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In a previous study we reported that a low daily p.o. dose of cadmium (Cd) disrupted the
circadian expression of clock and redox enzyme genes in rat medial basal hypothalamus
(MBH).To assess whether melatonin could counteract Cd activity, maleWistar rats (45 days
of age) received CdCl2 (5 ppm) and melatonin (3 μg/mL) or vehicle (0.015% ethanol) in drink-
ing water. Groups of animals receiving melatonin or vehicle alone were also included. After
1 month, MBH mRNA levels were measured by real-time PCR analysis at six time intervals
in a 24-h cycle. In control MBH Bmal1 expression peaked at early scotophase, Per1 expres-
sion at late afternoon, and Per2 and Cry2 expression at mid-scotophase, whereas neither
Clock nor Cry1 expression showed significant 24-h variations.This pattern was significantly
disrupted (Clock, Bmal1) or changed in phase (Per1, Per2, Cry2) by CdCl2 while melatonin
counteracted the changes brought about by Cd on Per1 expression only. In animals receiv-
ing melatonin alone the 24-h pattern of MBH Per2 and Cry2 expression was disrupted.
CdCl2 disrupted the 24-h rhythmicity of Cu/Zn- and Mn-superoxide dismutase (SOD), nitric
oxide synthase (NOS)-1, NOS-2, heme oxygenase (HO)-1, and HO-2 gene expression,
most of the effects being counteracted by melatonin. In particular, the co-administration
of melatonin and CdCl2 increased Cu/Zn-SOD gene expression and decreased that of glu-
tathione peroxidase (GPx), glutathione reductase (GSR), and HO-2. In animals receiving
melatonin alone, significant increases in mean Cu/Zn and Mn-SOD gene expression, and
decreases in that of GPx, GSR, NOS-1, NOS-2, HO-1, and HO-2, were found. The results
indicate that the interfering effect of melatonin on the activity of a low dose of CdCl2 on
MBH clock and redox enzyme genes is mainly exerted at the level of redox enzyme gene
expression.
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INTRODUCTION
Cadmium (Cd), a heavy metal, is present in soils, sediments, air,
and water. Unlike most metals, Cd use began fairly recently with its
large-scale application dating from 1940s. Today its main uses are
for nickel–cadmium battery manufacture, pigments, and plastic
stabilizers (WHO, 1995).

Cadmium in soil and water is taken up by plants and is concen-
trated and transferred to upper links of the food chain, including
humans (WHO, 1995; Satarug et al., 2003). Due to the long bio-
logical half-life of Cd (i.e., 10–30 years) its accumulation in the
body can increase the risk of toxicity (Sugita and Tsuchiya, 1995).
The principal determinants of human Cd exposure are smoking
habits, diet, and to a certain extent, occupational exposure, like
that occurring in non-ferrous metal smelters, in the production
and processing of Cd alloys and compounds and, increasingly, in
the recycling of electronic waste. Non-occupational exposure is
mainly from cigaret smoke which contains relatively high concen-
trations of this element. According to WHO (Wakabayashi et al.,

1987) one cigaret (containing 0.5–3 μg Cd/g of tobacco) can result
in up to 3 μg daily Cd absorption via the lungs. Chronic exposure
to these low doses of Cd causes neuroendocrine and neurobehav-
ioral disturbances in animals and humans (Viaene et al., 2000;
Lafuente et al., 2003, 2004, 2005; Leret et al., 2003).

At a high concentration Cd increases oxidative damage in the
rodent brain (Lopez et al., 2006; Yang et al., 2007). Less informa-
tion is available on the mediation by redox mechanisms of brain
effects of a low concentration of Cd. In a recent study we exam-
ined the effect of a low dose of Cd (7.5 μg/day) on 24-h changes
in expression of redox pathway enzyme and circadian genes in rat
medial basal hypothalamus (MBH; Jiménez-Ortega et al., 2010).
In CdCl2-treated rats a disruption of 24-h pattern of MBH gene
expression of nitric oxide synthase (NOS)-1 and -2, heme oxy-
genase (HO)-1 and -2, Mn-superoxide dismutase (Mn-SOD),
catalase, glutathione peroxidase (GPx), and glutathione reductase
(GSR) was detectable. Mean 24-h levels of MBH mRNA for HO-
2, Mn-SOD, and catalase augmented after Cd intake (presumably
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as a compensatory increase caused by the augmented oxidative
load), whereas those of NOS-2 decreased (presumably because
Cd causes toxicity independently of NO formation; Wright and
Baccarelli, 2007). After CdCl2 intake, the 24-h pattern of clock
gene expression in MBH seen in control rats was significantly dis-
rupted, suggesting that a primary mechanism of action could be
on circadian clock mechanisms (Jiménez-Ortega et al., 2010).

