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A new in vivo animal model that produces diffuse brain injuries in sagittal plane rearward
rotational acceleration has been developed. In this model, the skull of an anesthetized adult
rat is tightly secured to a rotating bar. During trauma, the bar is impacted by a striker that
causes the bar and the animal head to rotate rearward; the acceleration phase last 0.4 ms
and is followed by a rotation at constant speed and a gentle deceleration when the bar
makes contact with a padded stop.The total head angle change is less than 30˚. By adjusting
the air pressure in the rifle used to accelerate the striker, resulting rotational acceleration
between 0.3 and 2.1 Mrad/s2 can be produced. Numerous combinations of trauma levels,
post-trauma survival times, brain and serum retrieval, and tissue preparation techniques
were adopted to characterize this new model. The trauma caused subdural bleedings in
animals exposed to severe trauma. Staining brain tissue with β-Amyloid Precursor Protein
antibodies and FD Neurosilver that detect degenerating axons revealed wide spread axonal
injuries (AI) in the corpus callosum, the border between the corpus callosum and cortex
and in tracts in the brain stem. The observed AIs were apparent only when the rotational
acceleration level was moderate and above. On the contrary, only limited signs of contu-
sion injuries were observed following trauma. Macrophage invasions, glial fibrillary acidic
protein redistribution or hypertrophy, and blood brain barrier (BBB) changes were unusual.
S100 serum analyses indicate that blood vessel and glia cell injuries occur following mod-
erate levels of trauma despite the absence of obvious BBB injuries. We conclude that this
rotational trauma model is capable of producing graded axonal injury, is repeatable and pro-
duces limited other types of traumatic brain injuries and as such is useful in the study of
injury biomechanics, diagnostics, and treatment strategies following diffuse axonal injury.
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INTRODUCTION
Traumatic brain injuries (TBI) represent approximately 60% of all
deaths in hospitals among children and young adults in the west-
ern world (Melvin et al., 1993). Among survivors these injuries are
often irreversible, causing long term pain, and disability. Although
TBI can be associated with skull fractures, it commonly occurs
without fractures (Gennarelli and Thibault, 1982). About 40%
of all TBI patients admitted to hospitals are non-focal injuries
(Wismans et al., 2000) and are usually referred to as distributed
brain injuries (DBI).

At least four categories of DBI can be identified: diffuse axonal
injury (DAI); diffuse hypoxic, anoxic, or ischemic injury; diffuse
swelling; and diffuse vascular injury. DAI is the most common
type of DBI and commonly results in unconsciousness or death
(Gennarelli et al., 1982; Melvin et al., 1993). The DAI pathology,
which is characterized by perturbations to the axoplasmic trans-
port along the length of axons (Povlishock and Jenkins, 1995), is
likely to cause axonal swelling or degeneration which can reduce
the functionality or disconnect the axons from their existing net-
works (Povlishock, 1992). It has been reported that DAI commonly
are localized in the subcortical white matter, gray–white matter

interface, and corpus callosum (Gennarelli et al., 1982; Ommaya,
1984; Smith and Meaney, 2000) as well as at points of attachment,
such as cranial nerves (Viano, 1997).

Distributed brain injuries is commonly a result of inertial
induced loads; intracranial motions arise when the skull is acceler-
ated and the brain mass, due to its inertia, lags behind or continues
its motion relative to the skull. These inertia induced loads are
most common in rapid head rotations (Holbourn, 1943) which
often occur in fall accidents, traffic accidents, and military assaults.
It has been hypothesized that these inertia induced loads produce
strains in the brain tissue and that these strains cause neuro-
logical deficiencies (Strich, 1961; Adams et al., 1989; Margulies
et al., 1990; Margulies and Thibault, 1992; Povlishock, 1992; Zhang
et al., 2004). Meaney et al. (1993) used numerical simulations to
reconstruct experiments with miniature pigs (Ross et al., 1994)
to determine the DAI-tolerance level on tissue level. For grade 1
and grade 2 DAI a maximum strain of 0.1 and 0.25, respectively,
was suggested. Using animal models, it has been suggested that
the severity of DBI correlates with the amplitude of the angular
acceleration (Abel et al., 1978; Ono et al., 1980; Margulies and
Thibault, 1992). The use of detailed mathematical models of the
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head and brain, however, has indicated that injury correlates with
the resulting angular velocity (Kleiven, 2007). In addition, dura-
tion of the impact has been reported to affect the injury type; short
duration impacts result in a larger extent of focal injury, while long
duration impacts mainly result in DBI (Margulies and Thibault,
1992). It has also been shown, in experiments with monkeys, that
the incidence and degree of DBI correlated, although indirectly,
with the direction of the head acceleration: coronal plane angu-
lar acceleration was the direction that caused the longest lasting
coma, while sagittal plane angular accelerations and oblique accel-
erations produced coma for a shorter period (Gennarelli et al.,
1982).

An attractive approach to studying DBI pathology and its asso-
ciated injury mechanism and threshold would be to reconstruct
well documented accident cases in which the patient is slightly
injured. The real life accidents are however commonly rather com-
plex and the patients suffer from a multitude of injuries. Therefore
anesthetized animals have been used in the past to study DBI and
DAI.

