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We present a numerical study of pulsatile feedback-based control of synchrony
level in a highly-interconnected oscillatory network.We focus on a nontrivial case
when the system is close to the synchronization transition point and exhibits
collective rhythm with strong amplitude modulation. We pay special attention to
technical but essential steps like causal real-time extraction of the signal of
interest from a noisy measurement and estimation of instantaneous phase and
amplitude. The feedback loop’s parameters are tuned automatically to suppress
synchrony. Though the study is motivated by neuroscience, the results are
relevant to controlling oscillatory activity in ensembles of various natures and,
thus, to the rapidly developing field of network physiology.
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1 Introduction

Themerger of control science and nonlinear dynamics ideas led to essential achievements in
controlling chaos, coherence of noisy dynamics, and noise-induced motion; see (Schöll and
Schuster, 2008) for a review. Another field of application is controlling the level of synchrony. As
is known, synchronization is a general and frequently encountered phenomenon that may be
beneficial or harmful (Winfree, 1967; Kuramoto, 1984; Pikovsky et al., 2001; Strogatz, 2003;
Osipov et al., 2007). So, synchronizing low-power generators helps to sum their outputs and thus
create a high-power source; see, e.g., (Tiberkevich et al., 2009). Synchronization is vital for the
stable operation of power grids (Dörfler and Bullo, 2012) and cardiac pacemakers (Jalife, 1984).
Examples of an opposite value stem from neuroscience, where pathologically increased
synchrony is believed to be a cause of, e.g., Parkinson’s disease (Tass, 1999; Tass, 2000) and
pedestrian bridge dynamics (Dallard et al., 2001; Eckhardt et al., 2007). This paper addresses the
case of a negative impact. It discusses suppressing undesired synchrony in a highly
interconnected population of active, self-sustained oscillators - a problem of general interest
for network physiology (Ivanov, 2021).

Two approaches to this problem are known from the literature: the open-loop (Tass,
1999; 2001; 2002) and closed-loop control (Rosenblum and Pikovsky, 2004a; b; Popovych
et al., 2005; Lin et al., 2013; Wilson and Moehlis, 2015; Holt et al., 2016; Zhou et al., 2017).
The most known and tested open loop scheme is the coordinated reset (Tass, 2003;
Popovych and Tass, 2012; Adamchic et al., 2014; Manos et al., 2021; Munjal et al., 2021;
Khaledi-Nasab et al., 2022); it requires stimulation via multiple electrodes. The feedback
schemes exploit one measuring and one stimulating electrode. Furthermore, the feedback
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techniques can be categorized as continuous-time and pulsatile
methods. Here, we concentrate on the latter case, suitable for
neuroscience applications such as deep brain stimulation (DBS)
(Benabid et al., 1991; 2009; Kühn and Volkmann, 2017), where only
stimulation by pulses is possible.

The main features of our modeling study are as follows. 1) We
suggest a network model with time-dependent global connectivity to
imitate brain activity data with strong amplitude modulation. 2) We
consider that one cannot measure the rhythm of interest directly but
shall extract it from its mixture with other rhythms and noise. 3) We
implement a realistic scheme for real-time estimating the signal’s
phase and amplitude. 4) We suggest an adaptive control approach to
tune the stimulation on the fly. Our main result is that we
automatically find two vulnerable phases per oscillation period
and achieve suppression of the strongly modulated activity by
stimulation at these phases only.

In the rest of this section, we briefly review the main results in
the feedback-based manipulation of the ensemble synchrony and
specify our problem in more detail.

1.1 Feedback control of collective
synchrony: state of the art

All known closed-loop techniques assume one can monitor the
activity in question and stimulate at least a large part of the oscillator
population. The population is supposed to be highly interconnected,
so the mean-filed approximation is justified. If continuous-time
stimulation is possible, one achieves the desired goal by feeding back
a delayed or phase-shifted measurement (Rosenblum and Pikovsky,
2004b; Tukhlina et al., 2007). The explanation is simple: elements of
the population maintain synchrony due to forcing by the mean field.
If stimulation compensates for the mean field, the oscillators
naturally desynchronize due to frequency inhomogeneity and
individual noisy perturbations. It means the stimulation shall be
approximately in antiphase to the measurement and have roughly
the same amplitude. Thus, the problem reduces to determining the
proper phase shift and amplification; this can be done by trial and
error or by an adaptive control scheme (Montaseri et al., 2013). The
paramount property of this technique is the stimulation tends to
zero, or practically to the level of noise, as soon as the control goal is
achieved and the undesired rhythm declines. Therefore, the scheme
is denoted as the vanishing stimulation. In a practical situation, one
measures a mixture of the activity to be suppressed with other
rhythms and noise, so filtration shall be a part of the
feedback scheme.

