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Spreading depolarizations (SD) are slow waves of complete depolarization of
brain tissue followed by neuronal silencing that may play a role in seizure
termination. Even though SD was first discovered in the context of epilepsy
research, the link between SD and epileptic activity remains understudied. Both
seizures and SD share fundamental pathophysiological features, and recent
evidence highlights the frequent occurrence of SD in experimental seizure
models. Human data on co-occurring seizures and SD are limited but
suggestive. This mini-review addresses possible roles of SD during
epileptiform activity, shedding light on SD as a potential mechanism for
terminating epileptiform activity. A common denominator for many forms of
epilepsy is reactive astrogliosis, a process characterized by morphological and
functional changes to astrocytes. Data suggest that SD mechanisms are
potentially perturbed in reactive astrogliosis and we propose that this may
affect seizure pathophysiology.
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Introduction

Epilepsy is one of the most common neurological disorders—estimated to affect
65 million people worldwide (Hesdorffer et al., 2011; Neligan et al., 2012; Beghi, 2016).
It is a chronic disorder, characterized by sudden, violent perturbations of normal brain
functions, accounting for much stigma, morbidity and in some cases death for the affected
individuals. There is a striking lack of knowledge of the specific cellular mechanisms at play
in epilepsy. For instance, the process transforming normal brain matter to a focus for
epileptic seizures is elusive. Furthermore, key questions like “What cellular mechanisms set
in motion an epileptic seizure?” and “What terminates seizure activity?” remain unanswered.
Failure of the mechanisms that curb or prevent hyperexcitation have been increasingly
recognized as probable key pathogenic factors of epilepsy.

Spreading depolarizations (SD) are slow waves of complete depolarization of gray matter
followed by neuronal silencing, involved in a range of brain disorders. During SD profound
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changes occur in the brain tissue. For instance, transient hypoxia,
cellular swelling, a temporary breakdown of the blood-brain barrier, as
well as severely perturbed transmembrane ionic gradients are known to
occur (Takano and Nedergaard, 2009; Charles and Baca, 2013). SD was
first discovered in 1944 by Aristides Leão while studying seizure activity
in rabbits. He discovered a wave-like phenomenon of silencing of brain
function that occurred in the seizing brain (Leao, 1943). Since then a
large body of literature addresses the role of SD in brain disorders
(Dreier, 2011; Lauritzen et al., 2011; Ayata and Lauritzen, 2015). The
phenomenon is believed to be the cellular substrate of themigraine aura,
and in ischemia, brain trauma and subarachnoid hemorrhage, SD is
believed to add insult to injury by increasing the metabolic demand of
an already compromised tissue (Takano and Nedergaard, 2009; Dreier,
2011; Lauritzen et al., 2011; Charles and Baca, 2013; Hartings et al.,
2020; Dreier et al., 2022). While the role of SD in for instance ischemia
and migraine has been quite extensively explored, the role for SD in
epilepsy and seizures is much less studied. Seizures and SD are both
paroxysmal hyperexcitability phenomena that share elemental
pathophysiological features (Rogawski, 2008; Dreier et al., 2012; Wei
et al., 2014;Mantegazza and Cestèle, 2018). Importantly recent evidence
clearly indicates that SD is a frequent occurrence in a range of acute and
chronic experimental seizure models (Aiba and Noebels, 2015;
Khoshkhoo et al., 2017; Heuser et al., 2018; Bahari et al., 2020;

Tamim et al., 2021). Data from humans are scarce, although a few
studies have demonstrated co-occurring seizures and SD following
subarachnoid hemorrhage or brain trauma, by intracerebral electrodes
(Fabricius et al., 2008; Hartings et al., 2011; Dreier et al., 2012). Even
though SD and seizure activity is clearly linked, a surprisingly small
number of articles directly address the role of SD in the seizing brain. In
this mini review we will address the role of SD as a common
denominator of migraine and epilepsy, and discuss SD as a
mechanism capable of terminating epileptiform activity. Moreover,
we will discuss potential pathophysiological roles of reactive
astrocytes in SD in the context of seizure termination. Table 1
summarizes relevant studies and reviews about co-occurrence and
shared pathophysiological mechanisms between SD and
epileptic activity.