Primates were extensively used in the past but currently smaller
animals such as miniature swine, rabbits, and rats are used
(Table 1). In a model described by Marmarou et al. (1994),
a cap the size of a dime is cemented to the denuded bone

on top of the rat skull. During trauma this plate is impacted
by a drop weight which causes the head to accelerate linearly
and rotate forward in the sagittal plane. The initial purpose
with the model was not to assess the threshold for DAI in
rotational head trauma but rather to study the pathology and
treatment of TBI in general. For head rotations in the coronal
plane, Xiao-Sheng et al. (2000) exposed rats to 2 ms long rota-
tional accelerations, after which they observed axonal swelling
and bulblike protrusions on the axons in the medulla oblon-
gata, midbrain, and corpus callosum. In two other studies by
Ellingson et al. (2005) and by Fijalkowski et al. (2007), rats were
exposed to higher rotational accelerations than in the study by
Xiao-Sheng et al. (2000); 368 krad/s2) for approximately 2 ms
in the coronal plane. Despite the higher accelerations, the rats
suffered from classical concussion injuries with minimal histo-
logical abnormalities. A series of publications have presented a
model in which rabbits are exposed to rotational acceleration
in the sagittal plane (Gutierrez et al., 2001; Runnerstam et al.,
2001; Hamberger et al., 2003; Hansson et al., 2003; Krave et al.,
2005, 2011). Due to the size of the rabbit brain as compared to
the rat brain, the rabbit has become the preferred choice. How-
ever, the rabbit brain is rather elongated as compared to the
human brain.

Table 1 | Studies which exposed animal brains to rotational acceleration to improve the understanding of pathologenesis, injury mechanisms,

and suggest injury threshold.

Plane of

motion

Subject used Method to assess injury

and type of injury produced

Concluding result Reference

Sagittal plane lin.

and rot. acc.

Rat Histology etc. Developed to study TBI
Marmarou et al. (1994) and

Foda and Marmarou (1994)

Rabbit Astrogliosis in hippocampus

and cerebral cortex,

hemorrhages, focal bleeding,

reactive astrocytosis, and

axonal injury

Development of test rig, and

rot. trauma involves edema

and neuronal environment

that leads to apoptosis

Gutierrez et al. (2001) and Run-

nerstam et al. (2001)

Rabbit Neurofilament redistribution

and beta-amyloid

Effect of trauma on the

neuronal cytoskeleton Hamberger et al. (2003)

Coronal plane rot.

acc.

Miniature

swine

Histology (NF), retraction

bulbs in the cerebral

hemispheres

Meaney et al. (1995) and Ross

et al. (1994)

Miniature

swine

Histology (NF, GFAP, IgG,

Nissel) retraction bulbs in the

cerebral hemispheres

DAI occur due to the

viscoelastic properties and

highly organized structure of

the axons

Smith et al. (1997)

Rat Silver staining, significant

damage to the brainstem

Development of test rig
Xiao-Sheng et al. (2000)

Rat Limited macroscopic brain

damage, no evidence of

axonal swellings

Transient unconsciousness
Ellingson et al. (2005) and

Fijalkowski et al. (2007)

Transverse plane

rot. acc.

– – – –

Oblique head rot.

acc. and contact

injury

Sheep β-APP histology, contusions,

and axonal injury

Axonal injury was related to

impact severity Andersson, 2000
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To conclude, the number of models in which small animals are
used and in which DAI is developed without large quantities of
contusion type or hemorrhage injuries are limited. Therefore a
new model in which the heads of rats are exposed to sagittal plane
rotational accelerations resulting in graded levels of DAI has been
developed and is presented here. This new model is intended for
studies of inertial loading brain injuries to simulate forehead to
hard structure impacts.

MATERIALS AND METHODS
The materials and methods used in this study are presented below.
This paper is focused on the presentation of the test rig and its
capabilities. The experimental data included were produced for
studies with a special purpose and for this reason there is variability
in the animal numbers used for different experiments. Additional
information is available in Davidsson (2008) and in Risling et al.
(2011).

ANIMALS
In total 110 male Sprague-Dawley rats were included in this study.
Nineteen animals could not be included in the analysis due to var-
ious reasons. In five experiments the skull cap came loose during
trauma. Eight additional animals died as a consequence of the
anesthesia and six died either from the trauma or the anesthet-
ics. The animals that died from the trauma likely suffered from
acute brain stem injury which resulted in severe arrhythmia and
respiratory arrest.

Out of the 110 animals, 91 male Sprague-Dawley rats weighing
between 0.352 and 0.518 kg (with an average weight of 0.415 kg)
were either successfully exposed to rotational injury or served as

sham exposed controls in this study (Table 2). In addition four
animals were not operated on and served as normal controls. All
animals were deeply anesthetized by a 2.4-ml/kg intra-abdominal
injections of a mixture of 1 ml Dormicum® (5 mg/ml Midazo-
lam, Roche), 1 ml Hypnorm® (Janssen), and 2 ml of distilled
water. Thereafter the subjects were given 0.2 ml/kg intra-muscular
injections every 0.5 h until the surgery and trauma was carried
out. The work was performed in accordance with the Swedish
National Guidelines for Animal Experiments, which was approved
by the Animal Care and Use Ethics Committee in either Umeå or
Stockholm.

