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A blast injury is a complex type of physical trauma resulting from the detonation of explosive
compounds and has become an important issue due to the use of improvised explosive
devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major con-
cern in contemporary military medicine and includes a variety of injuries that range from
mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern
body protection and the development of armored military vehicles can be assumed to have
changed the outcome of BINT. Primary blast injuries are caused by overpressure waves
whereas secondary, tertiary, and quaternary blast injuries can have more varied origins
such as the impact of fragments, abnormal movements, or heat.The characteristics of the
blast wave can be assumed to be significantly different in open field detonations compared
to explosions in a confined space, such an armored vehicle. Important parameters include
peak pressure, duration, and shape of the pulse. Reflections from walls and armor can
make the prediction of effects in individual cases very complex. Epidemiological data do
not contain information of the comparative importance of the different blast mechanisms.
It is therefore important to generate data in carefully designed animal models. Such mod-
els can be selective reproductions of a primary blast, penetrating injuries from fragments,
acceleration movements, or combinations of such mechanisms. It is of crucial importance
that the physical parameters of the employed models are well characterized so that the
experiments can be reproduced in different laboratory settings. Ideally, pressure recordings
should be calibrated by using the same equipment in several laboratories. With carefully
designed models and thoroughly evaluated animal data it should be possible to achieve
a translation of data between animal and clinical data. Imaging and computer simulation
represent a possible link between experiments and studies of human cases. However, in
order for mathematical simulations to be completely useful, the predictions will most likely
have to be validated by detailed data from animal experiments. Some aspects of BINT
can conceivably be studied in vitro. However, factors such as systemic response, brain
edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must
be evaluated in experimental animals. Against this background, it is necessary that such
animal experiments are carefully developed imitations of actual components in the blast
injury. This paper describes and discusses examples of different designs of experimental
models relevant to BINT.
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INTRODUCTION
Traumatic brain injury (TBI) is a very complex entity, often
complicated by secondary injury cascades (Cernak and Noble-
Haeusslein, 2010). The use of improvised explosive devices (IED)
in the contemporary asymmetric military conflicts and terrorist
attacks has resulted in large numbers of casualties (Jaffee et al.,
2009). The effects of blast waves from detonations represent an
intriguing and complex scientific problem domain. Blast-induced
neurotrauma (BINT) has often been referred to as the signature
injury in the conflicts in Iraq and Afghanistan (Moore and Jaffee,
2010; Snell and Halter, 2010). Mild TBI is a dominating group
of TBI both in civilian trauma studies and in the military setting

(Hoge et al., 2009; Snell and Halter, 2010; Ling and Ecklund, 2011).
Concussion during sports activities, the prototype mild TBI in
the civilian context, is often an acceleration injury. Most cases of
mild TBI probably result in very limited physical lesions, although
there are reports of white matter injuries (Sharp and Ham, 2011).
However, many mild TBI have functional effects that last for a
considerable amount of time and the underlying factors remain
to be established (Terrio et al., 2009; Belanger et al., 2011; Sayer,
2012). The physics of the blast injury differ from that of trauma in
the usual civilian accidents. Whether the underlying mechanism
in mild TBI is the blast wave or acceleration forces must yet be
determined.

www.frontiersin.org April 2012 | Volume 3 | Article 30 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2012.00030/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=8576&d=2&sname=M�rtenRisling&name=Medicine
http://www.frontiersin.org/people/johandavidsson/21447/neurotrauma
mailto:marten.risling@ki.se
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


Risling and Davidsson Blast-induced neurotrauma

One way to understand the effects of a blast wave is to divide
the mechanism into (see also Figure 1):

• Effects of the primary blast wave, thus the propagation of a
supersonic pressure transient with short duration. The thresh-
old for injuries is determined by factors such as peak pressure,
duration, and shape of the wave (reflections, underpressure,
etc.).

• Secondary effects of blast, i.e., due to the impact of flying objects,
such as shrapnel fragments, which can generate penetrating
injuries. The proportion of such injuries was larger in previ-
ous conflicts, but seems to have been reduced by improvements
in helmet construction.

