Network Physiology frontiersin.org05

Legault et al. 10.3389/fnetp.2024.1299162

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1299162


HR95 = 18.4 [11.8, 28.8]. However, when all indices were included in
the same Cox model (Figure 4B), only Av_Var remained a strong
predictor of mortality (HR95 = 23.2 [5.1, 106.5]), as well as
CVPC1 and Av_ab_cc to a lesser extent (HR95 = 3.2 [1.1, 9.8]
and 2.0 [1.2, 3.5], respectively). In the model controlling for all
indices simultaneously, three indices became protective against
mortality (reversed direction of effect): HR95 = 0.26 [0.11, 0.63],
0.46 [0.23, 0.91], and 0.52 [0.32, 0.84], respectively for PC_var, Df,
and MI. This implies that high values of these indices contain two
types of signals: a stronger signal, shared with the other indices,
indicating high variability and high mortality risk, and a weaker
signal unique to each of them indicating lower mortality risk. The
analysis was repeated after excluding MAF_var and MAF_ac from
the list (Figure 4C) since they both had a substantial proportion of
missing values (n = 2,739, 60%). The results were consistent with the
models including all 15 indices, with effects even stronger for Av_
Var and CVPC1 (HR95 = 44.5 [13.2, 150.5] and 5.7 [2.3, 14.0],
respectively), while Av_ab_cc no longer predicted mortality. PC_var
and Df were still inversely associated with mortality risk (HR95 =
0.19 [0.09, 0.37] and 0.57 [0.33, 0.99], respectively), but not MI.
Results were similar when using different time windows for index
calculation (Supplementary Figure S6).

Figure 4D shows ROC curves and values for the AUC for models
including only control variables (i.e., age, sex, diabetes diagnostic,
and length of follow-up) or the best mortality predictors in Cox
models (i.e., CVPC1, Av_Var, andMMD_all; Figure 4A), as well as a
combination of: 1) CVPC1 and Av_Var; and 2) CVPC1, Av_Var,
and PC_var. Combining CVPC1, Av_Var, and PC_var had the
strongest effect on mortality prediction, raising the AUC to
0.81 compared with 0.74 for the basic model (i.e., including only
control variables), and 0.79–0.80 with models including only one
index. To understand better the effect of combining indices on
mortality prediction, we calculated the change on the AUC when

sequentially adding indices to the basic model (Supplementary
Figure S7). Consistent with results from Cox models including all
indices (see Figures 4B, C), Av_Var had the largest impact on the
AUC (+0.035 in the model with 482 individuals and +0.059 in the
model with 556 individuals), followed by PC_var (respectively
+0.012 and +0.005 for both models) and CVPC1 (respectively
+0.005 and 0.009 for both models). The analysis of Akaike
information criteria also suggest some benefit to index
combination: the AIC from the model with solely control
variables is 32,127, compared to 24,722 for the model including
all 13 indices (except MAF_var and MAF_ac) and to 31,117 for the
model combining CVPC1, AV_Var, and PC_var
(Supplementary Table S1).

4 Discussion

Here, we compared 15 multivariate indices proposed as EWSs of
critical transitions (see Figure 1), using real-world data on
biomarker dynamics preceding death in CKD patients on long-
term hemodialysis. We grouped the indices based on their
measurement of variance, AC, or cross-correlation. Broadly, we
found that the variance-based indices correlated with each other and
predicted mortality to a greater extent, whereas the other indices
were at best weakly correlated with each other and weakly predicted
mortality. Av_var is the single most promising index, performing
well alone and even better in a full model containing all indices.
Interestingly, CVPC1 and MMD – two ad-hoc variance indices
(i.e., not derived based on mathematical theory) – also performed
quite well, though the best version of MMD, MMD_all, could not be
included in the full model due to the timescale at which it is
calculated. This is, to our knowledge, the first comparison of
different multivariate indices in real-world data, and

FIGURE 3
Trend before death for each index. Indices were averaged by time window, and means were plotted along with the 95% confidence intervals. All
indices were z-transformed and centered at 5 years before death for ease of comparison, and were split into two graphs for ease of visualization. Vertical
dashed lines indicate the results from change point analyses, i.e., the break point in values trend. Note that change point analyses were performed using
the indices calculated with a 3-month time window for a better time resolution, although the results are plotted here against the 6-month trends.
The best performing indices are all variance-based, except MMD, which is also based on AC.
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demonstrates that even though in theory all the indices should
perform well, in practice details of data structure (e.g., frequency or
time-scale of measurement, missingness, sparseness, measurement
error) do impact the performance of different indices.