Another way to describe the mechanism of the continuous
feedback stimulation is to assume that the collective mode
appears via the Hopf bifurcation and write the corresponding
normal form equation. Linear delayed or non-delayed feedback
(Rosenblum and Pikovsky, 2004b; Tukhlina et al., 2007) changes
the linear term and thus stabilizes the otherwise unstable origin.
On the level of individual oscillators, this corresponds to the
asynchronous state. The normal form representation clarifies the
effect of the nonlinear feedback (Popovych et al., 2005): it
changes the nonlinear term in the normal form equation, thus
reducing the collective mode’s amplitude without causing the
bifurcation.

In many applications, especially in neuroscience, continuous-
time stimulation is not feasible and has to rely on a pulsatile feedback
scheme. The most straightforward solution is to employ the
continuous feedback signal to modulate a high-frequency pulse
train (Popovych et al., 2017). Another approach is to modulate
the pulses’ amplitude following the measurement but stimulate only
at the vulnerable phases (Rosenblum, 2020); in this way, one can
essentially reduce the intervention in the system. In this paper, we
follow this path and simulate the desynchronizing feedback
accounting for such practical issues as extracting the signal of
interest from its mixture with noise and real-time estimation of
the signal’s phase and amplitude. We suggest a network model with
time-dependent connectivity to mimic the time course of data
registered from Parkinsonian subjects and demonstrate a
successful synchrony control of such a network by appropriately
timed charge-balanced pulses. Next, we propose and discuss an
algorithm for automatically tuning feedback parameters.

Before modeling the pulsatile feedback-based
desynchronization, we discuss why certain oscillation phases are
vulnerable. Consider a limit-cycle motion subject to an external
stimulus that acts along some unknown direction. This direction
depends on the system’s equations and how the stimulus enters these
equations. Since we do not know the system’s equations, we cannot
predict how the given stimulus influences the oscillation amplitude.
However, we can say that the stimulus pushes the system off the
limit cycle. If we apply the stimulus at such a phase that it pushes the
system towards the unstable steady state inside the cycle, this action
is optimal for desynchronization. Indeed, the ensemble’s
synchronous state corresponds to the collective activity’s limit-
cycle oscillation, while the asynchronous state corresponds to a
fixed-point solution. Thus, there exists an optimal, vulnerable phase
θ0. Obviously, stimulation at θ0 + π with a stimulus of opposite
polarity is also optimal. Unfortunately, we cannot guess θ0. We can
only apply stimuli at different phases and look at the response.

2 Modeling the closed-loop
desynchronization

2.1 Simulating the amplitude-
modulated activity

A commonly used model of collective dynamics in a highly
interconnected oscillatory network is a mean-field coupled
population. In computational neuroscience, the models frequently
incorporate two groups of units, modeling excitatory and inhibitory
neurons; in this case, the coupling organization may be more
complex. The common feature of the models from this class is
that they produce a nearly periodic collective mode. The deviation
from the periodicity is due to the finite-size effect and, sometimes,
weak collective chaos that is more pronounced if individual units are
chaotic. However, the envelope of the rhythm to be suppressed does
not vanish, and currently available techniques successfully treat this
case. We concentrate here on the case when the activity of our
interest is waxing and waning, as frequently observed in
neuroscience measurements [for an example, see the time plots
of band-passed beta-band activity from a patient with Parkinson’s
disease in (Rosenblum et al., 2021)].
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We use a phenomenological model to simulate the waxing and
waning patterns when the activity bursts are interrupted by
quiescent epochs. We take N globally coupled heterogeneous1

Bonhoeffer–van der Pol oscillators:

_xk � xk − x3
k/3 − yk + Ik + ε t( )X + cosψ · P t( ) ,

_yk � 0.1 xk − 0.8yk + 0.7( ) + sinψ · P t( ) ,{ (1)

where k = 1, . . ., N is the oscillator index, and the coupling is
organized via the mean field X = N−1 ∑kxk. Function P(t) describes
external stimulation, and the parameter ψ quantifies how the stimuli
affect the system and determines the phase beneficial for
stimulation. For the following, we fix ψ = π/4. In the simulation
of the feedback loop, this parameter is considered unknown, and a
search algorithm is used to find an appropriate stimulation phase.

