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INTRODUCTION

The present study aimed at identifying the neurophysiological responses associated with
auditory stimulation during non-rapid eye movement (NREM) sleep using simultaneous
electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) recordings.
It was reported earlier that auditory stimuli produce bilateral activation in auditory cor
tex, thalamus, and caudate during both wakefulness and NREM sleep. However, due to
the spontaneous membrane potential fluctuations cortical responses may be highly vari-
able during NREM. Here we now examine the modulation of cerebral responses to tones
depending on the presence or absence of sleep spindles and the phase of the slow oscilla-
tion. Thirteen healthy young subjects were scanned successfully during stage 2-4 NREM
sleep in the first half of the night in a 3T scanner. Subjects were not sleep-deprived and
sounds were post hoc classified according to (i) the presence of sleep spindles or (ii) the
phase of the slow oscillation during (=300 ms) tone delivery. These detected sounds were
then entered as regressors of interest in fMRI analyses. Interestingly wake-like responses —
although somewhat altered in size and location — persisted during NREM sleep, except
during present spindles (as previously published in Dang-Vu et al., 2011) and the negative
going phase of the slow oscillation during which responses became less consistent or even
absent. While the phase of the slow oscillation did not alter brain responses in primary sen-
sory cortex, it did modulate responses at higher cortical levels. In addition EEG analyses
show a distinct N550 response to tones during the presence of light sleep spindles and
suggest that in deep NREM sleep the brain is more responsive during the positive going
slope of the slow oscillation. The presence of short temporal windows during which the
brain is open to external stimuli is consistent with the fact that even during deep sleep
meaningful events can be detected. Altogether, our results emphasize the notion that
spontaneous fluctuations of brain activity profoundly modify brain responses to external
information across all behavioral states, including deep NREM sleep.
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world is dependent upon pre-stimulus activity in the somato-

Classically, brain processes are considered as essentially reflexive
and mainly driven by external stimuli. In this perspective, brain
function is predominantly geared interpreting incoming stimuli
and programming motor output. Another view posits that the
bulk of brain activity is intrinsic, spontaneous (i.e., it emerges in
the absence of any identified external stimulus), and continuously
maintains and processes information (Raichle, 2006). Consistent
with this view, the energy required for the brain to respond to exter-
nal stimuli is extremely small compared to the ongoing amount of
energy that the brain normally and continuously expends (Raichle
and Mintun, 2006). During wakefulness, spontaneous fluctuations
of brain activity profoundly modify brain responses to external
information. For instance, conscious perception of the external

sensory (Palvaetal.,2005; Bolyetal.,2007) as well as visual domain
(Hanslmayr et al., 2007; Hesselmann et al., 2008a,b). Likewise,
cortical responses to external stimuli should be modulated by the
spontaneous non-rapid eye movement (NREM) sleep background
activity materialized by sleep spindles and slow-waves (SW), which
are associated with specific activity patterns in thalamic and corti-
cal neurons during sleep. Accordingly, animal (Steriade, 1991) and
human (Elton et al., 1997; Cote et al., 2000) studies clearly sug-
gested that sensory transmission is blocked at the thalamic level
during sleep spindles due to the recurrent inhibition of thalamo-
cortical neurons by reticular thalamic cells and thereby might even
herald individual resilience to disruptive stimuli such as environ-
mental noise in human subjects (Dang-Vu et al., 2010). Likewise,
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processing of somatosensory inputs during deep NREM sleep was
shown to be strongly influenced by the phase of the slow oscil-
lation at which stimuli were delivered (Massimini et al., 2003).
The amplitude of early evoked potentials increased during the
downswing of the electroencephalography (EEG) slow fluctuation,
potentially in relation to a progressive decrease in input resistance
of cortical neurons (Contreras et al., 1996) and heightened prob-
ability of synaptic release (Massimini and Amzica, 2001) which is
highest during the transition from the cellular down to up state
(i.e., negative-to-positive EEG slope transition; Massimini et al.,
2003).