A midline incision was made through the skin and periosteum
on the skull vault, and parts of the frontal, nose, and parietal bones
were freed from adherent tissue. The exposed bone was treated
with 15% phosphate acid for 3 min to clean and roughen the sur-
faces of the bone, thoroughly rinsed with tempered distilled water
and dried for 3 min with an air drier providing air that was 37˚C in
the proximity of the skull bone. The exposed bone was then gently
sanded, left to dry for at least an additional 10 min prior to gluing
of an aluminum plate, denominated the skull cap (Figure 1) and
shaped to match the contour of the exposed skull. The dental glue
(Super-Bond C and B; Sun Medical Co., Shiga, Japan) was allowed
to harden for a minimum of 15 min. During the first 3 min the
temperature was kept at 37˚C after which it was adjusted to below
but close to 37˚C.

EXPERIMENTAL SETUP
Prior to experiments, an attachment plate, that had a tempera-
ture close to 37˚C, was fastened by means of two screws to the
skull cap previously glued to the rat skull bone (Figure 1). Then

Table 2 | Number of animals included in the various groups in this study (the numbers in the boxes refer to the total number of animals

included in the group whereas the numbers in brackets refer to the number of sham exposed animals).

*63 animals used for β-APP analysis of which 31 was used for COX2 analysis.
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FIGURE 1 | Diagrams. Top row; skull cap and attachment plate and oblique
view of test device (crossbeam removed for visibility). Bottom row; oblique
view of test device and side view of the head with central nervous system
schematically depicted (screws and accelerometer not depicted).

the attachment plate was inserted and secured to a rotating bar
that can rotate freely around a horizontal axis. The resulting pre-
trauma position of the head was consistently slightly flexed and
the brain center of gravity located about 6.5 mm above the cen-
ter of rotation. This is equivalent to a center of rotation located
1 mm below the head base and 5 mm forward of the front of the
foramina magnum.

Twenty-five animals served as sham exposed controls, thus
66 animals were traumatized. During trauma a weight, denom-
inated the striker (brass, diameter 6.3 mm, weight 0.010 kg), was
accelerated in a specially designed air driven accelerator (CNC-
Process AB, Hova, Sweden) and was made to hit a rubber block
(Polyurethane, Shore A 60, 10 mm thick, 13 mm wide, 10 mm
high) that was glued onto a striker target (SS4212, aluminum plate
6 mm thick and 15 mm wide). The impulse produced subjected
the rotating bar and the animal head to a short sagittal plane
rearward rotational acceleration. The striker hit the rubber block
at a height of 57 mm from the center of rotation of the rotating
bar. This acceleration phase was followed by a rearward rotation
at near constant velocity. Finally, the striker target made contact
with the crossbeam (steel, 16 mm square profile) which was cov-
ered with high density Tempur foam (20 mm thick and 20 mm
high). The trauma represents a forehead impact to the steering
wheel in a frontal car collision or to the ground in a fall accident.
The rotational acceleration magnitude was selected by modifying
the striker speed which was varied by means of modifying the air
pressure in a specially designed air driven accelerator.

After trauma the attachment plate was removed, the skin was
made to cover the skull cap and 8–10 sutures closed the incision.

INSTRUMENTATION, DATA ACQUISITION, AND ANALYSIS
An Endeveco Isotron 2255B-01 piezoelectric accelerometer, with
integrated electronics and resonance frequency above 300 kHz,
was mounted on the rotating bar at a radius of 36.5 mm from
the center of rotation and connected to an Endeveco 4416B signal

conditioner. The signal conditioner gain was set at one with an
upper frequency cut off at 40 kHz (−3 dB) which served as anti-
aliasing filter. The analog signal was digitized and captured by
means of a National Instrument DAQ Card 6062 at 200 kHz.
Thereafter the obtained rotational acceleration data was filtered
using SAE J211 CFC3000 (5000 Hz).

A chronograph (SKAN PRO1 Series 3) was used to capture the
velocity of the striker.

In four experiments, side views of the head trauma were
recorded by a Redlake video at 20 000 f/s with a resolution of
120 × 68 pixels. Oblique frontal views of the trauma were also
recorded to monitor the rigidity of the head-to-test rig attachment.

Angular velocity and displacement were numerically integrated
from the unfiltered acceleration data and compared with the high
speed data for accuracy.

DISSECTION, IMMUNOHISTOLOGY, IN SITU HYBRIDIZATION, AND
SERUM ANALYSIS
Post-trauma survival times were varied from 2 h to 7 days. The
short survival times were preferred to assess the axonal injury
as soon as possible after trauma to limit detection of secondary
effects associated with the trauma or preparation of the animal;
the longer survival time was required to detect contusion injuries
and degenerative axons.

In case serum was to be collected prior to the sacrifice, the
animals were anesthetized for at least 2 h. Thereafter 5–7 ml of
blood were retrieved from the right ventricle of the heart with a
Safety-Lock needle and SST II blood collection system containers
(BD Vacutainer®). The blood containers were filled and treated
according to the instructions provided with the system. Serum
was frozen immediately after centrifugation and stored at −20˚C
until the analysis. In case no serum was to be collected, the animals
were anesthetized for 15 min prior to being sacrificed.