While it would be tempting to conclude that variance-based
indices are superior EWSs, that would be premature. The nature of
the data used here was particularly sparse for time series
data – measured at best every 2 weeks over several years – and
this sparseness is more suited to variance-based indices (Dakos et al.,

2012b). AC-based indices in this context may suffer from the fact
that we do not know the optimal timescale to detect changes in AC
in these biomarkers (seconds? minutes? days? weeks?) and further
that the timescales may vary across biomarkers. However, others
have found that the timescale did not matter when using AC to
predict critical transitions in an ecological context (Batt et al., 2019).
Collinearity among variables may also be considered when using
AC-based EWSs (Cabrieto et al., 2018a), which has not been done
here. Previous work in climate change even suggested that increase

FIGURE 4
Mortality prediction for each index. A-C, HR95, i.e. the hazard ratio of being in the 97.5th percentile relative to the 2.5th percentile of the index,
together with 95% confidence intervals are shown for each index in models including only this specific index ((A), n ranges from 2,306 to 7,931 for all
indices except MMD_all, for which n = 46,276), models including all indices ((B), n = 2,270), and models including all indices except MAF_var and MAF_ac
((C), n = 7,499). All models control for age using a cubic spline (with 5 degrees of freedom), sex, diabetes diagnosis, and length of follow-up,
clustering multiple observations per individual. Hues of blue represent variance-based indices, hues of purple represent indices based on variance and
auto-correlation, hues of red represent indices based on auto-correlation, and green represents the index based on cross-correlation. (D) Receiver
operating characteristic (ROC) curves for a basic model including only demographic and control variables (black; age, sex, diabetes diagnosis, and length
of follow-up) and for models including selected predictive indices (i.e., CVPC1, Av_Var, and PC_var), alone or in combination, are shown. Values for the
area under the ROC curve are indicated in parentheses for each model in the legend. These results show that, despite a very high correlation, CVPC1 and
Av_Var each contribute to predict mortality when included in the same model (Panels (B,C)), indicating subtle nuances in the signal captured by these
indices because of computation differences. Also, although not overtly powerful when taken alone, other indices such as PC_var, seem to improve
mortality prediction when added to multivariate models (Panels (B–D)).
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in AC might be harder to detect than increase in variance during
critical slowing down (Ditlevsen and Johnsen, 2010). Only one
cross-correlation index was available. The weak correlations
among non-variance indices and their weak prediction of
mortality may simply reflect that they have not been adequately
measured. For instance, non-parametric approaches to measure
cross-correlation appear to surpass parametric ones (Cabrieto
et al., 2018b), while others cautioned against using cross-
correlation indices in some contexts (Dean and Dunsmuir, 2016).
This is also consistent with Weinans et al. (2021), which found that
variance-based measures perform better than AC-based indices
when using temporally sparse simulated data. On the other hand,
variance-based measures may be more sensitive to stochastic effects
near the threshold, as opposed to AC measures, which can lead to
underestimation of the signal under an inadequate time window
(Dakos et al., 2012b). In our study, CVPC1 appears to be the most
sensitive index to the time window used (Supplementary Figures S5,
S6), showing a decreased signal when calculated every 2 months
compared to other time scales. Although we cannot rule out the
impact of the fewer available observations for this shorter time
window, it supports Dakos et al.’ work (2012b). Furthermore, in
simple models where data resolution and data length are not limiting
factors, we would expect Df and MAF_ac to be exactly the same, as
well as MAF_var and PC_var. This happens because without these
limitations we expect the first MAF and the first PC to be the same.
The fact that in this study (Figure 2) they have a low correlation
suggests that either the data are limited by length or resolution
(especially affecting all indicators with an AC component) and/or
that the noise is not equally distributed over variables.

Interestingly, the variance-based indices themselves were
relatively well correlated but not completely redundant. Some
were much stronger predictors of mortality than others. In a full
model simultaneously controlling all indices for each other, Av_var
was by far the strongest predictor, and indeed appears to summarize
alone most of the key information contained in the ensemble,
although CVPC1 still retained a substantial effect size in this
model, implying at least some unique signal. This finding appears
to somewhat contradict Ditlevsen and Johnsen’s work (2010), who
proposed that signal from both variance and AC-based indices are
needed to qualify as a true state transition rather than noise-induced
shift. However, the finding that combining indices seems to improve
mortality prediction is in line with previous work from Drake and
Griffen (2010).