In humans, EEG (Bastuji and Garcia-Larrea, 1999) and neu-
roimaging (Portas et al., 2000) studies primarily insisted on the
persistence of brain responses to auditory stimuli. With regards to
EEG the extent of residual auditory information processing during
sleep has been extensively studied using event-related potentials
(ERPs; for review see Campbell and Colrain, 2002). Therein it has
been consistently reported that the early N1 component is gradu-
ally decreased from sleep onset to stage 2 NREM sleep whereas the
P2 amplitude is increased (Campbell et al., 1992). Latter effect has
also been associated with an attenuation of the classical processing
negativity (de Lugt et al., 1996) which is thought to reflect addi-
tional attentional processing of attenuated stimuli during waking
(Néidtinen et al., 1992). Consequently, absence of this overlapping
negativity is regarded to reflect inhibition of information process-
ing (Campbell et al., 1992). In addition, during the occurrence
of sleep spindles the amplitude of the P2 component has been
found to be even more amplified (Elton et al., 1997). Accord-
ing to the authors, this reflects a further inhibition of stimulus
processing during sleep. Besides these modified waking compo-
nents NREM sleep (auditory) ERPs further consist of unusual large
amplitude components. Specifically these are the N350 (between
250 and 400 ms), the N550 (between 500 and 800 ms), and the
P900 (between 800 and 1300 ms). While the N350 possibly reflects
an active inhibition of sensory processing during sleep onset, the
later components (N550 and P900) form part of the very large
amplitude stimulus-elicited K-complex and thus might reflect or
overlap with the generation of delta oscillations for the sake of
sleep protection (for review see Bastien et al., 2002; Colrain and
Campbell, 2007).

Neuroimaging studies suggested that the brain can even detect
meaningful auditory events (like a subjects own name) during
NREM sleep in which it elicits significant responses in the amyg-
dala and prefrontal cortex in addition to the bilateral activation
of auditory cortex, thalamus, and caudate nuclei seen in response
to simple auditory stimuli (Portas et al., 2000). In contrast, Czisch
et al. (2002) reported that the brain response to auditory stimu-
lation was decreased during NREM sleep as compared to wake-
fulness, interpreting their results in terms of a sleep-protective
deactivation of primary sensory areas. In a follow up study the
same authors demonstrated that the stimulus-induced negative
BOLD effects — again primarily found in light NREM sleep —
correlated positively with EEG signs of hyperpolarization (i.e.,
K-complexes and delta power) suggesting “true cortical deacti-
vation upon stimulus presentation”(Czisch et al., 2004). However,
all these studies considered NREM sleep as a homogeneous and
steady state and did not account for the potential influence of

spontaneous ongoing brain activity. The data reported in this
article precisely aimed at characterizing sound processing during
specific NREM sleep features using simultaneous EEG/functional
magnetic resonance imaging (fMRI) recordings. Also note that
previous fMRI studies used continuous stimulation (up to 42s)
and probably measured to a considerable part induced changes in
brain states (such as arousals or increased gating) whereas the cur-
rent paper makes use of the more advanced event-related paradigm
focusing directly on evoked brain activity.

Here we now use simultaneous EEG and fMRI in order to char-
acterize brain responses to tones during light and deep NREM
sleep in non sleep-deprived healthy individuals. Specifically, we
examined brain responses to auditory stimuli during NREM stage
2—4 sleep in relation to the presence of sleep spindles (fMRI data
published previously in Dang-Vu et al., 2011) and the phase of the
slow oscillation.

MATERIALS AND METHODS

Thirteen — out of 19 recorded (9 females; age range = 18-25; mean
age = 21.3) —healthy subjects were successfully scanned during the
first half of the night in a Siemens Allegra 3 T scanner with a full
64 channel montage of MR-compatible EEG electrodes.

Participants were right-handed and gave their written informed
consent. After the experiment participants received a financial
compensation for their participation in this study, which was
approved by the Ethics Committee of the Faculty of Medicine
of the University of Liege. Participants were free of any medical,
traumatic, psychiatric, or sleep disorder history, as assessed by a
semi-structured interview. No participant complained of exces-
sive daytime sleepiness (Epworth Sleepiness Scale; Johns, 1991) or
sleep disturbances (Pittsburgh Sleep Quality Index Questionnaire;
Buysse et al., 1989). All participants had normal scores at the Beck
Anxiety and Beck Depression Inventory, and were non-smokers,
moderate caffeine and alcohol consumers, as well as refraining
from medication. None had worked on night shifts during the last
year or traveled through more than one time zone during the last
2 months. Extreme morning and evening types, as assessed by the
Horne—Ostberg Questionnaire (Horne and Ostberg, 1976), were
not included.

Subjects were not sleep-deprived and followed a 4-day con-
stant sleep schedule, as controlled by wrist actigraphy (Actiwatch,
Cambridge Neuroscience, UK) and sleep diaries. Volunteers were
requested to refrain from all caffeine and alcohol-containing bev-
erages and intense physical activity for 3 days before participating
in the study. Subjects reported to the laboratory at 9 pm.

EEG AND fMRI METHODOLOGY

Electroencephalography was recorded simultaneously to fMRI
acquisitions, during the first half of the night, utilizing two MR-
compatible 32-channel amplifiers (BrainAmp MR plus, Brain
Products GmbH, Gilching, Germany) and a MR-compatible
EEG cap (BrainCap MR, Falk Minow Services, Herrsching—
Breitbrunn, Germany) with 64 ring-type electrodes. EEG caps
included 62 scalp electrodes which were online referenced to FCz,
as well as 1 electrooculogram (EOG) and 1 electrocardiogram
(ECG) channel. Using abrasive electrode paste (ABRALYT 2000;
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EMS, Herrschings—Breitbrunn, Germany) electrode-skin imped-
ance was kept below 5k (in addition to the 5-k€2 resistor built
into the electrodes). To avoid movement-related EEG artifacts, the
subjects’ head was immobilized in the head-coil by a vacuum pad.