Clinical overlap between migraine
and epilepsy

The association between migraine and epilepsy was already
recognized more than a century ago (Gowers, 1906; Noebels,
2012; Rogawski, 2012). Migraineurs exhibit a significantly
elevated risk of epilepsy compared to non-migraineurs, mirroring

TABLE 1 Key literature on studies and reviews underpinning co-occurrence and shared pathophysiological mechanisms between spreading depolarization
and epileptic activity.

Publication Ref. Method Main findings

Animal studies

Tamin I et al., Nat Commun
2021

Tamim et al.
(2021)

In vivo mouse model of focal neocortical seizures triggered
chemically. Optogenetic or KCl-induced SDs with antiseizure effect

SD terminating epileptic activity

Heuser K et al., Cerebral Cortex
2018

Heuser et al.
(2018)

2-photon calcium imaging in awake mice with epilepsy, direct
observation of SD under ongoing epileptic activity

SD terminating epileptic activity

Samoteva IS et al., Neuroscience
2013

Samotaeva et al.
(2013)

Intracortical microinjections of selective Ih channel antagonist in a
genetic epilepsy model in rats

Suppression of absences seizures by SD

Human studies

Dreier JP et al., Brain 2012 Dreier et al.
(2012)

Field potential recordings of patients with aneurismal subarachnoid
hemorrhage, and from neocortical slices from patients with
intractable temporal lobe epilepsy

SD co-occurrence with epileptic activity

Fabricius M et al., Clin
Neurophysiol 2008

Fabricius et al.
(2008)

Intracortical EEG in acute brain injury SD co-occurrence with epileptic activity

Zangaladze A et al. Epilepsy
Behav, 2010

Zangaladze et al.
(2010)

Phenotype-genotype correlation Sporadic hemiplegic migraine and epilepsy
associated with CACNA1A gene mutation

Berger M et al. Cephalalgia, 2008 Berger et al.
(2008)

Human neocortical slice experiments SD enhances human neocortical excitability
in vitro

Review articles

Dreier, JP. Nat Med 2011 Dreier (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease

Rogawski, MAArch Neurol 2008 Rogawski (2008) Common pathophysiologic mechanisms in migraine and epilepsy

Haut SR et al. Lancet Neurol
2006

Haut et al. (2006) Chronic disorders with episodic manifestations: focus on epilepsy and migraine

Dreier JP et al., J Cereb Blood
Flow Metab 2017

Dreier et al.
(2017)

Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and
recommendations of the COSBID research group

Bauer PR et al. Nat Rev Neurol
2021

Bauer et al.
(2021)

Headache in people with epilepsy
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the increased prevalence of migraine in populations with epilepsy
(Ottman and Lipton, 1994; Haut et al., 2006; Bagheri et al., 2020).
Both migraine and epilepsy manifest as chronic disorders with
recurrent episodic attacks and interictal wellbeing (Ryan and
Ptácek, 2010). In some instances, the attacks persist, leading to
status epilepticus or status migrainosus, respectively. Both migraine
attacks and epileptic seizures go through distinct phases, including
prodromal and/or aura phases, the attack itself, and a postdromal or
postictal phase.

While inducing a seizure through migraine is uncommon,
headaches often accompany seizures. Although preictal and ictal
headaches are infrequent, postictal headaches are prevalent and may
exhibit migraine-like features (Silberstein et al., 2008). Both
migraine and epilepsy may present with a range of symptoms
involving visual, auditory, somatosensory, or motor features. In
some cases, migraine aura may precede seizures, a phenomenon
termed migralepsy (Lennox, 1960; Cianchetti et al., 2013; Headache
Classification Committee of the International Headache Society
IHS, 2018). While migraine boasts a broader array of triggering
factors compared to epilepsy, numerous shared triggers exist, such
as sleep deprivation, alcohol, bright light, stress or stress relief, and
hormonal changes.

Strong support for a shared genetic basis emerges from the
identification of genes implicated in both epilepsy and migraine.
Phenotypic-genotypic correlations, particularly mutations in the
genes CACNA1A (P/Q-type voltage-gated Ca2+ channel),
ATP1A2 (Na+-K+ ATPase), SCN1A (voltage-gated Na+ channel),
are observed in familial hemiplegic migraine, as well as in
generalized and focal epilepsies (Chioza et al., 2001; Zangaladze
et al., 2010).