Melatonin, the major secretory product of the pineal gland, is
released every day at night. In addition, melatonin is also locally
synthesized in various cells, tissues, and organs including lympho-
cytes, human and murine bone marrow, the thymus, the gastroin-
testinal tract, skin, and the eyes where it plays either an autocrine
or paracrine role (see for reference, Pandi-Perumal et al., 2006;
Reiter et al., 2009; Hardeland et al., 2011). Both in animals and
in humans, melatonin participates in diverse physiological func-
tions signaling not only the length of the night (the chronobiotic
effect; Dawson and Armstrong, 1996; Arendt and Skene, 2005) but
also enhancing free radical scavenging, the immune response and
cytoprotection (Hardeland et al., 2011).

The objective of the present study was to examine the puta-
tive chronobiotic–cytoprotective role of melatonin on Cd-induced
changes in clock gene and redox enzyme gene expression in rat
MBH. We also wished to assess whether the concomitant adminis-
tration of melatonin could modify 24-h expression of MBH redox
enzyme genes in a way compatible with the recently reported activ-
ity of melatonin on the same set of enzymes (Jiménez-Ortega et al.,
2009).

MATERIALS AND METHODS
ANIMALS AND EXPERIMENTAL DESIGN
Male Wistar rats (45 days of age, n = 169) were maintained under
standard conditions with controlled light (12:12 h light/dark
schedule; lights on at 0800 h) and temperature (22 ± 2˚C). The
rats received CdCl2 (5 ppm) and melatonin (3 μg/mL) or vehicle
in drinking water for 1 month. Two groups given melatonin or
vehicle in tap water were also included. Food and water were sup-
plied ad libitum. The stock solution of melatonin was prepared in
50% ethanol; final ethanol concentration in drinking water was
0.015%. Cd-administered animals and vehicle-treated controls
received 0.015% ethanol in drinking water. Since rats drank about
20 mL/day with 90–95% of this total daily water taken up during
the dark period, the melatonin dosage used provided approxi-
mately 60 μg melatonin/day. This dose was 10 timed higher than
that needed to obtain physiological circulating melatonin levels
in pinealectomized rats (Cardinali et al., 2004). Nocturnal water
consumption did not differ among the experimental groups.

After 1 month groups of six to eight rats were sacrificed by
decapitation under conditions of minimal stress at six different
time intervals, every 4 h throughout a 24-h cycle, starting at 0900 h.
At night intervals animals were killed under red dim light. The
brains were rapidly removed and the MBH including the median
eminence was quickly dissected out following the landmarks of
Szentagothai et al. (1968). The MBH consisted of a 3-mm-thick
block of tissue weighing 4–6 mg and extending from the rostral
border of the optic chiasm to the rostral margin of the mammil-
lary bodies, and laterally to the hypothalamic sulci (Moreno et al.,
1992).

Samples were kept frozen at −70˚C until further assayed. The
care and use as well as all procedures involving animals were
approved by the Institutional Animal Care Committee, Faculty
of Medicine, Complutense University, Madrid. The study was in
accordance with the guidelines of the Institutional Care and Use
Committee of the National Institute on Drug Abuse, National
Institutes of Health and the Guide for the Care and Use of
Laboratory Animals (Institute of Laboratory Animal Resources,
1996).

REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION
Total RNA extraction was performed using the RNeasy protect
mini kit and was analyzed using QuantiTec SYBR green kit (Qia-
gen, Hielden, Germany). The iScript™ cDNA Synthesis Kit (Bio-
Rad Laboratories SA, Madrid) was used to synthesize cDNA from
1 μg of total RNA, according to the manufacturer’s protocol. The
house keeping gene β-actin was used as a constitutive control for
normalization.