A new feature of themodel is the time-dependent coupling strength
ε(t). We assume that it fluctuates around some central value εc. For
simulations, we use a simple algorithm; namely, we let ε(t) be a piece-
wise constant function of time, ε(t) = εn = const for tn≤ t< tn+1 = tn + τn,
where εn and τn are random numbers, chosen from a uniform
distribution between εc ∓Δε and τmin, τmax, respectively. Figure 1
illustrates the synchronization transition in the ensemble of N =
1,000 elements for Δε = 0.015, τmin = 200 and τmax = 500. Here, for
the order parameter, we take the oscillation amplitude2, averaged over a

long time interval, 〈a(t)〉. We see, that for 0.015 ≲εc ≲ 0.03 we obtain
stronglymodulatedmean fieldX. The time plots are given in the Results
section below. For comparison, we also show the synchronization
transition for the usual globally-coupled model with ε = const
(formally, it corresponds to Δε = 0). For simulations, we exploited
the fourth-order Runge-Kutta scheme with the time step 0.1.

The suggested model is certainly purely phenomenological.
However, it is natural to assume that, e.g., neuronal networks in
the brain are not frozen but permanently altered, e.g., due to
plasticity (Manos et al., 2021; Asl et al., 2022; Khaledi-Nasab
et al., 2022). Real-world networks are nonautonomous, adaptive
(Gross and Blasius, 2008; Berner et al., 2023), and subject to internal
fluctuations and external perturbations. Though the account of all
details is impossible, a phenomenological model can help to describe
the dynamics close to the synchronization transition point.

2.2 Real-time preprocessing

2.2.1 Measurement and filtering
Measuremental noise is inevitable. This noise and some irrelevant

rhythms are often intense and contaminate the useful signal, so
filtration becomes necessary before phase and amplitude estimation.
For real-time applications, the filter can use only the current and
previous measurement points, i.e., it must be causal. Thus, we
implement a finite impulse response bandpass filter of length 2M +
1 points. The filter lengthM determines its quality: a longer digital filter
provides better signal attenuation for the frequencies outside the desired
band. Finite impulse response filters have linear phase response, which
means they do not distort the signal but delay it byM points. Thus, the
filter’s output is delayed byMδ, where δ is the sampling rate. Hence, we
can obtain only delayed values of the instantaneous phase and
amplitude. If the delay is small, we can estimate the actual phase as
θ(t) ≈ θ(t − Mδ) + ωMδ, where ω is the average oscillation frequency.
However, the larger the delay, the worse the estimation because the
system is noisy and exhibits phase diffusion. Thus, the filter shall not be
too long.On the other hand, short filters are not efficient. Hence, there is
an optimal filter semilength M.

2.2.2 Causal phase and amplitude estimation
Here, we implement an algorithm exploiting a non-resonant linear

oscillator described in (Rosenblum et al., 2021). The idea is as follows.
Suppose, for a moment, our signal is harmonic, and we use it to drive a
linear damped oscillator; we use this oscillator as a virtual “measuring
device.”The phase and amplitude of the oscillator are related to those of
the driving force by well-known resonance curve formulas. Since we
know the state of the linear oscillator, we invert the resonance relations
to obtain the phase and amplitude of the force, i.e., the phase and
amplitude of the analyzed signal. The crucial step is to choose the proper
parameters for the “device.”By choosing the linear oscillator’s frequency
much larger than the signal’s frequency and selecting appropriate
damping, we can ensure that the amplitude and frequency response
is approximately flat in a large interval of input frequencies. We need
two oscillators to achieve this: a strongly-damped one yields a nearly
constant amplitude response for frequencies much smaller than the
resonant one, while a weakly-damped one provides a nearly constant
phase response. The algorithm also works for the force with slowly
varying amplitude and frequency. Practically, we substitute each linear

FIGURE 1
Synchronization transition in system (1) illustrated by the
dependence of the time-averaged amplitude 〈a(t)〉 on the coupling
strength. Black dashed line presents the standard case when the
coupling is time-independent, i.e., Δε= 0. Blue, red, andmagenta
solid lines show the averaged, minimal, and maximal amplitude,
respectively. Vertical dotted-dashed line indicates the value εc = 0.025
used in the following; this value corresponds to the strongly
modulated mean field with vanishing envelope, see time plots
in Figure 4.

1 Parameters Ik determine oscillator frequencies; they are taken from a

Gaussian distribution with the mean 0.6 and standard deviation 0.1.