Also in terms of treatment, a clear overlap exists between
migraine and epilepsy. Robust evidence, including findings from
randomized controlled clinical trials, supports the effectiveness of
anti-seizure medications such as valproate, topiramate, gabapentin,
pregabalin, levetiracetam, zonisamide, and lamotrigine as preventive
drugs for migraine (Olesen and Ramadan, 2008; D’Amico, 2010;
Calandre et al., 2010; Bermejo and Dorado, 2009; Villani et al., 2011;
Lampl et al., 2005). Furthermore, case reports suggest that
sumatriptan may be effective in treating postictal headaches
(Jacob et al., 1996). The extensive overlap across clinical
presentation, genetic predisposition and therapeutic response is
suggestive for a common pathophysiological framework.

An elegant way to study the spatiotemporal co-occurrence of SD
and epileptic activity is by intracranial electrocorticography (ECoG).
In neurocritical care, this method may be an important future tool
for prognostication and personalized treatment (Dreier et al., 2017).
In human ECoG recordings, SD are easily distinguishable from ictal
activity because the negative DC shift of SD is several times larger
than the negative DC shift of an ictal event, and the propagation rate
is usually much faster in the latter (Dreier et al., 2012). Both events
are often co-occurring in acute brain conditions, including in
patients with acute status epilepticus (Fabricius et al., 2008).
However, SD in human epilepsy is understudied. Whether SD
has a role in epileptogenesis, defined as the transformation of
normal brain matter to one that is prone to generate epileptic
activity, remains to be investigated. SD facilitates neuronal death,
which is one key feature of epileptogenesis. Notably, early SD
showed a significant association with the development of late

epilepsy in patients with acute subarachnoid hemorrhage (Dreier
et al., 2012). A recent small prospective study performed in patients
with serious traumatic brain injury and malignant ischemic stroke
found no association between SD events and epileptogenesis
(Sueiras et al., 2021).

Spreading depolarizationwaves as local
emergency brakes

The brain operates on a fine balance between excitation and
inhibition, and potentially, only small relative reductions in
inhibition or increases in excitation may cause synchronization of
neural networks and resultant seizure activity (Isaacson and
Scanziani, 2011). Generalized seizures, particularly in an
evolutionary perspective, are detrimental as they render the
organism incapable of reacting to external stimuli and evading
predation, in addition to potential injuries from falling, or death.
Hence, potent mechanisms should be in place to prevent seizure
activity. Since SDs are known to co-occur with seizures, can be
elicited by some of the same mechanisms as seizures, and strongly
suppress neuronal activity for minutes, it is tempting to speculate
that SD could be one such mechanism.

The exact mechanistic underpinnings underlying SD initiation
and propagation are not known. However, it is believed that
increases in extracellular K+ concentration, and potentially an
interplay with extracellular glutamate, are key events, setting in
motion a self-regenerating wave-like depolarization. Triggering of
SD experimentally can be achieved in many ways, but likely a
common denominator of all these methods is an increase of K+

above a threshold level of ~15 mM in a sufficiently large extracellular
volume (Tang et al., 2014; Wei et al., 2014), an increase of local
extracellular glutamate (Parker et al., 2021), or an interplay between
these two factors. For the propagation of SD, we have demonstrated
that elevations in extracellular K+ seems to precede any other
significant local cellular event by several seconds (Enger et al.,
2015). This is in line with one of the earliest hypotheses about
SD, namely that spread of extracellular K+ released by depolarized
neurons serves to depolarize neighboring cells, leading to more
release of K+ and a self-regenerating wave of depolarization
(Grafstein, 1956). The exact mechanisms are, however, still unclear.

The changes associated with SD in the brain tissue are dramatic,
and it has been clearly shown that SD waves are detrimental to
already compromised brain tissue (Lauritzen et al., 2011). Hence,
most studies on SD currently focus on the damaging effects of SD.
However, the role of SD in migraine may suggest that given an
uncompromised metabolic supply, SD may not be such a
detrimental event (Hadjikhani et al., 2001; Lauritzen et al., 2011).
After all, migraineurs may experience hundreds of auras throughout
a lifetime with strikingly few realized long-term consequences. Our
data, directly visualizing SD in cortex in awake behaving mice with
two-photon microscopy (Enger et al., 2017) (Figure 1), corroborate
this idea as we find that in the awake state with unperturbed
physiological conditions, brain tissue regenerates from SD events
considerably faster than what has been reported in anesthetized mice
(Enger et al., 2017). SDs are relatively frequent occurrences in the
population. For instance, the lifetime prevalence of migraine has
been estimated to be ~30%, of which about a quarter experience aura
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symptoms (Russell and Olesen, 1996; Kim et al., 2022). Recordings
in humans suggest that SDs outside primary sensory areas are
difficult to detect for the patient, or give subtle unusual
symptoms pertaining to association cortices (Bowyer et al., 2001;
Vincent and Hadjikhani, 2007; Hadjikhani and Vincent, 2021).
Hence, it could be that SD are more frequent than what patients
report in the form of symptomatic migraine auras (Hadjikhani and
Vincent, 2021).