Reactions were carried out in the presence of 200 nM of
specific primers for Clock, Bmal1, Per1, Per2, Cry1, and Cry2,
NOS-1, NOS-2, HO-1, HO-2, Cu/Zn-SOD, Mn-SOD, cata-
lase, GPx, and GSR. Primers were designed using Primer3
software (The Whitehead Institute, http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi) and are shown in Table 1.

Polymerase chain reactions (PCR) were carried out in an
Eppendorf RealPlex Mastercycler (Eppendorf AG, Hamburg, Ger-
many). The real-time quantitative PCR (qPCR) program included
a 94˚C enzyme activation step for 2 min followed by 40 cycles of
95˚C denaturation for 15 s, 60˚C annealing for 30 s and 72˚C exten-
sion for 30 s. Detection of fluorescent product was carried out at
the end of the 72˚C extension period.

Serial dilutions of cDNA from control MBH were used to
perform calibration curves in order to determine amplification
efficiencies. For the primers used there were no differences between
transcription efficiencies, the amount of initial cDNA in each sam-
ple being calculated by the 2−��Ct method (Livak and Schmittgen,
2001). All samples were analyzed in triplicate and in three different
measures. Fractional cycle at which the amount of amplified target
becomes significant (Ct) was automatically calculated by the PCR
device.

To estimate whether treatment or time of day modified the
expression of β-actin, in MBH PCR with serial dilutions of this
housekeeping gene was performed. In this study Ct did not vary
significantly as a function of treatment or of time of day, indicat-
ing the validity to employ β-actin as a housekeeping gene. It must
be noted that in a previous study on β-actin expression in a larger
hypothalamic block than that used herein, which weighed 42–
63 mg and included the preoptic, suprachiasmatic,paraventricular,
supraoptic, arcuate, dorsomedial, ventromedial, and mammillary
areas and the median eminence revealed time of day changes with
maxima at 0800 h (Iovanna et al., 1990).

DATA ANALYSIS
After verifying normality of distribution of data in a normal dis-
tribution probability plot, the statistical analysis of the results
was performed by a one-way or a two-way factorial analysis of
variance (ANOVA) followed by Bonferroni’s multiple comparison
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Table 1 | Sequence of the primers used for real-time PCR.

Gene Primers Product size (bp)

β-Actin Forward ctctcttccagccttccttc 99

Backward ggtctttacggatgtcaacg

Clock Forward tgccagctcatgagaagatg 98

Backward catcgctggctgtgttaatg

Bmal1 Forward ccgtggaccaaggaagtaga 102

Backward ctgtgagctgtgggaaggtt

Per1 Forward ggctccggtacttctctttc 106

Backward aataggggagtggtcaaagg

Per2 Forward acacctcatgagccagacat 99

Backward ctttgactcttgccactggt

Cry1 Forward cagttgcctgtttcctgacc 91

Backward cagtcggcgtcaagcagt

Cry2 Forward attgagcggatgaagcagat 103

Backward ccacagggtgactgaggtct

NOS-1 Forward atcggcgtccgtgactactg 92

Backward tcctcatgtccaaatccatcttcttg

NOS-2 Forward tggcctccctctggaaaga 93

Backward ggtggtccatgatggtcacat

HO-1 Forward tgctcgcatgaacactctg 123

Backward tcctctgtcagcagtgcc

HO-2 Forward agcaaagttggccttaccaa 84

Backward gtttgtgctgccctcacttc

Cu/Zn-SOD Forward ggtggtccacgagaaacaag 98

Backward caatcacaccacaagccaag

Mn-SOD Forward aaggagcaaggtcgcttaca 94

Backward acacatcaatccccagcagt

Catalase Forward gaatggctatggctcacaca 100

Backward caagtttttgatgccctggt

GPx1 Forward tgcaatcagttcggacatc 120

Backward cacctcgcacttctcaaaca

GSR Forward atcaaggagaagcgggatg 96

Backward gcgtagccgtggatgactt

tests, as stated. P values lower than 0.05 were considered evidence
for statistical significance.

RESULTS
The effect of Cd and/or melatonin on 24-h pattern of MBH mRNA
levels of the circadian clock genes examined is depicted in Figure 1.
In control rats, MBH mRNA levels of Bmal1 attained maximal
values at the beginning of scotophase followed by a nadir at the
middle of the phase and a second increase at the end (p < 0.01).
MBH Per1 expression peaked at later afternoon during photophase
(p < 0.01) while Cry2 expression showed maxima during the sco-
tophase (p < 0.03). Two maxima (at the middle of photophase and
at the beginning and middle of scotophase) were seen in the case
of mRNA Per2 levels (p < 0.01; Figure 1). Neither Clock nor Cry1
expression exhibited significant 24-h variations.