These parameters ensure that all units are in the oscillatory state and

have different frequencies.

2 For the amplitude calculation we exploit the MATLAB
®
envelope function;

this function uses the spline interpolation between the local maxima to

provide a smooth envelope of a time series.
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oscillator with the corresponding differential equation and solve it
numerically for the discretely-spaced input. Reference (Rosenblum
et al., 2021) provides an efficient numerical scheme. The approach
has demonstrated its efficiency in tests with bandpassed beta activity of
Parkinsonian subjects (Busch et al., 2022).

2.3 Stimulation

We model stimulation by short stimuli. Thus, P(t) = ∑np(t − tn),
where tn are the instants of stimulus’s application and p(t) describes the
pulse shape. The stimuli have a finite length Ts, i.e., p(t) = 0 for t∉[0, Ts].
In many neuroscience applications, an additional requirement applies:
the stimuli must be charge-balanced to avoid charge accumulation in
the live tissue. Thus, we use bipolar stimuli consisting of two rectangular
pulses of opposite polarity and equal area to fulfill the condition
∫Ts

0
p(t)dt � 0. Notice that, generally, there is a gap between two

monopolar pulses. We apply them when the collective oscillation phase
is close to the optimal one (for themoment, we assume that this optimal
phase θ0 is known). Namely, we check whether the circular distance
between θ and θ0 is smaller than tolerance α. We also introduce the
minimal intervalΔ between the pulses. In dependence on α,Δ, there can
be one or several stimuli when phase θ(t) crosses the α-vicinity of θ0.
Next time, the stimulation is turned on when θ ≈ θ0 + π, within the
tolerance α. We illustrate the algorithm in Figure 2.

Next, we discuss the intensity of the stimulation. We implement a
feedback algorithmwith the feedback factor εfb < 0. It means the signal’s
instantaneous amplitude a(t) determines the stimulation amplitude An,
i.e., the height of the narrow rectangular pulse of the nth stimulus: An =
A(tn) = max(εfba(t), − A0) for stimulation around θ0 and An =
A(tn) = −max(εfba(t), − A0) for stimulation around θ0 + π.3 The
parameter A0 determines the maximal allowed stimulation amplitude.

Until now, we assumed that the optimal (vulnerable) phase θ0
and the feedback factor εfb are known. In an actual experiment, we
must determine these parameters, i.e., we need an adaptive control
scheme. A natural approach is to try stimulation with different θ0, εfb
and look at whether the signal’s amplitude is enhanced or
suppressed. The known algorithms (Montaseri et al., 2013;
Rosenblum, 2020) work well for signals without strong amplitude
modulation, both for time-continuous and pulsatile stimulation.
However, our tests find that these adaptation schemes become
unstable for strong modulation, i.e., in the case treated in this paper.

We solve the problem by exploiting a trial-and-error algorithm. It
means we try to stimulate at various phases and look when the
stimulation is most efficient. However, this is not that trivial for the
case of a burst-like, amplitude-modulated signal because we cannot tell
the amplitude reduction due to stimulation from that due to internal
dynamics. Indeed, the data’s essential feature is that the amplitude
decreases practically to zero from time to time without any stimulation.
On the other hand, even if we stimulate at the proper phase, the
amplitude can grow due to increased coupling within the oscillator
population. We approach the problem as follows.

In the first step, we do not stimulate but calculate the autonomous
system’s average amplitude aaut. Next, in the learning phase, we start
with some initial values for εfb and then gradually change θ0 from zero to
2πNcycl. Namely, we stimulate as described form = 5 oscillation periods
and then check whether acurr < amin. Here, acurr is the current amplitude
value, averaged overm periods, and amin is theminimal amplitude value
(Initially, we set amin = 0.3aaut.) If acurr < amin, we set amin = acurr and
choose the current value for the optimal phase as θopt = θ0. Then, we
stimulate the nextm cycles and check the condition acurr < amin again. If
acurr > amin but decreases, we make no changes and continue
stimulation; otherwise we adjust the parameters as

θ0 ↦ θ0 +max Δθ,Δθ · acurr/aaut( ) ,
where Δθ is the maximal allowed step, e.g., Δθ = 2π/25, and

εfb ↦ εfb − f εfb( ) , (2)

FIGURE 2
This schematic figure illustrates the algorithm of stimulation at vulnerable phases. Let such phase be θ0. It means that a negative pulse applied at this
phase pushes the point on the limit cycle (blue closed curve) towards the unstable steady state inside the cycle (filled circle), and so does a positive
stimulus applied at θ0 + π. Practically, we check whether the circular distance between the current phase θ(t) and optimal phase θ0 is smaller than the
tolerance parameter α. So, the system is stimulated if the phase is in the vicinity of θ0 or θ0 + π, as indicated by double-headed arrows. Generally,
several stimuli (shown by red bars) fulfill this condition; for this illustration, we assume that this number is two. The right part of the figure shows the actual
stimulus shape used in simulations. Here, two negative stimuli are shown. Each stimulus consists of a narrow but high rectangular pulse followed after
some gap by a compensating pulse that is low but wide.