Little focus has been given to the potential beneficial roles of SD,
and why this seemingly pathological event is so very well conserved
through phylogeny (Ayata and Lauritzen, 2015). SD can be induced
in a broad range of species, from grasshoppers and mudpuppies to
man (Pietrobon and Moskowitz, 2014; Ayata and Lauritzen, 2015;
Kramer et al., 2016). Because of this ability of the nervous tissue to
sustain such activity, and its apparent prevalence at least in humans,
it is tempting to speculate that SD may serve beneficial roles. In the
aftermath of spreading depolarizations the neurons are silenced for
several minutes, and potentially curbing brain hyperexcitation is a
beneficial physiological role for SD. SDs may serve as an emergency
brake that prevent localized hyperexcitation to transform into a full-
blown seizure, and potentially SD plays a role in ending seizure
activity in the brain.

Spreading depolarization silence
neuronal activity during seizures

The spontaneous termination of seizures remains a fundamental
question in the field of epileptology without a definitive answer
(Lado and Moshé, 2008; Löscher and Köhling, 2010). As proposed
by Kramer et al. brain seizure activity undergoes a critical transition
when approaching termination, that can be observed in EEG
(Kramer et al., 2012). Especially prolonged seizures, such as those
seen in status epilepticus, repeatedly approach but do not surpass
this critical transition (Kramer et al., 2012). Several mechanisms
have been proposed to play a role in seizure termination, including
increased GABAergic signaling, neurotransmitter or ATP depletion,
ionic imbalance, or release of adenosine, which has an inhibitory
effect on neurons (Lado and Moshé, 2008; Kramer et al., 2012).
Could it be that SD in the seizure generating circuitry plays a role in
seizure termination?

A phenomenon sharing both clinical and electrophysiological
features with SD is postictal depression (PD). PD refers to the
period of altered brain activity that follows a seizure (So and
Blume, 2010). Electrophysiologically it is characterized by
suppression and neuronal activity similar to what is observed in
SD. PD is defined as abnormal slow-wave activity or EGG
amplitudes of <10 µV within 30 s of seizure cessation, lasting
more than 2 s (So and Blume, 2010; Bateman et al., 2019). It
has been found in 84% of seizures and in 94% of epilepsy patients
(Bateman et al., 2019). Key clinical features of PD are mood
changes, fatigue, cognitive impairment, and also physical
symptoms like headache and muscle aches, all phenomena also
observed in migraine patients (Pottkämper et al., 2020). While the
exact mechanisms of postictal depression are not understood,
researchers have proposed several factors that may contribute
(Bruno and Richardson, 2020; Pottkämper et al., 2020).
Although PD often manifests as a generalized phenomenon,

which is difficult to reconcile with the relatively localized nature
of SD, SDs in key parts of the seizure circuitry, like the
hippocampus, may play a role.

Few investigators have looked into the actual role of SD in
seizure termination. In Heuser et al. 2018, we showed that kainate-
induced seizure activity in the hippocampus appeared to be
terminated by SD waves (Heuser et al., 2018) (Figure 1): After
SD, no epileptic activity was recorded locally for several minutes,
before seizure activity typically re-emerged. Similar observations
were made in a study presenting a model for inducing seizures by
optogenetically stimulating cortical interneurons, where they
observed fluorescence waves characteristic of SD waves
(Khoshkhoo et al., 2017). In Samotaeva et al. 2013 they observed
that SD induced by cortical sham microinjections suppressed spike-
wave discharges in WAG/Rij rats, a genetic model for absence
epilepsy, for up to 90 min (Samotaeva et al., 2013). In another
study in the same rat model that also displays audiogenic seizures,
they found that audiogenic seizures associated with SD were
associated with a suppression of spike-wave discharges for over
1 h (Vinogradova et al., 2005). Recently, in Tamim et al. 2021 they
elegantly demonstrated that SD in addition to often occuring during
seizure activity also played a prominent role in terminating seizure
activity, and even prevented generalization of seizures (Tamim et al.,
2021). They showed that focal seizures elicited by 4-aminopyridine,
penicillin and bicuculline all triggered SD events, in particular if the
seizure activity spread widely. Moreover, by inducing SD
experimentally during seizure activity they were able to both
prevent seizure generalization and terminate seizure activity
(Tamim et al., 2021). In the same study they also showed that
inhibiting SDs pharmacologically led to more severe seizure activity
and a higher chance of generalization of seizure activity. In another
study using Kv1.1 potassium channel knockout mice or mice with a
knock-in mutation in the Scn1a gene known to cause Dravet
Syndrome in humans, brainstem SD were found during induced
seizure activity (Aiba and Noebels, 2015).