• Tertiary effects of blast, i.e., the result of acceleration move-
ments, which may result in tissue shearing and diffuse injuries,
such as diffuse axonal injuries (DAI).

• Quaternary effects of blast, the result of heat, smoke, or emission
of electromagnetic pulses (EMP).

Many clinical TBI cases have a complex mixture of diffuse and
focal injuries, which are complicated by secondary injury events.
Individuals exposed to a blast often suffer from multiple injuries,
i.e., pulmonary lesions or amputations. Severe blast related TBI
with brain edema and vascular spasm (Armonda et al., 2006) can
be assumed to be the result of a combination of more than one
injury mechanisms. The propagation of blast waves through ves-
sels into the brain and the possible effects on vascular perfusion
and the function of the blood–brain barrier has been suggested to
be an important mechanism for blast (Chen and Huang, 2011). It

is generally very difficult to reconstruct the physics after a deto-
nation and estimate acceleration forces. Exposure data are usually
lacking in clinical BINT cases. This situation may change with
acceleration probes in helmets and other efforts to create blast
dosimeters (Rigby et al., 2011). Thus, the complexity of the blast
physics and the TBI create a demand for systemic studies in order
to obtain better knowledge regarding injury mechanisms as well
as better strategies for prevention and treatment of BINT.

Thus, the clinical situation is very complex and animal trauma
models can be used to study single factors involved in the patho-
biology of head injury (Cernak, 2005). Experimental studies in
animals therefore represent an unavoidable tool in BINT research.
A considerable number of animal models have been proposed to
be suitable for blast research. Examples of such models will be
described and discussed in this paper. Furthermore, the impor-
tance of validating these models will be explained and a review
of how experimental and clinical data can be translated will be
performed.

EXAMPLES OF MODELS FOR BLAST
OPEN FIELD EXPOSURE
The classical large-scale experiments in desert areas and ponds in
the US employed large sets of animals of different species and sizes
that were subjected to open field exposure to blast. These exper-
iments determined thresholds for mortality and injuries such as
bleeding in air filled organs such as the lungs and intestines. The
potential effects on the central nervous system were however not
assessed. These experiments provided fundamental data for effects
of blast with simple wave forms, i.e., the Friedländer type of wave

FIGURE 1 | A schematic representation of some of different mechanisms for blast-induced neurotrauma.
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and dose response curves (the Bowen curves) were determined
(White et al., 1965; Richmond et al., 1967a,b; Axelsson and Yelver-
ton, 1996; Cernak et al., 2011). These types of experiments require
large amounts of explosives and dosimetry can be difficult. Out-
door conditions in combination with a large number of animals
in a single experiment usually leads to a decreased control of the
physiology of the experimental animals and may prevent proper
tissue collection. However, open field experiments may allow for
more realistic experiments with large animals that are more sim-
ilar in size to humans. It also makes it possible to use waveforms
relevant for simulation of IED, for example reflection from the
ground or vehicles. New models employing modified open field
exposures aimed to produce mild TBI include a Combat Zone-like
blast scenery for mice (Rubovitch et al., 2011) and a primate model
(Lu et al., 2011).

BLAST TUBES FOR EXPLOSIVES
During the 1950s large size blast tubes were created to study the
effects of wave forms relevant to nuclear detonations, i.e., with
a comparatively long duration of the primary peak. The tubes

were often used to study how construction details such as doors
could withstand a blast wave and were not primarily intended for
studies in experimental animals. One exception was the studies
by Clemedson at the Swedish FOA (Swedish Defence Research
Establishment) using a smaller blast tube (Clemedson and Cri-
born, 1955) in which a charge of plastic explosives (pentaerythritol
tetranitrate, PETN) was used. The system was composed of a cylin-
drical 400 mm wide cast iron tube, with a cone shaped tip where
the charge was placed (Figure 2). Clemedson and his cowork-
ers published a number of studies on vascular and respiratory
effects of blasts (Clemedson et al., 1953; Clemedson and Hultman,
1954). After some time, this work was extended to include the
central nervous system (Clemedson, 1956) and the cerebral vas-
culature (Clemedson et al., 1957). The blast tube was modified for
work with rodents in the 1990s. In the current setting, the anes-
thetized rat is mounted in the blast tube at a distance of 1 m from
the charge. Five grams PETN results in a peak pressure exceeding
10 bar during detonation. The animals are mounted in metallic
nets or fixed to a body protection in order to limit acceleration
movements and there are no fragments. Therefore, secondary and