After possible serum collection, 63 of the animals were killed,
the brains were removed and split into three units at 0.6 mm and
−3.0 relative to the bregma. The units were fresh frozen on dry
ice. The three units are referred to as frontal, middle, and occip-
ital. In total 28 animals were subjected to transcardial perfusion
with phosphate buffered saline containing heparin and then fixed
with formaldehyde in PBS after which the brain was subsequently
removed. The brains were thereafter immersed in buffered forma-
lin for at least a day and transferred for cold storage in sodium
azide and sucrose solution in PBS.

Coronal 14 μm cryostat sections from the three regions of the
63 fresh frozen encephalon sections were cut and thawed onto
chromealum–gelatine treated slides. For a few animals also the
brain stem was sectioned and thawed on slides. The frontal sections
were from 1.5 to 0.5 mm relative to the bregma, the middle sections
from 0 to −1.0 mm relative to the bregma and occipital sections
from 3.0 to 6.0 mm relative to the bregma. The sections were
soaked in 0.01 M PBS buffer for 10 min and incubated over night
in a humid chamber at 4˚C with different antibodies. For detection
of injured axons, sections were incubated with rabbit polyclonal
β-APP antibodies (51-2700, Invitrogen, Corporation, CA, USA;
dilution 1:100). For studies of other brain injuries, sections were
incubated with mouse monoclonal antibodies against blood brain
barrier (BBB; SM-71, Sternberger Monoclonals Inc., Baltimore,
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MD, USA; dilution 1:200) and goat polyclonal antibodies against
glial fibrillary acidic proteins (GFAP; 6170, Santa Cruz Biotech-
nology Inc., Santa Cruz, CA, USA; dilution 1:100). For studies
of proliferation of macrophages, sections were incubated with
mouse monoclonal anti-rat ED1 (MCA431R, AbD Serotec, Dus-
seldorf, Germany; dilution 1:1000). All antibodies were diluted
in 0.01 M PBS containing 5% donkey serum, 5% Bovine serum
albumin, 0.3% triton, and 0.1% sodium azide. The sections were
then rinsed in 0.01 M PMS and incubated for 45 min at 20˚C with
0.01 M PBS containing 0.1% sodium azide and 0.3% Triton and
either Cy3-conjugated donkey anti-rabbit IgG, Cy3-conjugated
donkey antimouse (Jackson Immuno Research Inc., PA, USA;
diluted 1:500), Cy2-conjugated donkey anti-rabbit IgG, or Cy2-
conjugated donkey antigoat IgG (Jackson; diluted 1:500). After
the sections were rinsed in PBS, they were mounted in a mixture
of glycerol and PBS and cover slipped.

Similarly, perfused tissue was processed for detection of dam-
age to neuronal processes with FD Neurosilver™ Kit I (PK301, FD
Neurotechnologies Inc., Baltimore, MD, USA) according to the
provided instructions.

In addition, sections from fresh frozen tissue from the frontal
regions of nine animals that had been subjected to maximum
rotational accelerations between 0.84 to 1.92 rad/s2, were fixated
in ice cold 100% acetone for 10 min and rinsed in PBS buffer.
Thereafter, they were incubated with the same β-APP antibody as
above but this was diluted 1:100 in 0.01 M PBS buffer containing
5% BSA, 0.3% Triton and 5% normal horse serum. Sections were
incubated over night at 4˚C, rinsed in 0.01 M PBS buffer and then
incubated with biotinylated anti-rabbit IgG (BA-1000,Vector Lab-
oratories Inc., CA, USA) followed by biotinylated enzyme complex
(VECTASTAIN Elite Kit, PK-6100, Vector Laboratories). Finally,
the binding of the APP antibody was localized by incubation with
DAB substrate (Vector, SK-4100). The sections were dehydrated
and coverslipped with Entellan and examined using the 40× lens
in a Nikon E600 microscope. Images were captured with a Nikon
Digital Sight DS-U1 (5 megapixel) camera, controlled with Nikon
EclipseNet software. A total of 279 APP-positive profiles at the bor-
der between the corpus callosum and the subcortical white matter
were identified and outlined at a final magnification of 1240× with
the polygonal marker. The area was recorded for each of these pro-
files. The results were analyzed with Graphpad Prism® 5 software
for Macintosh using Kruskal–Wallis one-way ANOVA and Dunn’s
multiple comparison test.

Cyclooxygenase 2 (COX2) is an enzyme responsible for forma-
tion of important biological mediators. It has been reported to be
abundant in cells at sites of inflammation and has been suggested
to correlate with cell death. For this analysis coronal sections from
31 animals were cut in an RNase free environment and thawed
onto SuperFrost Plus® (MENZEL-GLÄSER, Germany) object-
slides and stored in sealed boxes at −70˚C until used. Thereafter,
a 48-mer Synthetic oligonucleotide COX2 probe was synthesized
(CyberGene AB, Huddinge, Sweden). The probe was labeled at
the 3′-end with deoxyadeno-sine-alpha-(thio)triphosphate, (α-
33P)-3000 Ci/mmol, 10 mCi/ml (PerkinElmer, MA, USA) by using
terminal deoxynucleotidyl-transferase (Fermentas AB, Sweden)
and hybridized to the sections for 16–18 h at 42˚C. The sections
were first rinsed in SSC and then in distilled water. Subsequently,
dehydration in ethanol was performed. The sections were then
counterstained with cresyl violet and mounted.