These studies were performed in acute seizure models, or in
induced seizures in seizure susceptible animal models. Since
seizures and SD can be triggered by many of the same agents,
another question is to what extent SDs also occur in relation to
spontaneous seizures in chronic seizure models. A recent
preprint provides evidence suggesting that indeed SD is a
hallmark of chronic epilepsy models as well (Bahari et al.,
2020). They demonstrate that in a chronic tetanus toxin
model of temporal lobe epilepsy in rats, and in a post cerebral
malaria model of epilepsy around one-third of spontaneous
seizures were associated with SD (Bahari et al., 2020). Data
from humans demonstrating SDs co-occurring with seizures
are scarce, likely because standard scalp EEG does not pick up
SDs (Dreier et al., 2017). Moreover, intracerebral recordings are
often slightly high pass-filtered obscuring the classical direct
current shifts associated with SD (Dreier et al., 2017). A
handful of studies have demonstrated co-occurring seizures
and SD following subarachnoid hemorrhage or brain trauma
by intracerebral electrodes (Fabricius et al., 2008; Hartings et al.,
2011; Dreier et al., 2012). In these studies typically SDs are
recorded in a subset of seizures. However, since SDs are
relatively localized events, it could be that the reported rates
are underestimating the true occurrence.

Frontiers in Network Physiology frontiersin.org04

Enger and Heuser 10.3389/fnetp.2024.1360297

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1360297


Complicating the interpretation of SD in curbing
hyperexcitation is that experimental data suggest that neurons
both locally and in other parts of the brain are hyperexcitable in
the aftermath of a SD wave, even 45 min after the event
(Wernsmann et al., 2006; Berger et al., 2008; Ghadiri et al.,
2012). Potentially these findings could explain hyperexcitation
symptoms in migraineurs like photophobia. In Bahari et al.
2020 they also reported that the interval between seizures for
seizure bouts associated with SD was shorter than for seizures
without SD (Bahari et al., 2020). However, that does not
necessarily mean that SD promotes seizures: In Tamim et al.
2021, Samotaeva et al. 2013 and Vinogradova et al. 2005, a clear
suppression in epileptiform activity for 30–90 min following SD was
observed (Samotaeva et al., 2013).

Another intriguing aspect is that many pharmacological agents,
including anti-seizure medication, have been shown to impede SD
(Klass et al., 2018). However, these drugs also attenuate excitability
in general and by this also target SD. The differential effects on

pharmacological agents on epileptiform activity versus SD is to the
best of our knowledge not investigated.

Possible role of spreading
depolarization in preventing
generalization of seizure activity

We have here hypothesized and presented data from reports
suggesting that SD may be a mechanism for the brain to curb
epileptiform activity. Could SD also play a role in preventing spread
of localized spontaneously occurring interictal epileptiform activity before
it spreads to larger neuronal networks and becomes a clinical seizure?

A range of brain lesions and brain disorders can trigger
epilepsy (Balestrini et al., 2021). Examples include structural
changes associated with stroke and traumatic brain injury. A
common denominator of many of these insults is that they are
associated with reactive astrogliosis (as reviewed in (Pekny and