CdCl2 treatment significantly suppressed circadian rhythmic-
ity in Bmal1 expression, changed the phase of Per1, Per2, and Cry2
expression and induced a late photophase peak in Clock expression
(p < 0.01). The concomitant administration of melatonin coun-
teracted the changes in 24-h pattern of Per1 expression caused

by Cd, whereas it did not affect significantly other changes found
with Cd (as for Clock, Per2, and Cry2 expression) or induced new
maxima (as for Bmal1 or Cry1 expression; Figure 1). In animals
receiving melatonin alone the 24-h pattern in expression of MBH
Per2 and Cry2 was significantly disrupted (p < 0.01), while that of
Clock, Bmal1, Per1, and Cry1 remained unchanged (Figure 1).

Figures 2 and 4 summarize the effect of treatment on 24-h
pattern and mean levels of MBH mRNA of the redox enzymes
examined. Control rats exhibited significant daily variations in
MBH expression of Cu/Zn-SOD, Mn-SOD, catalase, GPx, NOS-2,
HO-1, and HO-2 genes (Figures 2 and 3). CdCl2 administra-
tion phase-delayed Mn-SOD gene expression and suppressed the
maximum in gene expression of GPx seen at midday (p < 0.03;
Figure 2). CdCl2 also affected the 24-h pattern of expression
of MBH NOS and HO isoenzymes by inducing maxima at late
scotophase (NOS-1), at midday and late scotophase (NOS-2), at
midday, early and late scotophase (HO-1), and at early morning
(HO-2; Figure 3).

The concomitant administration of melatonin reversed the
phase delay in Mn-SOD gene expression given by CdCl2
(p < 0.001; Figure 2) and counteracted the effect of Cd on 24 h
pattern in expression of NOS and HO isoenzymes (p < 0.02;
Figure 3). Melatonin + CdCl2 administration disrupted the 24-h
pattern of Cu/Zn-SOD gene expression by inducing a late sco-
tophase peak (p < 0.02; Figure 2). In animals receiving melatonin
alone, suppression of 24-h rhythmicity in gene expression (Cu/Zn-
SOD, HO-2) and induction of a mid-scotophase (GSR) or early
morning peak of expression (NOS-1, NOS-2, HO-1) were found
(p < 0.01; Figures 2 and 3).

Figure 4 depicts the mean 24-h values for gene expression of
MBH redox enzymes in the four groups of animals studied. A fac-
torial ANOVA on the effects of treatment on mean gene expression
indicated that CdCl2 administration increased significantly Mn-
SOD, catalase, and HO-2 expression and decreased that of NOS-2
gene. The concomitant administration of melatonin reversed the
effect of Cd on mean catalase, NOS-2, and HO-2 gene expression,
augmented 24-h mean values of Cu/Zn- and Mn-SOD mRNA
levels and decreased those of GPx, GSR, and HO-1. In animals
receiving melatonin alone, significant increases in mean Cu/Zn
and Mn-SOD gene expression, and decreases in that of GPx, GSR,
NOS-1, NOS-2, HO-1, and HO-2, were found (Figure 4).

DISCUSSION
The mammalian circadian timing system comprises oscillators
found in almost every cell of the body together with a central
rhythm generator located in the hypothalamic suprachiasmatic
nuclei (SCN; Lincoln et al., 2006). At the cell level, circadian
rhythms are driven by the self-regulatory interaction of a set of
clock genes and their protein products (Levi et al., 2010). The
positive drive to the daily clock is constituted by helix-loop-helix,
PAS-domain containing transcription factor genes, called Clock
and Bmal1 (or its paralog Npas2). The protein products of these
genes form heterodimeric complexes that control the transcrip-
tion of other clock genes, notably Period (Per1/Per2/Per3) genes,
and Cryptochrome (Cry1/Cry2) genes, which in turn provide
the negative feedback signal that shuts down the Clock/Bmal1
drive to complete the circadian cycle. Other clock genes like