3 We remind that we compute the instantaneous amplitude for the filtered

and, hence, time-delayed signal.
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where f is a decreasing function of |εfb|. Using such a function, we avoid
feedback that is too strong. For real-time applications, it is beneficial to
choose a computationally efficient function; we choose
f(x) ~ (1 + cx2)−1, where c is a parameter. This described step
implements the trial-and-error search: if amplitude reduction
accompanies the stimulation, we keep the stimulation parameters
unchanged. Otherwise, we adjust them. We proceed with the
learning epoch unless θ0 reaches 2πNcycl and then take the current
values θopt and εfb for the following. (If we never achieved amin < 0.3aaut
during the learning epoch, we force the adaptation algorithm to perform
one more learning cycle.) Thus, the length of the learning epoch is
determined by the number Ncycl of complete cycles of variation of θ0;
Figure 7 in the next Section illustrates the dependence of the results on
Ncycl. After the learning epoch, we keep optimal phase constant,
continue tracing the signal’s amplitude, and adapt the feedback
factor according to Eq. 2 if acurr > 2amin.

3 Results

In this section, we show the results of feedback-based
suppression of the noise-contaminated mean field X(t) generated
by the globally coupled population described by Eq. 1. For the
observable used by the control scheme, we take XN = X + σξ, where ξ
is white Gaussian noise with zero average and standard deviation
one. We fix σ = 3, i.e., the noise is strong.

As an auxiliary step, we demonstrate in Figure 3 the effect of the
digital filter.4 Above, we argued that there is an optimal filter

semilength M. Here, we show the suppression degree in
dependence on M. To concentrate on this issue, we consider the
deterministic case of Eq. 1 with ε = const = 0.03. We scan M and θ0
and show by color coding the suppression factor S = S(θ0, M). We
define the suppression factor as the ratio of the autonomous system’s
standard deviation over the stimulated system’s standard deviation
(the latter is computed after a sufficiently long transient). As
expected, short filters are inefficient, while for long filters, the
stimulation setup becomes more sensitive to the choice of θ0. For
the following, we chooseM = 350; for this filter, good suppression is
achieved for 0.64π ≲θ0 ≲ 0.84π.

Figure 4 presents the main results. Now, we exploit the model
with the time-dependent coupling with parameters εc = 0.025 and
Δε = 0.015.5We run the unstimulated system for t < 2 · 104, then turn
on the stimulation and successfully suppress the collective
oscillation. We take Ncycl = 1 for the adaptation epoch. The
estimated optimal phase θopt = 0.67π corresponds to the domain
of efficient suppression for the chosen filter.

Figure 5 and Figure 6 provide further illustrations for this test. In
Figure 5, we show a short epoch of the data from Figure 4 for the
suppressed state magnified so that one sees individual stimuli.
Figure 6 proves that the decrease of the amplitude is indeed due
to stimulation and not internal dynamics. To demonstrate this, we
run the system twice, with the same initial conditions and the same
realization of the random time-dependent coupling ε(t). However,
we switch on the stimulation in the first case while the system
remains autonomous in the second.

The natural question is whether the suggested algorithm always
finds the proper stimulation parameters. The answer is no. The results
in Figure 4 are typical, but sometimes the algorithm fails. Since it traces
the amplitude variation in response to stimulation, the errors are
inevitable because the amplitude can occasionally reduce due to
internal dynamics, not stimulation. To estimate the probability of a
failure, we performed 1,000 runs with different random realizations of
the time-dependent coupling and computed the suppression factor S.
We repeated this test with two and three learning cycles, letting θ0 in the
learning phase grow to 4π and 6π, respectively. The results shown in
Figure 7 demonstrate that the stimulation algorithm fails in ≈ 10% of
runs (S < 1, the amplitude increases) and provides essential suppression
(S > 2) in ≈ 70% of trials.We also see that adaptation with several
learning cycles is not helpful: the performance in the case of three cycles
is only slightly better than for one cycle.

