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Transient synchronization of bursting activity in neuronal networks, which occurs
in patterns of metastable itinerant phase relationships between neurons, is a
notable feature of network dynamics observed in vivo. However, themechanisms
that contribute to this dynamical complexity in neuronal circuits are not well
understood. Local circuits in cortical regions consist of populations of neurons
with diverse intrinsic oscillatory features. In this study, we numerically show that
the phenomenon of transient synchronization, also referred to as metastability,
can emerge in an inhibitory neuronal population when the neurons’ intrinsic fast-
spiking dynamics are appropriately modulated by slower inputs from an
excitatory neuronal population. Using a compact model of a mesoscopic-
scale network consisting of excitatory pyramidal and inhibitory fast-spiking
neurons, our work demonstrates a relationship between the frequency of
pyramidal population oscillations and the features of emergent metastability in
the inhibitory population. In addition, we introduce a method to characterize
collective transitions in metastable networks. Finally, we discuss potential
applications of this study in mechanistically understanding cortical
network dynamics.
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1 Introduction

Computational modeling of neuronal dynamics which incorporates mesoscopic-level
connectivity features can potentially offer powerful frameworks for understanding neuronal
network mechanisms (Markram et al., 2015; Kopsick et al., 2022). Despite the extensive
theoretical work on the emergent dynamics in neuronal networks (Amit, 1989; van
Vreeswijk and Sompolinsky, 1996; Rolls and Treves, 1997; Brunel, 2000; Gerstner and
Kistler, 2002; Gerstner et al., 2014; Tsuda, 2015), a scalable network representation of key
neurodynamical features at the mesoscopic level is currently lacking. A simplified model
describing the complexities of between- and within-group neuronal interactions is
necessary to advance our multiscale understanding of neuronal systems in typical and
atypical conditions (Venkadesh and Van Horn, 2021).

An experimentally observable complexity of in vivo networks is the metastable attractor
dynamics at the level of individual neurons. More specifically, an individual neuron can
exhibit periodic bursting oscillations that transiently synchronize with the oscillations of
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other neurons, and these synchronizations can occur at different
phases (Skaggs and McNaughton, 1996; Poe et al., 2000; Jones and
Wilson, 2005; Lisman, 2005; Ego-Stengel and Wilson, 2007; Vinck
et al., 2010). In other words, biological neuronal networks can realize
a range of attractor states that are locally observable through

different phase-locking modes between individual neurons. Such
transient attractor dynamics are also referred to as metastability or
itinerancy (Venkadesh et al., 2020), and this phenomenon is
hypothesized to be a necessary physical property underlying the
coordinated dynamics between spatially distant neuronal
populations (Tognoli and Kelso, 2014).

The mathematical conditions for the emergence of transient
dynamics have been previously discussed (Tsuda, 2009). More
recently, conduction delays between brain areas were associated with
metastable oscillations on a macroscopic spatial scale (Cabral et al.,
2022). Many possible mechanisms of metastability have been proposed
(Kelso, 1996; Shanahan, 2008; Brinkman et al., 2022; Hancock et al.,
2023;Mackay et al., 2023). However, the biophysical features of neuronal
networks underlying metastability at the level of neurons have not been
fully elucidated. While a previous work reported metastable attractor
dynamics among intrinsically bursting neurons (Venkadesh et al., 2020),
it was unclear if metastability could also be realized in neuronal
populations in which bursting dynamics are induced externally. Here,
we explore the emergence and characteristics of metastability in a fast-
spiking interneuron population that exhibits bursting dynamics due to
driving inputs from a population of slower pyramidal neurons. We also
examine the quantitative characteristics of collective transitions between
attractor states realized in different metastable networks. Finally, we
discuss potential applications of our work in understanding network
physiology in neurodegenerative disorders.

2 Methods

Networks consisting of 100 pyramidal neurons and 50 fast-spiking
interneurons were constructed using Izhikevich neurons (Izhikevich,
2003), where each neuron was governed by Eqs 1–3. The parameters
a, b, c, and d (Eqs 2, 3) were selected to match the intrinsic dynamics of
each type of neuron. Specifically, these were set to 0.02, 0.2, −65, and
8 respectively for the pyramidal neurons, and 0.1, 0.2, −65, and 2 for the
fast-spiking interneurons (Izhikevich, 2003).

Network connections were configured as illustrated in
Figure 1A. Inter- and intra-population connections were realized
through instantiations of our networks using pairwise connection
probabilities between individual neurons. We studied the network
behavior for a complete range of connection probabilities. Post-
synaptic effects were specified using an instantaneous pulse-
coupling scheme (Eq. 4), where each presynaptic spike either
increased (excitatory) or decreased (inhibitory) the postsynaptic
current by the weight parameter (+0.3 for excitatory connections
and −0.3 for inhibitory connections).

dv

dt
� 0.04v2 + 5v + 140 − u + Iext + Isyn (1)

du

dt
� a bv − u( ) (2)

if v≥ 30mV,
v � c
u � u + d

{ (3)

Isynj � ∑
mj

i�1
δ t − ti( ) · w (4)

In Eq. 4, δ corresponds to the Dirac delta distribution, which
equals one when a presynaptic neuron i spikes and is zero otherwise.