FIGURE 1
(A)Cortical spreading depression wave induced by KCl imaged by in vivo two-photonmicroscopy using the genetically encoded fluorescent sensor
jRCaMP1a in unanesthetizedmice. The sensor was expressed under the human synapsin1 promoter. In the awake unanesthetized state thesewavesmove
with a speed of 4.5–6 mm/min. Note typical shape of recorded DC shift. Adapted from Enger et al., 2017 Cerebral Cortex (Enger et al., 2017). Scale bar
25 μm. (B) Similar waves were imaged during Kainate-induced seizures in the hippocampus. In this experiment neuronal Ca2+ dynamics were
imaged with jRGECO1a under the human synapsin1 promoter. To record seizure activity the hippocampal local field potential electrode signal had to be
high-pass filtered to compensate for signal drift and saturation of signal. This distorts the classical DC shift, as also reported in (Dreier et al., 2017). Adapted
from Heuser et al., 2018 Cerebral Cortex (Heuser et al., 2018). Scale bar 50 μm.
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Pekna, 2016; Patel et al., 2019; Escartin et al., 2021)). Reactive
astrocytes are characterized by morphological, expressional and
functional changes, and can exist in mild reversible forms, or in
the extreme case, as glial scar tissue (Escartin et al., 2021). There
are multiple lines of evidence suggesting that reactive astrogliosis
could be pro-epileptic, although the precise mechanisms are
unknown (Robel et al., 2015; Zhu et al., 2016; Patel et al.,
2019; Sano et al., 2019; Heuser et al., 2021; Çarçak et al.,
2023). An illustrative example of reactive gliosis in epilepsy is
mesial temporal lobe epilepsy with progressive gliotic
transformation of the hippocampi (Bedner et al., 2015;
Walker, 2015; Balestrini et al., 2021). This disease entity is
relatively well characterized in terms of the histopathological
changes in the tissue. Interestingly, investigations of resectates
from patients undergoing surgery for MTLE have shown a range
of molecular changes in reactive astrocytes, including loss of the
potassium channel Kir4.1 (Heuser et al., 2012), changes in gap
junction subtypes (Fonseca et al., 2002) and loss of gap junctional
coupling (Bedner et al., 2015), loss of glutamine synthetase (Eid
et al., 2004) and aquaporin-4 (Lee et al., 2004). In preclinical
studies a range of other mechanisms, including astrocyte
signaling has been implicated (Shigetomi et al., 2019; Heuser
and Enger, 2021). The exact mechanisms by which the molecular
and morphological changes in reactive astrocytes affect
propensity to develop epileptiform activity is unknown. Likely
some of the changes observed could also be protective, hindering
hyperexcitation.

If one takes the perspective that SD may have beneficial
effects in hyperexcitation disorders by acting as emergency
brakes for excitation, one could also conjecture that a higher
threshold for SD would be pro-epileptogenic. Astrocytes and
astrocytic molecules are known to affect SD propagation and
initiation (Seidel et al., 2016; Enger et al., 2017). Importantly,
astrocytes are crucial for clearance of extracellular K+ and
glutamate, as discussed above in the context of reactive
astrogliosis, which are key mechanisms involved in SD
initiation and propagation. One illustrative example is familial
hemiplegic migraine caused by mutations in the ATP1A2 gene
that encodes the predominant Na+-K+ ATPase in astrocytes
(Gritz and Radcliffe, 2013).

Interestingly, recent work demonstrates that reactive
astrogliosis increases the threshold for SD (Seidel et al., 2015;
Seidel et al., 2016). Here they used lentiviral transfection of
neurons so that they constitutively express ciliary
neurotrophic factor, a cytokine that induces a reactive
astrocyte phenotype (Escartin et al., 2006; Escartin et al.,
2007). Using an in vitro model for SD by application of K+ on
acute brain slices they observed a much higher threshold for
eliciting SD in slices with reactive astrocytes, despite otherwise
normal neuronal excitability. Potentially this effect was mediated
through augmented astrocytic K+ uptake mechanisms in the
reactive astrocytes. Another in vivo study clearly demonstrates
that SD susceptibility is lower after repeated SD induction which

leads to a reactive astrogliosis. However, they did not establish a
causal relationship (Sukhotinsky et al., 2011). These are
interesting observations, but more research is needed to
establish whether attenuated SD susceptibility in reactive
astrogliosis also occurs in epilepsy, and whether such
mechanisms contribute to seizure propensity.

Conclusion

The brain operates on a fine balance between excitation and
inhibition, and potent mechanisms of curbing hyperexcitation are
essential for survival. Accruing evidence indicates that SDs
frequently occur in seizures, and potentially have a role in
curbing hyperexcitation. If SD has such a role, perturbed SD
mechanisms in reactive astrogliosis could potentially contribute
to seizure propensity in epilepsy. Further studies are needed to
elucidate the role of SD in epilepsy, and to leverage this potential
anti-seizure mechanism to treat epilepsy.
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