www.frontiersin.org March 2011 | Volume 2 | Article 13 | 3

www.frontiersin.org
http://www.frontiersin.org/sleep_and_chronobiology/archive


Jiménez-Ortega et al. Cadmium, melatonin and gene expression

FIGURE 1 | Effect of melatonin on Cd-induced changes in 24-h pattern in

expression of Clock, Bmal1, Per1, Per2, Cry1, and Cry2 in rat MBH. The
rats received CdCl2 (5 ppm) and melatonin (3 μg/mL) or vehicle in drinking
water for 1 month. Two groups given melatonin or vehicle in tap water
were also included. Groups of six to eight rats were killed by decapitation at
six different time intervals throughout a 24-h cycle. mRNA levels encoding
the clock genes were measured as described in the text. Shown are the
mean ± SEM of mRNA determination as measured by triplicate real-time
PCR analyses of RNA samples. Letters denote significant differences in a
one-way ANOVA followed by a Bonferroni’s multiple comparison test
performed at every time interval, as follows: ap < 0.05 vs. Cd and
melatonin groups; bp < 0.02 vs. Cd and Cd + melatonin groups;

cp < 0.05 vs. Cd; dp < 0.01 vs. the remaining groups; ep < 0.01 vs. Cd and
control groups; fp < 0.05 vs. control. One-way ANOVAs within each
experimental group indicated significant time-related changes in clock
gene expression as follows: Controls: Bmal1, Per1, Per2, and Cry2 (F = 11.3,
p < 0.0001, F = 2.54, p < 0.04, F = 7.94, p < 0.001, and F = 3.41, p < 0.03,
respectively). Cd: Clock, Per1, Per2, and Cry2 (F = 4.71, p < 0.008,
F = 4.12, p < 0.01, F = 5.84, p < 0.03, and F = 19.1, p < 0.0001,
respectively). Cd + melatonin: Bmal1, Per1, Per2, Cry1, and Cry2 (F = 10.1,
p < 0.0001, F = 3.11, p < 0.04, F = 4.48, p < 0.009, F = 7.82, p < 0.001, and
F = 19.6, p < 0.0001, respectively. Melatonin: Per2 and Cry2 (F = 14.2
and 50.8, p < 0.0001, respectively). For further statistical analysis,
see text.

Rev-erbα, Rorα, NR1D1, or timeless provide additional transcrip-
tional/translational feedback loops to form the rest of the core
clockwork (Levi et al., 2010), which has been characterized in
rodents by a transgenic gene deletion methodology.

A major question concerns as about how the circadian appara-
tus is adjusted to maintain coordination between physiology and
the changing environment. Models including the relation between
the redox state and the circadian clockwork have been proposed
(Rutter et al., 2002). In zebrafish, light, as a key entraining stim-
ulus for the circadian clock, induces the production of hydrogen
peroxide that acts as the second messenger coupling photorecep-
tion to the circadian clock, as shown by the induction of zCry1a
and zPer2 genes and the subsequent circadian oscillation of zPer1.
In Z3 cells (Hirayama et al., 2007). These findings support a link

between the regulation circadian clock genes and the control of
cellular redox state (Rutter et al., 2002).

The present study aimed to examine the relations between
circadian clock gene expression and gene expression of redox
enzymes in a complex, heterogeneous brain area like the MBH of
rats receiving a low dose of CdCl2 and/or melatonin. In the MBH
of control rats expression of Bmal1 peaked at early scotophase,
Per1 at late afternoon, and Per2 and Cry2 at mid-scotophase,
whereas neither Clock nor Cry1 expression showed significant 24-
h variations. Presumably, the nuclear heterogeneity of the MBH
fragments employed precluded identification of the reciprocal
relationship between Clock/Bmal1 and Per1/Per2 expression seen
in isolated nuclei, like the SCN (Poirel et al., 2003; Agez et al., 2007;
Challet, 2007).
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FIGURE 2 | Effect of melatonin on Cd-induced changes in 24-h pattern in