In the main part of the histological analysis brain sections from
each of the three regions in the brain, frontal, middle, and occip-
ital, were chosen arbitrarily and antibody reactivity was assessed
with a NIKON E600 microscope equipped with a confocal C1 unit
or using dark field microscopy. For β-APP and COX2, the analysis
also included scoring according to a grading scheme (Table 3). In
addition, sections from the brain stem were prepared and antibody
reactivity assessed.

Two of the S100 proteins, S100A1B, and S100BB, found in the
central nervous system glial cells, are known to be released into
body fluids following trauma (Ingebrigtsen et al., 2000). In the
current study multiple serum S100BB levels and the total S100B
(S100A1B and S100B) levels were assessed using serum from 17
animals using two immunoassays (S100 EIA and S100B EIA, Can
Ag Diagnostics AB, Gothenburg, Sweden).

RESULTS
PERFORMANCE OF THE NEW TEST DEVICE
The skull cap was larger in the first 17 experiments and had a size
similar to the denuded nasal bone. As a consequence of this close
match in size, the location of the skull cap relative to the head
varied slightly in the first 17 experiments since the nasal shape of
the animal varied. As a consequence, the center of rotation varied
slightly in the first few experiments than in the rest of the series.
No difference in histological outcome between the first 17 animals
and the remaining animals could, however, be detected and the
results obtained were included in the analysis.

Table 3 | Grading of β-APP and COX2.

Grade Number of β-APP-positive

axons per section

Shape and dimension of

β-APP-positive axons

Intensity of COX2 silver

staining per section

Localization of the COX2

positive cells

0 Only slight β-APP stains in

cell body

– Sometimes visible Distributed regardless of

tissue type

1 50–100 Small but asymmetric Visible in 10× microscope Localized to cell bodies

2 100–200 Large and asymmetric Visible in 1× microscope, bright

contrast underlying tissue

Localized to cell bodies

3 >200 Large and some extended along

the axon

Visible macroscopically and

overshadowing tissue behind

Localized to cell bodies
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ROTATIONAL AND LINEAR ACCELERATION AND VELOCITY CHANGE
The charge pressure in the accelerator influenced the striker tar-
get speed which in turn influenced the rotational acceleration of
the rotating bar and animal head unit. The duration of this angu-
lar acceleration was about 0.4 ms and was independent of striker
velocity. As a consequence, the resulting angular velocity correlated
closely with the peak angular acceleration (r2 = 0.86). After 10˚ of
head rotation, the striker target made contact with the foam cov-
ered crossbeam and the rotating bar and attached head came to a
halt after about 2 ms at an angle of 20˚–30˚ (Figure 2). Maximum
deceleration was approximately 25% of initial peak acceleration
(Figure 2). Thereafter the bar and the animal head slowly rotated
forward to the position it had prior to trauma.

In this study the pressure in the accelerator was varied between
8 to 30 bar which resulted in striker velocities between 33 to 63 m/s
and maximum rotational accelerations between 0.3 to 2.1 rad/s2

(Figure 2).
In the experiments, the center of rotation was not perfectly in

the center of gravity of the brain; hence the brain was exposed to
a combination of rotational and linear accelerations. As an exam-
ple, the maximum linear acceleration in the brain center of gravity
ranged from 3600 to 7400 m/s2 for the three experiments included
in Figure 2.

Images of the rotating bar during trauma were recording using
a high speed video for the purpose of evaluating the recorded linear
acceleration and subsequent calculation of the rotational acceler-
ation. The time from start to stop of the angulations of the head,
obtained from video analysis, matched that of the accelerometer
data. Resulting peak angulations of the rotating bar during the
trauma, as estimated by double integration of the rotational accel-
eration, were also consistently about 20˚ and matched those of the
video data (Figure 2).

DIFFUSE AXONAL INJURY
Bands of β-APP-positive axons, i.e., axons with reduced axoplas-
mic transport and accumulation of β-APP, were seen in frontal
sections and in the borders between the cortex and the corpus

callosum (also forceps minor) in nearly all animals exposed to
head rotational trauma of 1.0 Mrad/s2 or above (Figures 3 and
8). No β-APP reactivity was found in the sham exposed animals
(Figure 3).

These bands were present independent of survival times, how-
ever the number of β-APP-positive axons appeared to increase
when the survival time was 24 h compared with 3 and 2 h. In
animals that were exposed to rotational trauma at 1.3 Mrad/s2

or higher, bands of β-APP-positive axons were also seen in these
borders in the middle and rear sections. This observation was
not as consistent as for the frontal sections; animals that were
allowed to survive for 5 days exhibited less positive axons in the
middle and rear sections. Most animals displayed similar num-
bers of and intensity of β-APP-positive axons on the right and left
hemispheres. The extensions of the β-APP-positive axons in the
lateral direction varied from one animal to another.