FIGURE 1
Endogenous itinerancy in fast-spiking interneurons. (A) Left:
Network configuration consisting of pyramidal neurons (blue
triangles) and fast-spiking interneurons (dark orange ovals).
Connections indicated by the arrowhead and circles denote
excitatory and inhibitory pulse-coupling, respectively. Right: Spiking
frequencies of an isolated excitatory (pyramidal) neuron and an
inhibitory (fast-spiking) neuron for various input currents. (B) Raster
plot showing spiking activity in pyramidal (blue) and fast-spiking
neurons (orange) for one second. (C) (top) Bursting activity (gray) in
one representative fast-spiking neuron. The filtered signal,
superimposed in black, captures the burst oscillations. (bottom) Burst
oscillations of two representative fast-spiking neurons (black and red)
showing transitions between in- and anti-phase transiently
locked modes.
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Isynj is the total synaptic current for postsynaptic neuron j, which
receives connections from a total of mj presynaptic neurons. The
number of neurons and the weight parameters were chosen to allow
the pyramidal population to induce sustained bursting activity in the
fast-spiking interneuron population for a range of external input
currents in the former (Iext in Eq. 1). Iext was always set to zero for
the fast-spiking interneurons. All networks were simulated using
Brian2 (Stimberg et al., 2019) for a duration of 10 s with a timestep of
0.1 m using the Euler integration method. Following the network
simulation, a fifth-order low-pass Butterworth filter (Selesnick and
Burrus, 1998) was applied to the voltage signal of each inhibitory
neuron (v in Eq. 1) to extract the bursting oscillations without the
individual spikes (Figure 1C top). The filtered signals were
standardized to have zero mean and unit standard deviation.
Then, instantaneous phases of the bursting oscillations were
assigned to each neuron via the Hilbert transform. Figure 1C
bottom shows two representative examples.

2.1 Characterizing phase relationships
between bursting oscillations

The basic phenomenon of interest is illustrated in Figure 1C
bottom, which shows the bursting oscillations of a representative
pair of neurons versus time. At first, the neurons are locked in phase,
but then they transition to an out-of-phase state. After a short time,
they return to the in-phase state, and then switch back to the out-of-
phase state. Similar persistent behaviors were described in previous
reports (Kasatkin et al., 2019; Venkadesh et al., 2020).

At the population level, the bursting phases tend to cluster and
exhibit itinerant switching between clusters. This is illustrated in
Figure 2. In the top panel of Figure 2A, the dots represent the
instantaneous phases of all the inhibitory neurons at time t0, with
the neurons listed horizontally according to increasing phase. We
see two prominent phase clusters. In the lower panels, the neuron
ordering is preserved from the top panel, and the phases are plotted

for subsequent times t0 + 1s and t0 + 2s. We see that the two clusters
remain. However, some neurons have hopped from one cluster to
the other, exhibiting itinerant switching among cluster states.

In general, the instantaneous phases of the cluster states drift over
time. In order to ignore or cancel out this drift, we calculated the phase
differences between all possible neuron pairs over all values of discrete
time. Plotting these phase differences on a polar histogram as in
Figure 2B, we see phase difference clusters at zero and 180°. This is
essentially a shift to a reference frame which gives a convenient and
consistent way to visualize the phase clusters shown in Figure 2A.

More precisely, we assessed the nature of population-wide phase
relationships among interneurons by calculating instantaneous
phase differences between randomly selected neuron pairs over
the entire duration (10 s). Henceforth, these phase differences
will be referred to as ϕj, j � 1, 2, . . . , N, where N denotes the
number of phase difference measurements. We found that the
ensemble of angles ϕj was organized into clusters. To
characterize this, we calculated the Kuramoto-Daido order
parameters Zn (Daido, 1996; Golomb and Hansel, 2000;
Venkadesh et al., 2020) for various values of n, a positive integer:

Zn � 1
N

∑N
j�1
einϕj . (5)

These order parameters characterize clustering patterns in the
ensemble as follows. If each ensemble member is plotted as a point
on the unit circle in the complex plane at its angle, ϕj, then Z1 is the
centroid of the ensemble. Of interest is the magnitude |Z1|, which
ranges from zero to one. If all points occur at the same angle, then
|Z1| � 1. In contrast, if the points are scattered uniformly around the
unit circle, then |Z1| � 0. Additionally, if the ensemble of points
consists of uniformly spaced clusters, then |Z1| � 0. Such uniformly
spaced cluster arrangements can be identified using the order
parameters Zn with n> 1. For example, if the phases form three
ideal clusters (i.e., equally populated clusters 120° apart), then
|Z1| � |Z2| � 0, but |Z3| � 1. In fact, for ideal states consisting of

FIGURE 2
(A) Endogenous itinerant states characterized by phase clusters at three time points over a 2 s duration. Neurons (black dots) are ordered by their
instantaneous phases in the top panel, and this ordering is preserved in the bottom two panels. Two phase clusters persist over time, and individual
neurons spontaneously switch from one cluster to the other. (B) Persistent phase relationships between neurons are illustrated in a polar histogram by
plotting the phase differences between all distinct pairs of neurons over the 2 s duration.