FIGURE 2 | Pictures showing the blast tube that was constructed by the Swedish scientist Clemedson in the 1950s. This system may be one of the
oldest systems that still are in use.
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tertiary blast effects should be very limited in this model. However,
smoke and gas emission contribute with quaternary blast effects.
This is equipment that is used in laboratory environments with
the benefit of both a fairly high level of control of the physics in
the blast wave and the animal physiology. One limitation is the
short duration and very simple form of the blast wave. One way
to modify the blast wave would be to extend the length of the tube
and/or add reflective obstacles in the tube. One other modifica-
tion would be to allow for predetermined acceleration movement.
Recently the Walter Reed Army Institute of Research has published
interesting studies on mild BINT in swine exposed in a large size
blast tube (Bauman et al., 2009; de Lanerolle et al., 2011).

SHOCK TUBES WITH COMPRESSED AIR OR GAS
Systems with compressed air were used already in the 1950s
(Celander et al., 1955). Most systems comprise two chambers,
separated by a membrane (Figure 3). Compressed gas is loaded
into one of these chambers, referred to as the overpressure cham-
ber or the driver section, which is separated from the other
chamber, referred to as the main section or the driven section,
by a diaphragm. The object, i.e., the experimental animal, is posi-
tioned somewhere in the main section. The operator can rupture
the diaphragm and the compressed gas enters the main section and
simulates a propagating blast wave. The main section is usually sev-
eral meters long. If several overpressure chambers are positioned
in a series, rather complex waveforms can be created. The dura-
tion of the pulse is usually longer and the peak pressure is much
lower than in the Clemedson tube. One advantage associated with
this type of shock tube is the absence of quaternary blast effects
as well as other disadvantages of explosives. However, this advan-
tage can also be regarded as a disadvantage. There are a number
of modifications of the shock tube design and there seems to be a
need to calibrate the different systems. Well-documented modern
shock tubes can for instance be found at the Walter Reed insti-
tute (Long et al., 2009) and the US Naval Medical Research Center
(Chavko et al., 2007, 2011). One very sophisticated shock tube sys-
tem has been installed at the Applied Physics Laboratory at Johns
Hopkins University (Cernak et al., 2011). This is a modular, multi-
chamber shock tube capable of reproducing complex shock wave
signatures. The instrumentation allows direct measurement and

FIGURE 3 | A schematic representation of a typical over pressure shock

tube composed of two chambers separated by a membrane.

Compressed air/gas in the driver section is released as a pressure wave to
the other (driven) compartment by the controlled puncture of the
membrane.

calculation of the various shock loading characteristics, including
static pressure, total pressure, and overpressure impulse.

MODEL FOR FRAGMENT PENETRATION
This model can be used to mimic the more severe blast TBI, where
shrapnel fragments penetrate the skull and brain tissue (Risling
et al., 2004). The velocity of such fragments is assumed to be less
than 300 m/s, depending on the presence and effectiveness of hel-
mets. The anesthetized rats are placed in a stereotactic frame and a
craniotomy is performed (Figure 4). A lead bullet is accelerated by
air pressure in a specially designed rifle and impacts a secondary
projectile (Plantman et al., 2011). The pin of the secondary pro-
jectile, guided by a narrow tube, penetrates the surface of the brain
with a speed of 100 m/s. The base of the projectile is surrounded
by a compressible ring that provides control of the penetration
depth into the brain, which usually is set to 5 mm. The speed and
shape of the penetrating secondary projectile can be changed to
obtain a variation of physical properties. The model has recently
been modified for work in mice, in collaboration with Dr. Ibolja
Cernak at the Applied Biophysics Laboratory at Johns Hopkins
University. This penetrating TBI results in a central cavity cor-
responding to the actual penetration. A zone of reactive tissue,
which contains a mixture of dying cells, reactive cells, and invad-
ing inflammatory cells, surrounds this cavity. Electron microscopy
has demonstrated mainly extracellular perivascular edema (Risling
et al., 2011).