4 Discussion

We presented a detailed simulation of the pulsatile feedback-
based control of collective synchrony, concentrating on the case
when the observed dynamics exhibit strong amplitude modulation;
this case is relevant, e.g., for neuroscience. To simulate such
modulated activity, we introduced a model of an oscillatory
network with global randomly fluctuating coupling. We assumed

FIGURE 3
Suppression factor (color-coded) as a function of the stimulation
phase θ0 and causal filter semilength M. Short filters are not efficient
and, therefore, yield poor suppression. Large M ensures much better
filtration but increases the delay introduced by the filter and thus
spoils the overall performance of the feedback desynchronization
scheme. The optimal M is about 350. For larger M, the maximal
suppression factor remains nearly the same, but the algorithm
becomes more sensitive to the choice of θ0.

4 We used the MATLAB
®
fir1 function.

5 Parameters of the stimuli are: width of the first pulse is 0.2, gap is 1, and

width of the compensating pulse is 1.6; the minimal distance between the

pulses is Δ = 0.2. Further parameters are: α = 0.1π, A0 = 0.5.
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that the input to the feedback loop is a mixture of the ensemble mean
field and broad-band noise of high intensity. We demonstrated an
efficient network desynchronization by incorporating a bandpass
filter into the feedback loop and using an adaptation algorithm to
tune the stimulation setup. We emphasize that we stimulate at
vulnerable phases only and reduce the stimulation amplitude as
soon as the goal is achieved, thus minimizing the intervention into
the system. This property may be helpful for applications in life
sciences and network physiology (Ivanov, 2021).

The results show that contamination of the rhythm in question
by other spectrally separated rhythms and noise is not an obstacle.
The feedback loop compensates for the delay introduced by a causal

bandpass digital filter. Substituting the simple filter used in our
simulations with a more advanced one [see, e.g. (Smetanin et al.,
2020)] may improve the overall performance.

The algorithm finding the optimal stimulation phase and
feedback factor can possibly be improved. One option to enhance
its performance is to restart the learning epoch after some time if the
suppression factor after the first search for optimal parameters is too
small. An alternative approach is to substitute the adaptation
algorithm by inference of the amplitude response of the system
(Duchet et al., 2020; Cestnik et al., 2022) using specially designed test
stimulation; the inferred information can then be used for
suppressing stimulation.

FIGURE 4
Illustration of the feedback-based pulsatile desynchronization. The top panel presents the mean field X of system (1) and its mixture with noise, XN.
The latter is used as the input to the feedback loop. The second panel from the top presents Xf, that is, the filtered series XN, and the stimulation that is
turned on at t = 2 · 104. At this instant, the learning epoch begins. During this epoch, the stimulation phase θ0 grows from zero to 2π. After that, the
stimulation continues with the optimal value of θ0. The bottom panel presents the time-dependent coupling.

FIGURE 5
Here, we magnify the short epoch of the data from Figure 4 (second panel from the top). In this magnification, one can see individual stimuli.
Negative polarity pulses appear near the optimal phase θopt, while positive pulses appear near θopt+ π. There are one or two pulses in the neighborhood of
the vulnerable phase for the chosen parameters.
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Our simulations use bipolar charge-balanced stimuli consisting
of two rectangular pulses with a gap in between. As known
(Popovych O. V. et al., 2017; Popovych and Tass, 2019), the gap
influences the stimulation efficiency, and optimizing the stimulus’s
shape remains challenging (Wilson and Moehlis, 2014; Mau and
Rosenblum, 2022). We notice that the desynchronization task
simplifies without this application-specific charge balance
requirement, i.e., when monopolar stimuli are allowed.

Finally, we stress that we paid particular attention to the
computational efficiency of all building blocks of the control
loop. Neither the phase and amplitude estimation nor optimal

parameters search require functions computation but only
arithmetical operations. Thus, the feedback scheme can be used in
real-time applications and easily implemented in specialized hardware.
Therefore, the presented results can be helpful in ongoing experimental
research on phase-specific deep brain stimulation (Rosin et al., 2011;
Cagnan et al., 2013; 2017; Little et al., 2013; Holt et al., 2019; McNamara
et al., 2020). As a possible direction for future studies, we mention a
further development of a network neuronal model exhibiting
amplitude-modulated, burst-like behavior that will account for
different types of plasticity, external inputs, internal fluctuations, and
other realistic properties of the pathological pacemaker.
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FIGURE 6
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(S > 2).
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