Frontiers in Network Physiology frontiersin.org03

Venkadesh et al. 10.3389/fnetp.2024.1302499

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1302499


c uniformly spaced and equally populated clusters, |Zjc| � 1 for any
integer j≥ 1 and is zero otherwise. To correct for this redundancy,
we defined a real-valued quantity Gn as in Eq. 6, such thatGn is close
to 1 only when the ensemble approximates an ideal n-cluster state.

Gn�|Zn ×| ∏n−1
k�1

1− |Zk |( ) (6)

2.2 Characterizing exogenously induced
transitions

To assess the nature of transitions between clustered states in
different metastable networks, the following steps were carried out:
A given network was simulated twice with identical initializations.
The first simulation was used to establish the baseline instantaneous
clustering of neurons, based on their instantaneous phases, at any
given time. In the second simulation, a small group of randomly
selected interneurons were simultaneously perturbed by single
spikes at a certain time. Perturbations were applied via a single
spike from an external pyramidal neuron. More specifically, each
perturbed interneuron received a single spike that increased its
voltage level by a value specified by the perturbation weight. We
studied the effect of such perturbations for various numbers of
perturbed neurons and for a range of perturbation weights. The
perturbations caused some of the neurons to subsequently change
their cluster assignments relative to the baseline.

Phase cluster assignments of neurons were obtained using
Gaussian mixture models (GMM) (Pedregosa et al., 2011). The
GMM group the instantaneous phases of neurons into n clusters,
where n is identified by Eq. 6. This method assumes that the clusters
of instantaneous phases of neurons are normally distributed. The
GMM models are initialized with randomly selected phases. A total
of 100 iterations were performed for GMM fitting.

To quantify the effect of the perturbation, we calculated the
cluster assignment of neurons at a given time in the baseline
simulation, and compared this arrangement with how the
neurons were distributed among the clusters at the
corresponding time in the second simulation (with the
perturbation). We measured the similarity of these two clustering
arrangements of the neurons using Eqs 7–9.

First, we calculated the well-known “Rand Index” in Eq. 7
(Rand, 1971), where g and ℎ are the numbers of pairs of neurons
with the same and different cluster assignments across the two
groupings that are being compared, and nC2 denotes the number
of possible combinations of neuron pairs. The Rand Index (RI) is
defined such that it equals one for two identical arrangements of
neurons among the clusters. We then calculated the Adjusted
Rand Index (ARI), defined in Eq. 8 (Rand, 1971; Hubert and
Arabie, 1985; Steinley, 2004). This is a variation of RI that
accounts for chance, ensuring that the ARI for two random
groupings of a set of neurons is zero while remaining equal to
one for identical arrangements. This is achieved by estimating an
expected RI (E(RI) in Eq. 8) using random permutations of
cluster assignments. The result was the ARI as a function of time,
measuring the ongoing effects of the perturbation on the
clustering arrangements.

RI � g + h

nC2
(7)

ARI � RI − E RI( )
max RI( ) − E RI( ) (8)

CR � 1 − 1
M

∑M
i�1
ARIi (9)

We then defined the population’s collective response CR as in
Eq. 9 to characterize the extent to which the network (as a whole)
generically responds to exogeneous perturbations of a fraction of its
elements. The ARIs were measured in 50 simulation trials, each with
different realizations of the random connections (M � 50 in Eq. 9),
and each with a random subset of perturbed interneurons and a
random time (>0.5 s) at which the perturbation was delivered. The
observed average change in the ARI following the perturbation
denoted the effect of the perturbation. For instance, if there is no
change to the network state following the perturbation, then all the
ARIs are one and the collective response is zero. On the other hand,
if a perturbation results in rearrangements of the neurons among the
clusters that are equivalent to completely random cluster
assignments compared to the baseline condition, then all the
ARIs are zero and the collective response is one. Finally, the
magnitude of the collective response was examined in metastable
networks for various numbers of perturbed neurons in the range [1,
20] and for various perturbation weights in the range [0.1, 1]. It is
worth mentioning here that while each presynaptic spike influences
the activity of a postsynaptic neuron in a discrete manner [see Eq. 4],
the collective response aims to characterize activity that is
spatiotemporally coarse-grained (i.e., transitions that occur
among a group of neurons on a relatively larger timescale than
that of individual spikes).