PENETRATING BALLISTIC BRAIN INJURY MODEL
The device is designed to model both the permanent injury tract
created by the path of the bullet itself and the large temporary cav-
ity generated by energy dissipation from a penetrating object. A
designed probe is inserted in the brain at the desired location and
rapid inflation of an attached balloon is used to mimic the tempo-
rary cavity. The model has been characterized in a large number
of studies and can presumably generate important knowledge
about cavity formation during fragment penetration, although
the model was specifically constructed to simulate effects of NATO
7.62 mm rounds (Williams et al., 2005, 2007).

FIGURE 4 | A schematic representation of a device for controlled

penetration of the cortex. The impactor probe is accelerated to a speed
up to 100 m/s by a bullet from a modified air rifle. The resulting injury can be
assumed to be similar to some of the effects of fragment penetration
during blast.
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MODELS FOR ACCELERATION/DECELERATION TBI
The rotational weight drop model that was developed by Mar-
marou and coworkers (Foda and Marmarou, 1994; Marmarou
et al., 1994) has generated very important data on development
of diffuse brain injuries, including an improved understanding of
DAI (Povlishock et al., 1997). However, this model combines DAI
with a contusion injury, which makes the model less useful for
threshold studies on DAI. A number of acceleration devices have
been developed for work in rodents, but the majority seems to
result in more severe injuries with meningeal bleedings (Ham-
berger et al., 2009). A model aimed for threshold studies was
described in detail at the IRCOBI conference 2009 (Davidsson
et al., 2009). It is designed to produce diffuse brain injuries by
rearward rotational acceleration in sagittal plane. The skull of an
anesthetized adult rat is tightly secured to a rotating bar. The bar
is impacted by a striker that causes the bar and the animal head
to rotate rearward; the acceleration phase lasts 0.4 ms and is fol-
lowed by a rotation at constant speed and a gentle deceleration
when the bar makes contact with a padded stop (Figure 5). By
adjusting the air pressure in the rifle used to accelerate the striker,
rotational acceleration between 0.3 and 2.1 Mrad/s2 can be pro-
duced (Davidsson and Risling, 2011). The signature injury with
this model is DAI in the corpus callosum, subcortical white mat-
ter, and the brain stem. The absence of cell death and excessive
bleedings indicate that this is a mild TBI and effects on behav-
ior are indeed limited. Thus, this model can add knowledge about
mechanisms and thresholds for acceleration induced mild TBI and
such data can be relevant for the understanding of consequences

of tertiary blast. One other model of interest for acceleration
induced DAI is a model described by Cernak et al. (2004), which
results in a moderate TBI with edema, cell death, and an increased
permeability at the Blood–Brain Barrier.

MODELS FOR QUATERNARY BLAST
Few studies are available on biological effects of EMP or heat from
detonations. One example of a facility with a capacity to generate
synthetic explosion-like EMP is a system at FMV (Swedish Defence
Materiel Administration) in Sweden, which is mainly used to test
the resistance of technical equipment to EMP. Marx generators
coupled to a 90-m long antenna can generate a wide band (MHz–
GHz) pulse with field strength of up to 450 kV/m. The system
has recently been used for cell culture experiments. However, the
importance of EMP in BINT has not been proven and exposure
data from IED detonations are not available. One recent hypothe-
sis, though, is that bone piezoelectricity (a phenomenon in which
bone polarizes electrically in response to an applied mechanical
stress and produces a short-range electric field) could be a source
of intense blast-induced electric fields in the brain (Lee et al.,2011).
Heat effects can be studied under strict laboratory conditions in
cell cultures and rodents. However, the heat emission during an
explosion has a short duration and it seems unlikely that heat
would be an important mechanism in mild BINT cases.