For approximately 40% of the animals in which β-APP was
found in the borders between the cortex and the corpus callosum,

FIGURE 3 | Confocal images of β-APP stained tissue, coronal plane,

frontal sections. In (A) a low magnification image shows the border
between the corpus callosum (lower part) and subcortical white matter. A
larger number of β-APP-positive profiles are visible at the border between
the corpus callosum and the subcortical white matter, 24 h after high
acceleration trauma. The box in (A) indicates the area that is shown in
higher magnification in (B), in which β-APP-positive profiles have been
indicated by arrows (scale bar = 25 μm).

FIGURE 2 | Left: Rotating bar accelerations obtained in experiments that exhibited widespread, slight or no β-APP reactivity. Right: Rotational
acceleration and integrated rotational acceleration (velocity).
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β-APP was also found in the thalamus, on the lower edges of the
corpus callosum, in the corpus callosum, the caudate putamen
and the commissure. In the middle brain sections, small diameter
β-APP-positive axons were found in animals in the hippocampus
region and in the vicinity of the lateral ventricle.

Seven brain stems were dissected and stained for β-APP analy-
sis. Widespread areas with β-APP-positive axons were observed
(Figure 4). As compared to the bands seen in the upper border
of the corpus callosum, the numbers of positive axons were fewer.
OBS! The highest concentration was found in the pyramid tracts.

In nine animals β-APP-positive profiles were analyzed with
regard to size (area). No significant difference (p < 0.05) in size
of the profiles could be detected, using the Kruskal–Wallis and
Dunn’s multiple comparison test. A straight line fitted to the mean
values for the analyzed animals had a slope that did not signifi-
cantly deviate from zero (r2 = 0.0008), suggesting that above the
threshold for injury there is not a linear relationship between accel-
eration and mean size of the β-APP-positive profiles (Figure 5).
Thus, increased acceleration does not seem to increase the size of
the profiles.

FIGURE 4 | Fluorescence micrographs of sagittal plane sections from

the pyramidal tract in brain stem incubated with β-APP (scale

bar = 50 μm; magnification in (A) = (B)). Twenty-four hours after high
acceleration trauma a number of β-APP-positive axons are present (arrows).

FIGURE 5 | Relationship between maximum acceleration and mean

size of β-APP-positive profiles at the border between corpus callosum

and subcortical white matter, using the ABC method and image

analysis, in nine animals 24 h after trauma. The mean size (μm2) of the
analyzed profiles has been plotted against the acceleration. No correlation
between size and acceleration was found.

The acceleration trauma also resulted in axonal FD silver label-
ing in the pyramid tracts in the brainstem (Figure 6). This was
detected 7 days after severe trauma. It is most likely that silver
labeled axons were present in other locations of the brain as well
and perhaps at slightly shorter survival times. The silver labeling
has not been analyzed in detail at present.

For the average levels of β-APP-positive axons, as determined
according to the grading scheme previously presented (Table 3),
a clear dose-response pattern can be observed; for β-APP-positive
axons the increase starts at 1.1 Mrad/s2 (Figure 9).

INFLAMMATORY RESPONSE
An intense induction of COX2 mRNA following trauma was
observed in the dentate gyrus within 3 h after trauma (Figure 7).
A less intensive induction could be detected in some regions of the
cortex and the basilar region. This was in contrast to what could
be observed in the sham operated animals in which few or no cells
were labeled. In the frontal sections, the COX2 was found mainly
in the cingulated cortex and in the lateral regions of the cortex.
In the middle sections, reactivity was found in the dentate gyrus,
putamen/hippocampus region, and lateral regions of the cortex.
In the occipital sections mainly the lateral regions of the cortex
exhibited COX2 positive cells. The average levels of COX2 inten-
sity, as subjectively determined according to the grading scheme

FIGURE 6 | Sections from the pyramidal tract. The micrographs show
degenerating axons [(A) arrows] in the pyramidal tract 5 days after high level
trauma, as revealed with the FD silver method. The axon in (B) had the
appearance of an endbulb (scale bar = 25 μm; magnification in A = B).

FIGURE 7 | Images, captured in darkfield microscopy, of coronal plane

occipital sections of the dentate gyrus (arrows) after in situ

hybridization for COX2 mRNA. (A) is a section from an animal exposed to
a 0.7-Mrad/s2 rotational acceleration, whereas (B) shows a section from an
animal exposed to a severe rotational trauma (scale bar = 500 μm; A = B).
Note the absence of a signal in (A) and the intense signal in the dentate
gyrus in (B).
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FIGURE 8 | Schematic graphs showing the middle coronal section of

the rat brain. In (A) the stars indicate the localization of β-APP-positive
axons. Note the distribution of positive profiles in corpus callosum,
hippocampus, and thalamus. In (B) stars indicate the localization of cells
with high expression of of COX2 mRNA. Note the high expression in
dentate gyrus, cingulate cortex, as well as lateral and basal cortex.

previously presented (Table 3), increase with rotational accelera-
tion (Figure 9). A clear dose-response pattern can be observed; for
COX2 intensity the increase starts at around 0.9 Mrad/s2.