3 Results

The network model incorporates a significant difference in the
spiking time scales of the pyramidal and fast-spiking interneurons.
The slower excitatory drive from the pyramidal neurons modulates
the fast-spiking dynamics of the interneurons, resulting in bursting
oscillations in the latter (Figures 1B, C). The inhibitory interactions
between these bursting neurons then lead to itinerant metastable
behavior. That is, ongoing endogenous transitions occur between
different phase-locked (attractor) states. (Figure 1C, also
see Section 2.1).

3.1 Interneuron population phase clusters
are modulated by the excitatory frequency

The frequency of pyramidal neuron spiking is determined by the
value of Iext. To examine the effect of this driving frequency on the
characteristics of metastability in the fast-spiking interneuron
network, we systematically varied Iext and measured the
distribution of phase differences (ϕj) between pairs of
interneurons as described in Methods Section 2.1. Figure 3 shows
a plot ofGn (n = 1, 2, . . . , 7), which quantifies the degree to which the
interneuron phase differences group into n clusters, versus the
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pyramidal neuron spiking frequency (f) for one representative
network with E-I and I-I connection probabilities of 0.7 and
0.4 respectively. Above the plot are polar histograms of the phase
differences (ϕj) for selected f’s. At low driving frequency, all the
inhibitory neurons lock in-phase, and thus their phase differences
are close to zero. Correspondingly, G1 is high and G2 through G7 are
low. Interestingly, as the driving frequency increases beyond ~25Hz,
clusters appear in the phase difference distribution. We find that a
well-defined state of two clusters emerges near f = 48 Hz, and a
three-cluster state emerges near f = 77 Hz. As the driving frequency
is further increased, the pattern reverses and another well-defined
state of two clusters appears near f = 117 Hz. Beyond f = 140 Hz, all
Gn are small and the phase difference distributions become more
uniform. (see Supplementary Figure S3 for a visualization of cluster-
switching in three-cluster states).

These results show that metastable attractors emerge in the
interneuron population when it is appropriately driven by the
pyramidal population, and that the nature of these metastable
attractors is modulated by the driving frequency. It is interesting
to note that the emergence of these clustered states occurs for driving
frequencies within the gamma and the high-gamma ranges. This
behavior was also present in a larger population of interneurons (see
Supplementary Figure S1). Pyramidal neurons have indeed been
observed to fire at these frequencies (O’Keefe and Recce, 1993;
Dragoi and Buzsáki, 2006; Ray et al., 2008), although such gamma
cycles have been observed to be modulated by slower theta ones.
Additionally, although it is typical for neurons to generally exhibit
aperiodic firing in vivo, selectively recruited pyramidal neurons are
known to fire bursts of action potentials in a periodic manner and
the phases of these bursts are strongly correlated with an organism’s
behavior (O’Keefe and Recce, 1993; Dragoi and Buzsáki, 2006).

The phase-clustering phenomena described above were
consistently observed in networks with different connectivity

profiles realized using a range of connection probabilities
(Figure 4). We analyzed networks instantiated using 50 ×
50 values of equally spaced inter- and intra-group connection
probabilities in the range [0, 1]. The G2 and G3 versus frequency
curves were computed as described before for each of the
2,500 networks. Figure 4A shows the maximum of G2 (left) and
G3 (right) across frequencies for each network. These measures were
sensitive to the E-I connection probabilities and relatively less
sensitive to the I-I connection probabilities. Plotting these
measures against the frequency of the excitatory neurons
(Figure 4B) revealed that the stable phase clusters emerged
approximately within the range [45 Hz, 180 Hz]. Our results
suggest that the interneuron population’s emergent attractors
depend primarily on the E-I connectivity and the frequency of
the driving excitatory oscillations. There are robust gradients
(Daoud et al., 2023) towards maximally stable interneuron phase
cluster arrangements along the dimensions of pyramidal frequency
and E-I connection probability (Figures 3, 4).

Although the Gn values were relatively less sensitive to the
inhibitory I-I connectivity, the I-I connections are necessary for
the itinerant behavior to emerge. It is possible for multiple non-
itinerant phase clusters to appear when both the I-I connection
probability is zero and the E-I connection probability is less than 1
(Figure 4A). Pairwise connection probabilities less than 1 introduce
small differences in the number of connections among neurons. This
may result in different excitation levels in some inhibitory neurons
causing a phase shift. However, it is important to note that such
cases do not exhibit switching between different clusters as there are
no inhibitory interactions (See Supplementary Figure S2).
Additionally, when the I-I connection probability is zero and E-I
connection probability is equal to 1.0, all inhibitory neurons achieve
identical excitation levels. In this scenario, the non-itinerant 2-
cluster state disappears, which can also be observed in Figure 4A.