Electroencephalography was digitized at 5000 Hz sampling rate
with a 500-nV resolution. Data were analog-filtered by a band
limiter low-pass filter at 250 Hz (30 dB/Octave) and a high-pass
filter with 10s time constant corresponding to a high-pass fre-
quency of 0.0159 Hz. Data were transferred outside the scanner
room through fiber optic cables to a personal computer where the
EEG system running Vision Recorder Software v1.03 (Brain Prod-
ucts GmbH, Gilching, Germany) was synchronized to the scan-
ner clock. Sleep EEG was monitored online with Brain Products
RecView Software.

For analysis, EEG data were low-pass filtered (FIR filter, —36 dB
at 70 Hz), down-sampled to 250 Hz, and re-referenced to the mas-
toids. Scanner gradient artifacts were removed in Vision Analyzer,
using an adaptive average subtraction (Allen et al., 2000). Ballisto-
cardiographic (BCG) artifacts were removed using an algorithm
based on independent component analysis (Srivastava et al., 2005).
Sleep staging followed standard criteria (Rechtschaffen and Kales,
1968), and identified periods of stage 2-3 or stage 3—-4 NREM
sleep, free of any artifact, during which the EEG and fMRI data
were analyzed. Only stable stage 2-3 or stage 3—4 epochs lasting
more than 2 min were considered for the analysis of sleep spindles
(for details see Dang-Vu et al., 2011) and SW activity, respectively.
For EEG spindle and SW analysis we used Fz, Cz, and Pz. For dis-
play and statistics we selected the Cz lead as this electrode allows
to depict spindle as well as SW effects.

Functional MRI time series were acquired using a 3T
MR scanner (Allegra, Siemens, Germany). Multislice T2:x-
weighted fMRI images were obtained with a gradient echo-
planar sequence using axial slice orientation (32 slices;
voxel size: 3.4 mm x 3.4 mm X 3 mm; matrix size = 64 x 64 x 32;
TR = 2460 ms; TE =40ms; flip angle =90°; delay = 0). Subjects
were scanned during the first half of the night, starting at around
midnight. They were asked to relax, try to sleep in the scanner
and not pay attention to occasional tones, while fMRI and EEG
data were acquired continuously. They stayed until they indi-
cated by button press that they would like to go out, or for a
maximum of 4000 volumes (about 164 min). The number of
acquired volumes varied between 1195 and 4000 [3401 £ 965
volumes or 139+40min (mean=+SD)]. A structural T1-
weighed 3D MP-RAGE sequence (TR= 1960 ms, TE =4.43 ms,
inversion time=1100ms, FOV =230mm x 173 mm, matrix
size =256 x 192 x 176, voxel size = 0.9 mm x 0.9 mm x 0.9 mm)
was also acquired in all subjects.

In addition, waking sessions before and after sleep were selected
to identify default brain activations associated with the occurrence
of tones during wakefulness (TW). The analysis of waking fMRI
data characterized the brain responses to TW compared to waking
baseline activity.

Functional volumes were analyzed by using Statistical Paramet-
ric Mapping 8 (SPMS; http://www.fil.ion.ucl.ac.uk/spm/) imple-
mented in MATLAB (MathWorks). The series of consecutive fMRI
volumes corresponding to selected stage 2-3, stage 3—4, or wake
periods were selected from the complete fMRI time series and

constituted a “session.” fMRI time series were corrected for head
motion, spatially normalized (voxel size =2 mm x 2 mm X 2 mm;
resampled using spline interpolation) to an echo-planar imaging
template conforming to the Montreal Neurological Institute space,
and spatially smoothed with a Gaussian kernel of 8-mm FWHM.

The analysis of fMRI data, based on a mixed effects model,
was then conducted in two serial steps, accounting respectively
for intraindividual (fixed) and interindividual (random effects)
variance in SPMS8.

In a first analysis (as previously published in Dang-Vu et al.,
2011), spindles were identified on band pass filtered EEG data
between 11 and 15Hz, using an automatic detection algorithm
by thresholding the spindle root mean square signal at its 95th
percentile and post hoc visually checking for correct classifica-
tion (Molle et al., 2002). Brain responses related to spontaneously
occurring spindles and SW have already been described elsewhere
(Schabus et al., 2007; Dang-Vu et al., 2008) and are not reported
in the following. Responses to sounds corresponded to systematic
deviations of BOLD signal over and above the baseline activity
during NREM sleep having taken into account the activity related
to characteristic oscillations of NREM sleep.