expression of mRNA for Cu/Zn-SOD, Mn-SOD, catalase, Gpx, and GSR in

rat MBH. For experimental details see legend to Figure 1. mRNA levels
encoding the enzymes were measured as described in the text. Shown are
the mean ± SEM of mRNA determination as measured by triplicate real-time
PCR analyses of RNA samples. Letters denote significant differences in a
one-way ANOVA followed by a Bonferroni’s multiple comparison test
performed at every time interval, as follows: ap < 0.02 vs. Cd and control
groups; bp < 0.05 vs. melatonin and control groups; cp < 0.01 vs. the
remaining groups; dp < 0.05 vs. melatonin and Cd groups; ep < 0.05 vs.
melatonin and control groups; fp < 0.05 vs. the remaining groups; gp < 0.01

vs. Cd; hp < 0.02 vs. control; One-way ANOVAs within each experimental
group indicated significant time-related changes in enzyme gene expression
as follows: Controls: Cu/Zn-SOD, Mn-SOD, catalase, and GPx (F = 6.21,
p < 0.002, F = 3.33, p < 0.03, F = 3.17, p < 0.04, and F = 2.98, p < 0.04,
respectively). Cd: Cu/Zn-SOD and Mn-SOD (F = 6.25, p < 0.002, and F = 7.01,
p < 0.001, respectively). Cd + melatonin: Cu/Zn-SOD, Mn-SOD, catalase, and
GSR (F = 14.1, p < 0.0001, F = 15.5, p < 0.0001, F = 10.8, p < 0.0001, and
F = 8.24, p < 0.0001, respectively). Melatonin: Mn-SOD, catalase, GPx, and
GSR (F = 4.49, p < 0.002, F = 2.46, p < 0.05, F = 15.9, p < 0.0001, and
F = 8.35, p < 0.0001, respectively). For further statistical analysis,
see text.

As shown previously (Jiménez-Ortega et al., 2010), a low
amount of CdCl2 (i.e., 5 ppm in tap water, about 7.5 μg/day)
significantly suppressed (Bmal1) or disrupted 24-h pattern of
expression (Per1, Per2, Cry2) while in the case of Clock sig-
nificant 24-h variations were induced. The results suggest that
the inherent transcription modifications that give the clock its
own natural rhythmicity are disrupted in rats drinking a low
amount of CdCl2 in tap water. Previous studies from this lab-
oratory indicated that chronic exposure of rats to similar low
doses of Cd affected the circadian variation of pituitary hor-
mone release (Lafuente et al., 2003, 2004, 2005). It seems feasible
that the changes in clock gene expression in MBH, a key region
in hormone regulation, play a role in the circadian hormone
disruption.

In the present study, the concomitant administration of mela-
tonin (3 μg/mL; a chronobiotic–cytoprotective agent; Hardeland
et al., 2011) in drinking water failed to counteract most effects of
Cd on clock genes, except for Per1 expression. This suggests that
the transcription modifications through which CdCl2 adminis-
tration disrupts the natural rhythmicity of the circadian clock are
only slightly affected by melatonin administration. A survey of
the scientific literature supports an effect of melatonin on circa-
dian clock components in the mammalian SCN (Poirel et al., 2003;
Agez et al., 2007; Challet, 2007), retina (Dinet and Korf, 2007; Dinet
et al., 2007), and striatal neurons in culture (Imbesi et al., 2009).
In the present study, animals receiving melatonin alone showed
significant phase-advances in MBH Per2 and Cry2 expression to
peak at late afternoon and early scotophase, respectively. Again,
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FIGURE 3 | Effect of melatonin on Cd-induced changes in 24-h pattern of

expression of mRNA for NOS-1, HO-1, NOS-2, and NOS-2 in rat MBH. For
experimental details see legend to Figure 1. mRNA levels encoding the
enzymes were measured as described in the text. Shown are the
mean ± SEM of mRNA determination as measured by triplicate real-time PCR
analyses of RNA samples. Letters denote significant differences in a one-way
ANOVA followed by a Bonferroni’s multiple comparison test performed at
every time interval, as follows: ap < 0.05 vs. Cd + melatonin group; bp < 0.05
vs. the remaining groups; cp < 0.02 vs. Cd; dp < 0.02 vs. control and Cd
groups; ep < 0.01 vs. the remaining groups; fp < 0.02 vs. control and