FIGURE 3
The network-wide stability and the number of phase clusters in the fast-spiking interneurons as functions of pyramidal neuron frequency for one
representative network. Polar histograms show phase differences ϕj for all pairs of neurons in representative networks. Pyramidal neuron frequency was
computed by taking the inverse of the average population interspike intervals. For each frequency, Gn values were computed by randomly sampling
10 sets of 100 pairs of interneurons. Solid lines and shaded areas represent means and standard deviations respectively.
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3.2 Collective response characteristics of
metastable networks

The multi-cluster states described above exhibit spontaneous
and endogenous itinerant dynamics (see Figures 1C, 2). Motivated
by the fact that an organism adapts its internal state to the
environment via external stimuli, we sought to measure how a
metastable state would be affected by an external perturbation. As
described inMethods Section 2.2, the networks were simulated twice
with identical initializations. The first simulation established the
baseline dynamics as shown in Figure 5A (left column). The panels
on the left show the instantaneous phases of individual neurons in
the interneuron population at three instants of time, with the
neurons ordered along the horizontal axis by increasing phase.
Note that the neurons were reordered in each left panel in
Figure 5A in order to mask the endogenous itinerant behavior
(see Figure 2 for endogenous itinerancy). In the second
simulation, an external perturbation was applied. Five randomly
selected interneurons each received a single spike at time tp. The
results are shown in the right column of Figure 5A. The time of
perturbation occurred between the top and middle panels. Note that
the neuron orderings in each panel of the left column are preserved

in the corresponding panels of the right column. Thus, any
differences in the illustrated cluster assignment of neurons are
due exclusively to perturbation. Additionally, the transitions are
collective in the sense that they occur in many non-perturbed
neurons immediately following the perturbation (Figure 5A—right).
Note that the perturbed neurons are denoted by red circles in
Figure 5A (right middle panel), and the cluster-switching can be
observed in a few non-perturbed neurons at tp + 0.1s. This
highlights the synergy of interacting elements in metastable
networks. Collective transitions may be characterized by treating
network states as multiple instantaneous phase clusters of neurons at
any given time and subsequently comparing the cluster assignments
of neurons between unperturbed and perturbed conditions using the
ARI (Figure 5B). For example, when t< tp, the two simulation
conditions (left and right panels of Figure 5A) show identical
cluster arrangements of neurons resulting in ARI values of 1.
However, immediately following perturbation (t> tp), the network
states begin to diverge between the two simulation conditions
resulting in ARI values less than 1 (Figure 5B).

We examined the magnitude of collective responses (CR, Eq.
9) in three representative metastable networks that showed high
magnitudes of stability in Figure 3: the networks of the two-

FIGURE 4
The stability of phase clusters versus network connectivity and pyramidal neuron frequency. (A) Stabilities of the maximally stable two-cluster (left)
and three-cluster (right) states realized in networks for various excitatory-inhibitory (E-I) and inhibitory-inhibitory (I-I) connection probabilities. (B)
Distributions of maximum phase cluster stability are plotted against their respective frequency bins of pyramidal neurons for two-cluster (left) and three-
cluster (right) states. Width indicates the density of points for a given maximum stability.
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cluster state that emerged near f = 48 Hz, the three-cluster state
that emerged near f = 77Hz, and the two-cluster state that
emerged near f = 117 Hz. For each of these three networks, we
varied the number of perturbed neurons from 1 to 20 to
characterize their collective responses. Additionally, we
examined the effect of the perturbation weight (see Section
2.2) by varying it from 0.1 to 1.0, while the number of
perturbed neurons was set to a constant value of 5.

Figure 6 shows the CR magnitudes in the three representative
networks mentioned above. When only a single neuron was
perturbed, the CR remained close to zero, although the
perturbed networks began to show small deviations from their
respective unperturbed networks at t> tp + 2s. This was observed
in all three cases (Figure 6—left panels). As the number of
perturbed neurons was further increased, the networks that
were sampled near f = 48 Hz (two-cluster state) and f = 77 Hz
(three-cluster state) began to elicit stronger and faster responses.
However, their responses reached a plateau when the number of
perturbed neurons increased beyond 5 (Figures 6A, B). In
general, the network that was sampled near f = 48 Hz was the
most responsive to perturbations (Figure 6A). On the other hand,
the network that was sampled near f = 117 Hz (two-cluster state)
continued to elicit only weak responses as the number of
perturbed neurons increased (Figure 6C). These observations
were consistent when the perturbation weights were increased
from 0.1 to 1.0 (Figure 6—right panels). Thus, the CR provides a
useful metric to characterize the responsiveness of metastable
networks by inducing phase cluster-switching via small
perturbations. It is worth noting that f directly affects the
inter-burst intervals in interneurons and consequently shapes
their multi-periodic trajectories in the phase space. Taken
together, these results suggest that the metastability realized in
interneuron populations may arise from mechanisms (Ott et al.,
1993; Sommerer and Ott, 1993; Tsuda, 2009) that evolve
depending on (a) their connectivity with excitatory neurons
and (b) the frequencies of excitatory oscillations within a
cortical region.