MISCELLANEOUS MODELS
This includes a number of models that primarily were not designed
for blast research, but may have a potential to generate data of

FIGURE 5 | Drawings showing a device for controlled sagittal

acceleration of the rat head. A metallic plate is glued on the skull bone and
is used to attach a lever that is hit by a projectile from a modified air gun. The

resulting rotational acceleration has been show to induce multiple axonal
injuries, resembling the clinical picture of DAI. Such rotational acceleration
movements may be a component of blast injuries.
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relevance for BINT. One such example is a cell culture system in
which a laser beam is used to accelerate a metal fragment to the
bottom of a cell culture vial. The impact generates a shockwave
with hydrodynamic cavitation in the cell culture medium (Sonden
et al., 2000). Such systems can be used to examine isolated cellu-
lar mechanisms in various cell types. Other examples are cortical
impact models and fluid percussion equipment that can generate
generic data on mechanisms in TBI, but are difficult to translate
into the more specific context of blast physics. Also a few new mod-
els designed for blast research but with limited validation should
be mentioned, such as the Cranium Only Blast Injury Appara-
tus (Kuehn et al., 2011) and the composite blast exposure model
that has been used for biomarker studies at Banyan Biomarkers
(Svetlov et al., 2010).

ANIMAL SPECIES AND STRAINS
The choice of the animal species or strain can obviously have a sig-
nificant impact on the outcome of the injury. Differences in body
size and the geometry of the skull can be assumed to represent
critical factors in experimental design. For example experiments
with rotational acceleration are very dependent on the distance
to the axis of rotation, thus a larger brain may be far less resis-
tant to rotational injury. Different rat strains may exhibit different
inflammatory responses and reactions to TBI (Bellander et al.,
2010). Thus, the selection of strain can have a significant impact
on the result. Transgenic mice and knockout models can be used
to identify the impact of individual genes and may add important
information to mechanisms in BINT (Koliatsos et al., 2011).

NOTES ON EXPERIMENTAL DESIGN
The seminal studies of Cernak (2010) have shown that BINT is a
systemic reaction to blast. General inflammatory reactions from
the primary blast can contribute to the reactions of the brain. The
propagation of pressure waves through the body in blast trauma
is still a subject of controversy. Important data can be retrieved by
carefully designed experiments employing partial body protection
(Cernak, 2010). The importance of recurrent mild TBI for devel-
opment of late injuries has been documented in sports medicine
(Guskiewicz et al., 2005) and repeated injuries will probably be
included in a number of protocols for research on BINT. Refined
behavioral tests with a high sensitivity for stress reactions similar
to posttraumatic stress will be important in the future work with
BINT (Kamnaksh et al., 2011; Kovesdi et al., 2011; Kwon et al.,
2011).

VALIDATION AND TRANSLATION
Based on the review above, the need for additional blast injury
models may be questioned. One fundamental question is how to
compare existing models. For example, it would be beneficial if all
blast and shock tubes could be described in the same way, with
solid documentation of peak pressure, duration, rise time, posi-
tive, and negative phases, etc. It would furthermore be of help if
sensors were calibrated in the same way. Implanted probes in the
brain, vessels, and torso may add crucial information. Unfortu-
nately, physics is complicated and additional research is needed
to achieve relevant results without artifacts (Moore et al., 2009;
MediavillaVaras et al., 2011).

Another fundamental question is how to validate existing mod-
els. Initially, an improved method of translation between animal
experiments and the clinic would be to employ the same method-
ology for analysis. Imaging with MRI and systematic use of bio-
markers can be used in both settings and help to bridge the gap
between the lab bench and the hospital bed. Secondly, there is
an additional need for comparison between exposure data from
actual clinical situations and the test conditions employed in the
animal experiments. Clinical data could for example be gener-
ated from acceleration probes in helmets, in order to measure
head accelerations during blast. Due to differences in properties
between humans and the animals used in the experiments, scaling
of the data for differences in size, geometry, material properties,
skull-to-brain tissue interface, etc., should be further introduced.
Scaling techniques have been introduced and used in the past
to scale injury threshold data from animals to humans. Already
some 50 years ago rotational acceleration data was scaled from ani-
mals to humans using a method developed by Holbourn (1943).
Unfortunately, these equations and more recent scaling techniques
(Thibault and Margulies, 1998) mainly take brain inertia into
account.