OTHER INJURIES
During sacrifice, hemorrhages were visible in the foramen mag-
num region; subdural and subarachnoid hemorrhages were
observed on the superior cortex surface in slightly less than half of
the exposed animals. A few animals suffered from hemorrhages in
the vicinity of the olfactory bulb.

No invasions of ED1 positive macrophages or BBB changes
could be observed. Macrophages were only very sparsely observed
in the basal region of the brain and in a limited number of animals
that had been exposed to high rotational acceleration.

Two repeated analyses of the total S100B levels revealed
an increase when the maximum head acceleration was above
0.8 Mrad/s2 (Figure 9) whereas three repeated analyses of S100BB
serum levels showed an increase when the acceleration was above
0.9 Mrad/s2.

DISCUSSION
The experimental data reveal that the new model produces graded
injury. β-APP-positive axons and COX2 positive neurons were
observed in the brain tissue and an increase of S100B in serum
was detected when the rearward rotational acceleration was above
1.0 Mrad/s2 and the pulse duration was 0.4 ms (Figure 9). Increas-
ing the trauma level resulted in prominent levels of β-APP, COX2,
and S100B (Figure 9).

DIFFUSE AXONAL INJURY
Loads to an axon may cause an immediate axotomy, where the
axons and myelin are simultaneously and directly damaged at
the site of lesion, or a delayed disruptive injury to the axons.
The latter is the most common type of injury to axons in ani-
mal models (Maxwell et al., 1993) and is commonly associated
with axonal swelling whereas the former is associated with axonal
bulbs. These swellings are a consequence of a sequence of events
that includes perturbation to the axolemma, formation of nodal
blebs, changes to the neurofilament structures and separation of
the axolemma from the myelin sheath. Swelling occurs when the
axonal transport system is affected which leads to the accumu-
lation of transport material such as proteins and enzymes along
the axons. The sequence may end with axonal disconnection and
formation of axonal bulbs. Delayed or secondary axotomy is an
important feature of TBI and DAI. This axonal injury is now
known to be a complex array of responses to injuries of varying
severity. In some cases, only the axonal cytoskeleton is injured
and in other cases the adjacent axolemma show alterations in
permeability, which may contribute to the disconnection of the
affected axons. The timetable for such events is varying but can
be assumed to continue for days (Farkas and Povlishock, 2007).
We have not established the timetable for secondary axotomy in
the present experiments. The presence of β-APP-positive profiles
is assumed to be a good indicator of disrupted axonal transport,
whereas the silver staining represents a marker for disconnected
axons following the secondary axotomy.

FIGURE 9 | β-APP and COX2 levels (left) and total S100B and S100BB levels after 2–3 h survival time (right) as a function of maximum rotational

acceleration. Note that in the left plot, 12 sham exposed controls are included that all exhibited zero level β-APP and three sham exposed controls are included
that all exhibited zero level of COX2. For one animal extremely high total S100B and S100 BB values were measured and are not depicted for clarity.
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In this study mainly three types of β-APP accumulations were
present. These were used to assess risk of axonal injuries (AI) in
the brain tissue following rotational trauma. In coronal sections
dot like β-APP spots were found on the border between the cor-
pus callosum and the cortex. Furthermore, axons that appeared
swollen could be found in the corpus callosum (Figure 3). The
dot like appearance was evidently a result of the fact that most of
the effected axons were cut (Figure 3). In sagittal sections of the
brain stem, axons with swollen appearance were found in abun-
dance (Figure 4). There is no doubt that the new trauma model
produces AI. Numerous studies have shown that β-APP is pro-
duced in neurons. The β-APP is transported distally in the axon
and following an AI it accumulates at the site of injury (Gentleman
et al., 1993; Blumbergs et al., 1994). However, due to the fact that
most sections studied were coronal, the β-APP analysis alone is
not enough to determine whether the new model mainly gave rise
to secondary axotomy as a result of perturbation to the axolemma
or also produced immediate axotomy.

To shed some light on this, tissue from a limited number of
animals was stained using FD silver. The results confirmed the
observations found after staining for β-APP and indicate that
many of the injured axons degenerate after 7 days survival time.
Future studies using stains to study filament changes (e.g., neu-
rofilament and tubulin), as well as electron microscopy will be
adopted to validate the method used to detect injury and to further
assess the distribution of primary and secondary axotomy.

β-APP-positive axons were found in the edges of and inside the
corpus callosum. The largest numbers were found in the superior
edges of the frontal region of the corpus callosum. The distribu-
tion of injured axons may be an effect of the induced shearing and
straining of the tissue during the trauma or/and may reflect an
uneven distribution of axons as well as axons of different sizes. An
overall density decline from the anterior to the posterior region of
the corpus callosum was observed in a study by Riise and Pakken-
berg (2011). These authors also found an inverse relationship
between the distribution of large and small fibers.

The β-APP-positive profiles could be detected at a lower mag-
nification in animals subjected to a higher acceleration injury. In
fluorescence microscopy these profiles appeared larger. However,
using ABC for β-APP and image analysis it was observed that
there was no difference in mean size of β-APP-positive profiles
between animals subjected to different levels of acceleration. This
would imply that an intensity difference rather than a size differ-
ence can explain why the profiles can be detected by fluorescence
microscopy at a lower magnification in animals that have sustained
a higher acceleration. Unfortunately, we have no reliable method
to measure the intensity in the fluorescence signal, but the possi-
bility that a larger acceleration injury might induce a more drastic
accumulation of β-APP that could lead to a higher concentration
of the protein cannot be ignored.