4 Discussion

Understanding the emergent dynamical complexities in a
network in terms of its constituent mechanisms remains an
important goal. Here, we studied the emergent phenomenon of
itinerancy, an instance of metastability, in spiking neuronal network
models that represent cortical local circuits. Metastability is
characterized by the coexistence of integrated (synchronized
states) and segregated (transitions between synchronized states)
behaviors in a system of interacting elements (Tognoli and Kelso,
2014). In this study, we characterized the extent to which neurons
are synchronized using the Kuramoto-Daido order parameters for
various numbers of phase clusters (Eqs 5, 6). We examined the
extent to which neurons collectively transition between different
synchronized states using a novel metric (Eq. 9). We wish to note
that many metrics of metastability in the literature aim to quantify
the extent to which both synchronized and desynchronized states
coexist in a system of interacting elements. While these metrics
provide useful signatures of metastability, they do not capture the
synergistic nature of transitions in metastable systems. In this study,
once the number of phase clusters in a network was identified using
Gn (Eq. 6), the metric CR (Eq. 9) was used to characterize the
synergy of transitions between the phase clusters by applying small
perturbations.

In a previous study (Venkadesh et al., 2020), we showed that
networks of complex periodic oscillators such as intrinsically
bursting neurons can realize chaotic itinerancy (Tsuda, 2015).
Chaotic itinerancy is an instance of metastability that is realized
by the transitions between different basins of attraction through
heteroclinic orbits (Hancock et al., 2023). In our current work, we
studied how the intrinsic biophysical features of a spiking neuronal
network are quantitatively related to metastability using a
generalized model of cortical intraregional interactions. We
specifically studied how the neuron-level spiking frequencies are
associated with the emergent metastability, and how these
relationships are governed by the underlying excitatory and
inhibitory neuronal connectivity.

FIGURE 5
Exogenous transitions in the fast-spiking interneuron population. (A) Left and right panels show the temporal evolution of a network in unperturbed
and perturbed conditions respectively. Neurons (black dots) in the left panels are sorted by their instantaneous phases at each t, and their order is
preserved in the right panels to show the divergence of states caused by perturbation. tp denotes the time of perturbation, and red circles in the right
middle panel denote perturbed neurons. (B) Ten representative ARI curves (color) computed by comparing cluster assignments of neurons between
unperturbed and perturbed conditions. The black curve represents the average. Here, t = 0 corresponds to the perturbation times tp.
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We showed that (1) driving input from the pyramidal
population to the fast-spiking neurons caused bursting in the
latter (see (Pinsky and Rinzel, 1994) for an investigation of the
mechanisms of bursting), and that this led (due to inhibitory
coupling) to itinerancy in the bursting phase relationships in the
fast-spiking population; (2) the complexity of the itinerancy (in the
form of the number of clusters) was modulated by the pyramidal
driving frequency; (3) this behavior was robust with respect to the
network connection probabilities as long as the E-I probability was
large enough; (4) the different itinerant states had different
responsiveness to perturbations.

It is worth comparing our current model and observations with
those of our previous study (Venkadesh et al., 2020). Our previous
model of itinerant complexity, which was constructed using only an

inhibitory population of intrinsically bursting neurons is simpler
than our current model, which includes both an excitatory and an
inhibitory population. The construction of our current model was
motivated by several considerations: First, intrinsically bursting
neurons are biologically rare. For instance, less than 15% of
inhibitory neurons are intrinsically “bursting” (multi-periodic) in
the rodent hippocampus, and the remaining neurons are
intrinsically “spiking” (single-periodic) (Komendantov et al.,
2019). Our current model approximation includes slower
excitatory and faster inhibitory neurons, both of which are
intrinsically single-periodic, and this circuit configuration is
ubiquitous in the cortex. Furthermore, as we showed in our
previous study, the intrinsically single-periodic neural
populations, by themselves, are unable to realize itinerant