Advanced finite element models of the experimental conditions
allow for an improved understanding of the injury mechanism
and help to determine injury thresholds at tissue level. Examples
of such attempts, for which rats have been used as a model of
the human, are studies that focused on controlled cortical impact
(Ueno et al., 1995; Shreiber et al., 1997; Pena et al., 2005; Levchakov
et al., 2006; Mao et al., 2006, 2010, 2011; Pleasant et al., 2011),
indentation of the head to study skull and brain injuries (Gefen
et al., 2003), and rotational head trauma (Baumgartner et al., 2009;
Fijalkowski et al., 2009). The suggested tissue injury thresholds
could thereafter, in order to take into account differences in mate-
rial properties, etc., be scaled to be valid for humans. Finally, the
scaled results could be employed in detailed finite element mod-
els of the human skull and brain and used in studies that bridge
experimental and clinical data.

It seems possible that future work with computer models for
TBI will include more detailed information on cell density, fiber
directionality, and vascular supply. Modeling of vascular supply
can be used to predict blood pressure and regional flow (Lorthois
et al., 2011). Exact knowledge of the blood vessel geometry should
play an important role in the understanding of mechanisms for
TBI (Lehmpfuhl et al., 2011). Water and solute transport across
the Blood–Brain Barrier can also be assessed with mathematical
modeling that might be incorporated in more detailed computer
models for TBI research (Li et al., 2010). Adjustments in vas-
cular tone or caliber of the cerebral vessels may be critical if
pressure waves are propagated through blood vessels in BINT. It
may therefore be relevant to model cerebral autoregulation and
other homeostatic mechanisms that initiate blood flow changes
in order to meet local metabolic changes after trauma (Aoi et al.,
2009). Mathematical models with numerical data for vessel com-
pliance and blood viscosity may be useful for analysis of blood in
complex, multi-branching vascular networks, and thereby enable
predictions of circulation in critical areas such as the hippocam-
pus. One example of such work, is the virtual fractal model of the
vasculature in the middle cerebral artery region (Bui et al., 2009).
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Visco-elastic properties of blood vessels have been represented in
the visco-elastic Windkessel model (Zheng and Mayhew, 2009). At
a molecular level the dynamics of oxygen transport in the brain
are crucial to its response to local mismatches between flow and
metabolism. A two phase continuum model, based on the cou-
pled behavior of oxygen transport in tissue and blood, that can be
use to simulate micro-strokes, has been described (Su and Payne,
2009). Models of biological neural networks are used to find out
how synchronized firing of neurons arise and may therefore pro-
vide understanding of focal epilepsy after TBI (Volk, 2001; David
et al., 2009). One further development might be to combine such
models with artificial neural networks as tools that can be applied
as predictive models (Rughani et al., 2010; van der Ploeg et al.,
2011).

The most central problem, however, is that exposure data from
actual clinical situations are lacking. Acceleration probes mounted
in helmets (Rigby et al., 2011) may help to solve this problem.
If the same type of sensors will be implanted for use in animal

experiments, translation of data may be facilitated. One other
way to accomplish a better translation between animal experi-
ments and the clinic would be to employ the same methodology
for analysis (Agoston et al., 2012). Imaging with MRI and sys-
tematic use of biomarkers can be used in both settings and help
to decrease the gap between the lab bench and the hospital bed.
Computer based reconstruction of clinical injuries and exposure
in the experimental models can help to further improve knowledge
of this area (Kleiven, 2007). Modeling however, has limited use if
the predictions cannot be validated by actual biological observa-
tions. Outcome data from a large cohort of patients that survived
penetrating brain injuries is available through the Vietnam Head
injury study (Raymont et al., 2011; Rostami et al., 2011). This is
probably the most detailed follow-up neurotrauma study that has
ever been conducted and it could serve as model for how useful
data should be collected. Hopefully, similar data collections will
be available for BINT and can help to indicate suitable designs for
relevant experimental studies.
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