Cd + melatonin groups; gp < 0.01 vs. control; hp < 0.01 vs. melatonin.
One-way ANOVAs within each experimental group indicated significant
time-related changes in enzyme gene expression as follows: Controls: HO-1,
NOS-2, and HO-2 (F = 7.54, p < 0.001, F = 10.1, p < 0.0001, and F = 5.64,
p < 0.002, respectively). Cd: NOS-1, HO-1, NOS-2, and HO-2 (F = 5.88,
p < 0.002, F = 8.41, p < 0.0001, F = 18.3, p < 0.0001, and F = 7.42, p < 0.001,
respectively). Cd + melatonin: HO-1, NOS-2, and HO-2 (F = 8.45, p < 0.0001,
F = 6.12, p < 0.002, and F = 4.04, p < 0.03, respectively). Melatonin: NOS-1,
NOS-2, and HO-1 (F = 10.7, p < 0.0001, 12.9, p < 0.0001, and 5.92, p < 0.004,
respectively). For further statistical analysis, see text.

the nuclear heterogeneity of the MBH fragments makes it impos-
sible any valid comparison with the published effects on melatonin
activity in isolated brain nuclei.

As an indication of the link between the redox status and
the circadian system, 24-h variations in brain redox pathway
enzymes have been described, including NOS (Ayers et al., 1996;
Tunctan et al., 2002; Clemens et al., 2005), HO (Artinian et al.,
2001; Rubio et al., 2003), SOD (Diaz-Munoz et al., 1985; Schaper
et al., 1986; Martin et al., 2003), and catalase (Sani et al., 2006).
Our present results on the circadian variation in gene expression of
NOS and HO in MBH of control rats are consistent with previous
publications (Jiménez-Ortega et al., 2009, 2010). In the case of the
circadian rhythms in MBH mRNA levels for Cu/Zn- and Mn-SOD
and catalase, our previous data partially disagreed with them, e.g.,

the late afternoon peak in Cu/Zn-SOD gene expression reported
herein was only seen in one of our previous studies (Jiménez-
Ortega et al., 2010) while the late afternoon peak in Mn-SOD was
seen only as a trend in the two previous studies (Jiménez-Ortega
et al., 2009, 2010).

The administration of low amount of CdCl2 brought about
significant changes in 24-h variation in gene expression of
MBH Cu/Zn-SOD, GPx, GSR, NOS-2, HO-1, and HO-2. The
concomitant administration of melatonin prevented most of the
effects of Cd on 24-h rhythmicity and overall expression of redox
enzyme genes. In particular, the co-administration of melatonin
and CdCl2, or the administration of melatonin alone, brought
about a remarkable increase of Cu/Zn-SOD gene expression. Pro-
viding that this did reflect an increased enzyme protein activity,
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FIGURE 4 | Effect of melatonin on Cd-induced changes in mRNA of redox

enzymes in rat MBH. Shown are the mean 24 h values ± SEM. For
experimental details see legend to Figure 1. Letters denote significant
differences in a one-way ANOVA followed by a Bonferroni’s multiple

comparison as follows: ap < 0.01 vs. control and Cd groups; bp < 0.05 vs.
control; cp < 0.02 vs. control; dp < 0.02 vs. the remaining groups;
ep < 0.02 vs. control and Cd groups; fp < 0.03 vs. the remaining
groups.

the elevated levels of reduced glutathione expected to occur may
explain, by negative feedback regulation (Griffith, 1999; Lu, 2009),
the very significant decrease in MBH mRNA levels for GPx, GSR,
and HO-2 found under those conditions. While some metals,
like iron, copper, chromium, vanadium, or cobalt undergo redox-
cycling reactions, a second group of metals including Cd, mercury,
and nickel cause toxicity mainly by depleting glutathione (Wright
and Baccarelli, 2007). Thus melatonin could be an effective
antidote for the toxic effect of this second group of metals.

The doses of Cd employed in the present study may resemble
real exposure level in active tobacco smokers, in moderately to
heavily polluted areas or under occupational exposure conditions
(Brzóska and Moniuszko-Jakoniuk, 2005). Under this condition,
Cd intake was close to that proposed by the World Health Orga-
nization as a tolerable limit for humans [1 μg/day for a life span
of 60 years (1995)]. It should be noted that because Cd absorp-
tion in the gastrointestinal tract of rats is lower than in humans,
rat models simulating human exposure need to increase exposure
doses to be higher than the real daily human intake of Cd (Rogalska
et al., 2009).