FIGURE 6
Magnitude of collective response (Eq. 9) characterized by the exogenous transitions in three representative networks for various numbers of
perturbed neurons when the perturbation weight is 0.3 (left panels) and for various perturbation weights in the range [0.1, 1.0], when the number of
perturbed neurons is 5 (right panels). In the right panels, solid lines and shaded regions represent means and standard deviations, respectively, across
perturbation weights. The pyramidal driving frequencies used are 48 Hz (A), 77 Hz (B), and 117 Hz (C); these correspond to two, three, and two
cluster states in the interneuron population, respectively (see Figure 3).
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complexity. On the other hand, the current model describes
mechanisms by which itinerant complexity could be realized in
such simpler inhibitory neurons that vastly outnumber their
intrinsically bursting counterparts in the cortex. Taken together,
our studies support the idea that the same dynamics could emerge
from multiple network configurations in the cortex (Friston and
Price, 2003). Secondly, our previous model did not show that the
number of phase clusters within an inhibitory population could
change depending on the frequency. In fact, our previous study
reported emergent itinerancy at different bursting regimes of the
model, where 3-cluster states that only differed in their magnitudes
of stability were observed. On the other hand, our current model
shows, in addition to the magnitude of stability, the number of phase
clusters can also change within an inhibitory population depending
on the frequency of excitatory drive. It is worth noting that many
intrinsically bursting neurons have a narrow regime for bursting
(Komendantov et al., 2019). In other words, the range of excitatory
inputs for which an intrinsically bursting neuron actually bursts (as
opposed to spike) is narrow. On the other hand, the externally
induced bursting is observable for a wide range of excitatory inputs
as we have shown in our current study. Finally, our current model
suggests that the inhibitory population’s itinerancy could be
modulated by electrically stimulating excitatory neurons such as
the pyramidal neurons. This is especially important in the context of
neuromodulation (Luan et al., 2014; Krishna et al., 2018; Cole et al.,
2022). Targeting pyramidal neurons for neuromodulation is
currently more feasible than targeting regionally local inhibitory
neurons. Because pyramidal neurons project their axons over long
distances and their connectivity can be noninvasively mapped using
neuroimaging modalities, they are highly feasible targets for
neuromodulation. On the other hand, an inhibitory neuronal
population’s connectivity is generally restricted to a cortical
region, and current neuromodulation methods lack spatial
specificity to selectively target such regionally local neuronal
populations. Overall, while our previous model was
computationally more compact than our current model, this
compactness traded off its practical applicability. On the other
hand, our current model, while still scalable, has broader
applicability and provides a framework for future studies to make
testable predictions as discussed in the final paragraph of
this section.

The number of connections an inhibitory neuron receives is a
crucial parameter that affects the emergence of metastable clusters.
Our current model suggests that excitatory connections alone are
insufficient to allow the emergence of metastable clusters in an
inhibitory population (Supplementary Figure S2). Similarly,
inhibitory connections alone are insufficient to allow the
emergence of metastable clusters in “non-intrinsically bursting”
neurons as we have shown in our previous study. Therefore, it is
an appropriate balance between the excitatory and inhibitory
connections that allows the emergence of metastable behaviors in
our current model. We have shown that such optimal balance could
be achieved for various connection probabilities (Figure 4A) and for
a larger neuronal population (Supplementary Figure S1).
Importantly, the frequency bins at which the 2-cluster and the 3-
cluster states achieve maximal stability are consistent across various
connection probabilities (Figure 4B) and for a larger neuronal
population (Supplementary Figure S1). It is worth mentioning

that these frequency bins are characteristic of networks with the
specific neuron types considered in our model. These neuron types
differ in their intrinsic spiking frequencies (Figure 1). Additionally,
the diversity of cortical neuronal populations is not only revealed in
their intrinsic spiking frequencies, but also in other temporal
features such as delayed spiking, where a neuron elicits spikes
following a brief period of quiescence for excitatory inputs. There
are many neuronal populations that exhibit such delayed spiking
behaviors (Komendantov et al., 2019). This is an important
consideration in light of the fact that many studies associated
connection delays with emergent metastability (Cabral et al.,
2022; Hancock et al., 2023). Future work will investigate if and
how the characteristic frequency bins reported in this study are
affected by including additional inhibitory neuronal populations
with distinct intrinsic spiking profiles and by incorporating a range
of connection delays.

The spiking neuronal network models examined in this paper
provide compact mesoscopic scale approximations of regional
collective dynamics that capture a crucial biological complexity at
the level of individual neurons. A limitation of the current work is
that it only considered two types of neuronal populations, whereas
intraregional neuronal circuits consist of populations with diverse
frequency profiles (Komendantov et al., 2019). Nevertheless, the
current work demonstrates that the emergent metastability in an
interneuron population depends on their connectivity with
excitatory neurons and the frequency of the excitatory drive.
Their relationships are revealed in the Gn curves that show
robust gradients (Daoud et al., 2023) along the dimensions
excitatory-inhibitory connection probability (Figure 4A) and the
frequency of the excitatory drive (Figures 3, 4B). Thus, a numerical
optimization using Gn as an objective function can, in principle,
estimate optimal intraregional connectivity configurations among
groups of neurons with heterogenous frequency profiles.