The localization of the affected axons in this study partly resem-
bles those commonly reported in the literature following DAI
Grade I: characterized by microscopical AI mainly in the corpus
callosum and the parasagittal white matter (Adams et al., 1989).
The near absence of positive axons in the white matter of the
cerebral hemispheres in this study may reflect species differences.
Alternatively, they do not appear after the type of trauma used in

this study. It has also been reported that DAI is associated with
lesions in the brain stem and cerebellum (DAI Grade 3). Prelim-
inary findings, including β-APP-positive axons, FD silver labeled
axons, and GFAP changes in the upper brainstem region as stud-
ied in about 10 animals suggest that the model also produces DAI
grade 3.

Based on the histological findings in this study we are confident
that the model used in this study produces DAI since distributed
AI are produced in representative regions of the brain and brain-
stem. Future studies will further categorize the extent of the axonal
injury produced by this trauma model.

INFLAMMATORY RESPONSE
Cyclooxygenase converts arachidonic acid to prostaglandin H2, a
precursor of the prostanoids, which is a subclass of eicosanoids
that includes prostaglandins, thromboxane and prostacyclin. Dif-
ferent COX isoenzymes are known. COX1 is a constitutive enzyme
in most mammalian cell types, whereas COX2 is an enzyme that
can be induced in macrophages and other cells at sites of inflam-
mation or injury. Our observation of an upregulation of COX2
mRNA in areas such as the dentate gyrus after rotational TBI is
compatible with our previous observation that gene clusters relat-
ing to inflammation show a significantly changed expression in
the hippocampus after this type of injury (Risling et al., 2011).
Future behavioral studies tailored to study memory deficiencies
and anxiety reactions, e.g., radial maze and elevated plus, will be
adopted to assess the effects of the observed inflammation in the
hippocampus region following rotational trauma.

OTHER INJURIES
Some previous studies classify brain injury according to the pres-
ence of neuropathological changes and the frequency and duration
of unconsciousness following trauma (Ono et al., 1980; Gennarelli
et al., 1982). In this study the severity of the concussion was not
assessed and as such makes a direct comparison difficult.

Contusions have been present following rotational trauma in
studies in the past. In this study tissue stained to study astro-
cyte changes, macrophage invasions, and permeability of BBB
indicated that there were no contusions related to the trauma.

Preliminary results from a behavioral study, in which changes
to the balance was assessed using a beam walk test, indicate that no
major neck muscle injuries or inner ear injuries occurred during
the rotational trauma (manuscript in preparation Risling et al.,
2011).

Hemorrhages were observed in the foramen magnum region in
a large proportion of the animals after the very first few tests using
this model. To reduce these injuries, head rearward rotation was
limited to approximately 20˚ during the trauma. Also, the mount-
ing position of the skull cap had an effect on these injuries; when
the head center of rotation was shifted forward there were more
hemorrhages in the meninges in the brainstem region and also an
increased number of deaths immediately after trauma. In a limited
number of cases, hemorrhages were also found in the meninges
surrounding the olfactory bulbs and on the top of the hemispheres.
The incidence rate of hemorrhages did not appear to correlate to
the head angle or the position of the center of rotation. Similarly,
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only an insignificant correlation between the extent of hemor-
rhages and rotational acceleration was observed: no hemorrhages
were found in unexposed control animals, but they were observed
in some of the animals when exposed to rotational trauma above
0.6 Mrad/s2.

Following moderate level of rotational head trauma we
recorded elevated S100B and S100BB levels in serum despite the
absence of obvious BBB injuries. The trauma could result in minor
BBB injuries, which was not detectable using traditional histology,
responsible for the S100B leakage. Future studies using MRI may
shed some light on this discrepancy.

In this study, we have shown that the developed model pro-
duces axonal injury as detected by β-APP-positive axons and a
possible inflammatory response as we have seen an intense induc-
tion of COX2 stained nerve cells. In addition we have measured a
steady increase in concentrations of S100B and S100BB in serum
following rotational acceleration trauma. Since the three markers
become apparent and abundant in a rather narrow trauma severity
interval, it may be suggested that the three markers indicate one
single type of brain tissue injury. This injury would most likely be
injuries to the axons, but could also be a combination of AI and

contusion injuries to the surface of the brain. However, as men-
tioned earlier, no macrophage invasion or BBB changes could be
observed and COX2 stained nerve cells along the periphery of the
brain were only observed sparsely in the basal regions of the brain.
These observations indicate that the model produces AI with only
minor contusion injuries.

CONCLUSION
We conclude that the developed animal model is capable of
producing graded DAI with limited contusion injury. We also
conclude that the model is inexpensive to use and produces a
reproducible injury panorama. The animal model produces AI
mainly in the corpus callosum, on the upper and lower boundaries
of the corpus callosum, and in the brain stem, which commonly
has been reported in studies of DAI.
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