In the present and a previous study (Jiménez-Ortega et al.,
2010), a low dose of Cd differentially affects NOS-1 and NOS-
2 expression in MBH by disrupting their 24-h pattern and by
decreasing the 24-h mean mRNA levels for NOS-2. The neuronal

isoform of NOS (NOS-1) is constitutively expressed in neurons
whereas expression of the inducible (macrophage) isoform NOS-
2 occurs mainly in glial cells (Galea et al., 1992) and also in
neurons (Wong et al., 1996). NOS has been detected in several
hypothalamic areas including the SCN (Plano et al., 2007) and the
supraoptic, paraventricular, ventromedial, and dorsomedial nuclei
(Ceccatelli, 1997). NOS is also present in fibers at the median emi-
nence, mainly in the internal layer and around blood vessels of the
portal system (Knauf et al., 2001). The present results reinforce
the view that the toxic effect of a low dose of Cd is independent
on excessive NO formation. It is interesting that melatonin coun-
teracted the generally inhibitory and disrupting effects of Cd on
24-h pattern of activity of NOS whereas, when administered alone,
melatonin decreased gene expression of MBH NOS, as reported
previously (Jiménez-Ortega et al., 2009) and seen again in the
present series of experiments.

Heme oxygenase has an important role in controlling the redox
state of the cell by functioning as a rate-limiting enzyme in the
heme degradation process (Mancuso et al., 2007). Three iso-
forms of HO have been identified. HO-1 is an inducible isoform
that is responsive to various stimuli, including oxidative stress.
HO-2 is a constitutive isoform that is highly concentrated in the
brain is less inducible by oxidative stress. The remaining isoform,
HO-3, has been less well characterized. Various hypothalamic
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nuclei displayed both HO-1 and HO-2 mRNA proteins (Ewing
and Maines, 1997) and enzymatic activities (Rubio et al., 2003)
explaining the high CO production rate that the hypothalamus
exhibits (Laitinen and Juvonen, 1995). In the present study CdCl2
augmented MBH mRNA levels of HO-2 and affected the 24-h pat-
tern of expression of both HO isoenzymes by inducing maxima at
midday, early and late scotophase (HO-1), and at early morning
(HO-2). The stimulatory effect of CdCl2 on HO-2 mRNA reported
in the present study can be interpreted in terms of an increased of
oxidative load (i.e., more need of HO-1 expression).

The administration of melatonin counteracted significantly
the effect of Cd on 24 h pattern in expression of both isoen-
zymes of HO. As shown earlier (Jiménez-Ortega et al., 2009)
the inhibitory effect of melatonin on HO-1 and HO-2 mRNA
is remarkable. The mechanisms involved in regulation of redox
enzyme gene expression by melatonin could involve receptor-
mediated and receptor-independent phenomena (Hardeland et al.,
2011). Among the latter inhibition of radical oxygen species
(ROS) generation is attractive. Since ROS play a role in cel-
lular signaling processes, including transcription factors like
nuclear factor-κB or activator protein-1, a decrease of free
radical production by melatonin would allow the repression
of redox-sensitive transcription factors, which could regulate
gene transcription (Lezoualc’h et al., 1998; Beni et al., 2004;
Rodriguez et al., 2004).

There are a number of limitations to the present descriptive
study. One important is that studies employing Western blotting
analysis of clock protein levels are further needed to understand
Cd–melatonin interactions on circadian clock and redox enzyme
gene expression. It should be also important to assess whether the

changes in amplitude as well in timing of 24-h rhythm of gene
expression discussed herein can be attributed to an effect on the
circadian master clock or to a masking effect on some output(s)
of the clock. The nuclear heterogeneity of the MBH fragments
employed is a feasible explanation for the inability to uncover
some the relationships seen between clock genes in isolated brain
nuclei.

Summarizing, the results support the conclusion that the inter-
fering effect of melatonin on the activity of a low dose of Cd on
24-h rhythms of MBH clock and redox enzyme genes is mainly
exerted at the level of redox enzyme gene expression. Since most
of published studies on neuroprotective activity of melatonin were
performed by measuring specific targets at single time points, gen-
erally at morning hours, and in view of the 24-h changes in redox
state that occurs in a number of tissues (Hardeland et al., 2003;
Subramanian et al., 2008), it should be important to include a
chronopharmacological approach for the full analysis of the above
mentioned effects of melatonin.
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