A previous study reported clustering behaviors in a network of
excitatory and inhibitory neurons (Stefanescu and Jirsa, 2008). The
authors investigated cluster transitions of neurons under various
conditions. It is worth noting that they reported several instances of
static clusters in parameter space, where cluster transitions occurred
when changing the network parameters such as the connection
weights. However, endogenous transitory phenomena have been
previously described by Ichiro Tsuda and collaborators using the
framework of chaotic itinerancy (Tsuda, 2001; Tsuda et al., 2004).
We wish to note that the novelty of our work is in the (a) description
of itinerancy that occurs at the level of bursting oscillations, which
was motivated by the experimental observations of this
phenomenon (see Section 1), (b) association of the emergence of
such itinerancy with the underlying biophysical mechanisms, most
notably, the intrinsic differences in the membrane excitability levels
between the excitatory and inhibitory neural populations, (c) reliable
modulation of the itinerant behavior in inhibitory neurons via
excitatory neurons, and (d) formulation of a method to
characterize the synergy of neural transitions between multiple
synchronized states. Furthermore, the Hindmarsh-Rose bursting
neurons employed in (Stefanescu and Jirsa, 2008) did not show
multiple phase clusters for a single network configuration. The
phases of individual bursting neurons were uniformly scattered
around a mean phase. The absence of multi-clustered states in
their bursting neurons may be because they neglected the
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connections within the inhibitory subpopulation. In the present
model, the bursting neurons not only show multiple distinct phase
clusters for a single network configuration, but they also exhibit
endogenous cluster transitions without changing the network
parameters. It may also be worth pointing out the differences
between their network model and the one presented in this
study: (1) In (Stefanescu and Jirsa, 2008), the excitatory and the
inhibitory neural subpopulations did not differ in their intrinsic
dynamics. Their model assumed that in a small cortical volume, the
factors affecting the membrane excitability will be similar for all
neurons. However, recent efforts to comprehensively characterize
the intrinsic physiology of neurons revealed enormous diversity in
neural subpopulations even within a small cortical volume
(Markram et al., 2015; Komendantov et al., 2019). Motivated by
this fact, our model included excitatory and inhibitory
subpopulations with sharply different intrinsic excitability levels,
which are revealed in their current-frequency curves (Figure 1A). (2)
In (Stefanescu and Jirsa, 2008), the connections within the inhibitory
subpopulation were neglected. However, connectivity within the
inhibitory subpopulations exist in the cortex (Wheeler et al., 2024),
and it is an important characterizing feature in data-driven
simulations of cortical circuits (Kopsick et al., 2022). As we have
shown in this study, connections within the inhibitory
subpopulation are crucial for the emergence of itinerant
dynamics. (3) Finally, their model utilized a global coupling
scheme for the network architecture, where every neuron is
connected to every other neuron. In our model, we
probabilistically realized connections between neurons, and we
explored the network dynamics for the full range of connection
probabilities. It is worth noting that cortical neurons are not globally
connected, and connection probabilities are important parameters
in data-driven simulations of cortical circuits (Markram et al., 2015;
Kopsick et al., 2022).

Additionally, the models and the methods of analysis
presented in this paper are easily scalable to study
interregional interactions in the brain. Empirically estimated
anatomical connectivity between brain regions provides useful
information for modeling interregional metastability. Note that
while the current work suggests a link between two temporal
scales (i.e., timescales of neuronal spiking and attractor
transitions) of network dynamics, modeling interregional
interactions using their anatomical connectivity will further
provide a venue to study metastable brain dynamics at a
macroscopic spatial scale. Such models are useful mathematical
tools that will enable a multiscale understanding of cortical
dynamics and illuminate neuronal network mechanisms of
pathophysiology in neurological disorders. As an example, we
briefly discuss how a brain-wide analysis of metastable dynamics
could be useful in elucidating the pathophysiology of Parkinson’s
disease (PD). The structural degeneration of cortical and
subcortical connectivity is a key factor underlying the motor
and cognitive deficits in PD (Cochrane and Ebmeier, 2013;
Atkinson-Clement et al., 2017; McGregor and Nelson, 2019).
However, the mechanisms by which the structural
degeneration alters the brain-wide dynamics in PD are not
well understood. A whole-brain model of metastable dynamics
constrained by the PD-affected anatomical connectivity can
potentially delineate such mechanisms. For instance, amplified

synchronization in beta frequency (8 Hz–30 Hz), which has been
reported in the cortical and basal ganglia circuits of PD subjects, is
hypothesized to contribute to PD symptoms (Hammond et al.,
2007; Brittain et al., 2014; McGregor and Nelson, 2019). In
particular, longer episodes of beta oscillations in the
subthalamic nucleus (STN) (Deffains et al., 2018) and its
higher synchronization with the cortical supplementary motor
area (SMA) were associated with the freezing of gait in PD
(Toledo et al., 2014). It may be hypothesized that the freezing
of gait in PD is contributed by a reduction in synergistic
transitions between different attractor states realized in these
areas. The increased beta synchronization between STN and
SMA observed in PD, and the hypothesized reduction in
attractor transitions can be validated in whole-brain models by
examining their stability (Eq. 6) and collective response
characteristics (Eq. 9) respectively. Furthermore, by selectively
targeting frequency bands for manipulation, one can investigate
causal relationships between specific frequencies of oscillations
and the dynamics of transitions between attractor states realized
across multiple timescales. Such models could also enable the
identification of network mechanisms for restoring optimal brain
dynamics in PD and other neurological disorders via
neuromodulation.
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