Somewhat puzzlingly, several indices changed the direction of
their effect in the full model, such that they were protective against
mortality rather than indicative of risk. This was never true for an
index in a univariate model, so it implies that these indices – PC_var,
MI, and Df – contain two types of signals, a stronger signal that is
largely redundant with the ensemble and indicates risk of mortality,
and a weaker, unique signal that indicates protection. The reason for
this is unknown; we speculate that in physiological systems such as
the one studied here, natural selection may have shaped dynamics
that both mimic critical transitions and buffer against them via
specific pathways. This would be reminiscent of what Chialvo (2008)
proposed for the brain: the coexistence of mechanisms protective
against critical transitions to avoid collapse, and mechanisms
promoting them to facilitate adaptability. These indices might be
detecting traces of such effects.

One question raised by our results is the extent to which critical
slowing down, at least in physiological contexts such as the one
studied here, is a single, unified phenomenon versus a series of
interrelated but not fully unified processes. Work from non-
biological contexts suggests various potential mechanisms leading
to regime shifts (Dakos et al., 2015). In the former case, an
appropriate dataset and measurement approach should provide at
least the theoretical possibility of error-free measurement with a
single index. In the latter, optimal prediction of critical transitions
would inevitably require multiple indices used jointly. Put in other
words, is there a “true” variability to the physiological system that is
perfectly correlated with a “true” AC and a “true” cross-correlation,
or are these phenomena somewhat distinct, and indeed perhaps
more complex than these three simple categories? Our results
weakly suggest the latter. Av_var is an exceptionally powerful
predictor of mortality, but even with it in the model, CVPC1 still
has a relatively strong effect. The inverse effects of several indices
once overall variability is controlled for also suggest more nuanced
dynamics. However, results are far from conclusive and further
empirical and theoretical work is needed. Also, other approaches to
physiological networks that focus on physiological function (Bashan
et al., 2012), organ interactions (Bartsch et al., 2015), or hierarchical
networks (Rizzo et al., 2020) might bring insightful perspective on
this question. For instance, calculating EWSs within specific
physiological systems (see Li et al., 2015) would offer valuable
information on the overall system state and how they show signs
of critical slowing down with respect to one another. Our previous
findings showing striking synchrony across various physiological
markers, including electrolytes, markers related to oxygen transport,
and even immune functions (Cohen et al., 2022), tend to suggest that
critical slowing down proceeds in a widespread manner across the
various physiological organs and/or functions.

Theoretical considerations suggest clear relationships among the
various indices proposed. However, real-world data are messy,
containing missingness, sparseness, and various potential biases.
It was not clear a priori whether the theoretical expectations would
be observed in real-world data, and if not, to what extent the
performance of different indices depends on particularities of the
data set, or is generalizable. For example, it is possible that variance
indices simply perform better across a range of contexts, and that
Av_var is consistently a winner. Alternatively, this might depend on
frequency of observations or timescales of variability in ways that
will eventually become clear as other examples emerge. The worst-
case scenario would be that the performance of different indices
varies across contexts, but in ways that are hard to predict due to
combinations of small biases in the data. This would mean it is not
possible to come up with ways to choose some indices over other in
novel contexts. In this sense, our study is a first attempt to
understand how theoretical expectations play out in real-world
data. Indeed, the poor performance of AC and cross-correlations
here implies that the theoretical expectation of strong relationships
among different types of indices is not upheld under our conditions
of sparsity and missingness.

From a network physiology perspective, our results confirm the
importance of integrative, multivariate approaches broadly, and
more specifically suggest the importance of synchronicity. The
best performing indices, Av_Var and CVPC1, can both be
considered measures of the synchronized variability of
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biomarkers from distinct physiological compartments (i.e., with
minimal correlations in the levels of the biomarkers). We think
that these indices or other similar approaches could be useful for
predicting and eventually understanding the dynamics of
synchronization underlying physiological transitions and
physiological collapse (Bartsch et al., 2015; Healy et al., 2021).

A combination of theory, simulations, and varied real-world
datasets will be needed to understand optimal approaches to
multivariate EWSs and the extent to which they do or do not
depend on context. Nonetheless, our results provide broad support
for the importance of variance-based metrics in predicting critical
transitions, and point to some of the most promising ones. As
additional examples accrue in real-world data, we expect a picture to
emerge that can guide the choice of optimal indices for prediction:
clear winners across contexts, context-dependence of winners, or
unpredictability of winners.
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