In a second analysis, two tone categories were considered,
depending on whether the stimulus appeared before [tone 0-
300 ms pre-SW-peak (TPre)] or (max. 300 ms) after the peak neg-
ativity of the (stage 3—4) slow oscillation [post-SW-peak (TPost)].
The SW-peak negativity was defined as the highest negative com-
ponent (a negative peak between two zero crossings with voltage
<—35WV) in a frontal EEG array (Fp1, Fp2, F3, F4, F7, F8, Fz, F1,
F2, AF3, AF4, F5, F6, AF7, AF8, AFz). We assessed brain responses
as simple main effects of tones relative to baseline activity (inde-
pendent of the phase of the slow oscillation) as well as differential
main effects between the two tone categories (pre to post SW-peak
differences). In order to find the instant at which the sound vol-
ume changed at its fastest rate, we identified the downward zero
crossing of the second derivative of the Gaussian sound envelope.
This timepoint (88 ms after sound onset) was taken as the moment
at which the sound became detectable by the volunteer which we
consequently used as onset for EEG and fMRI analysis.

In order to take into account the effects of all identifiable neural
events on the BOLD signal during sleep, sleep spindles and SW
power were also modeled in the analysis. To take into account
artifacts related to cardiac cycle, an estimation of R-R intervals
derived from ECG was included as regressor of no interest in all
individual design matrices. Movement parameters estimated dur-
ing realignment (translations in x, y, and z directions and rotations
around x, y, and z axes) and a constant vector were also included
in the matrix as variables of no interest. High-pass filtering was
implemented in the matrix design using a cut-off period of 128 s
to remove low frequency drifts from the time series. Serial correla-
tions in fMRI signal were estimated using an autoregressive (order
1) plus white noise model and a restricted maximum likelihood
(ReML) algorithm.

Statistical inferences were conducted after correction for multi-
ple comparisons either on the whole brain volume (prwg < 0.05)
or for regions of interest previously identified in the literature
using small volume correction (psyc < 0.05). The Supplementary
Material (Table S1) is not corrected for multiple comparisons, and
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consequently no statistical inferences were conducted for those
areas.

AUDITORY STIMULATION DURING SLEEP

Throughout sleep pure tones were presented binaurally using
headphones. Tones had a frequency of 400 Hz, a duration of
300 ms and were presented at each TR (2460 ms) with a probability
of 70%. Within a given volume the sound could occur anywhere
with the 2460 ms scan frame. Yet in 30% of the cases the sound
was not presented within that volume. This resulted in a median
IST of 2910 ms and SD of 10706 ms.

The intensity of tones was held constant throughout the night
and adjusted individually during a test scanning session repro-
ducing the same background noise than the experimental one.
Subjects were requested to adjust the tone loudness to a level

which was discernible but not disturbing. For definition of the
early auditory ERP components we used latency ranges similar
to Crowley and Colrain (2004) but shifted them 40 ms in time
(N1: 115-190 and P2: 190-290 ms) after stimulus onset in order
to account for delayed responses in fMRI scanner environments
(cf. Novitski et al., 2001).

TPre and TPost epochs were classified on 0.5-20 Hz bandpass
filtered EEG data if a frontal SW peak “exceeding” —35 LV was
identified within 300 ms after or before the tone, respectively (cf.
Figure 1). Each analyzed epoch then ranged from —1500 ms pre
to 1500 ms post tone stimulation. One subject had to be excluded
for SW-EEG averaging due to bad signal quality. Statistical analy-
sis between TPre and TPost were conducted on SW phase-sorted
averages (i.e., after identifying all TPre and TPost SW-peaks, we re-
aligned the single trials to the SW-peak, and then averaged across

Tone in Spindle

Tone in No Spindle

Tone
Pre-SW-Peak

~

20

40

60

-1000 -500

FIGURE 1 | Grouping of brain activity to tones according to the
spontaneous background activity characterized by NREM (A) sleep
spindles and (B) slow-wave activity. Note that during sleep sounds were

0
ms
SW-peak in
0 to 300ms

500 1000

randomly presented (at 70% of every TR) and post hoc categorized according
to (i) the absence or presence of spindles (stage 2-3) or (ii) the phase of the
slow oscillation (stage 3-4) when the tone occurred.
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trials and subjects per tone category) which were previously low-
passed filtered at 4 Hz. In order to be able to interpret the effect
of tones on the slow oscillation we also calculated spontaneous
SW’s (in a time window of —1500 to 0 ms before tone stimula-
tion) for comparison. The peak negativity (“exceeding” —35 V)
of these spontaneous SW’s had to occur 400 ms after epoch start
(—1100 ms pre-stimulus) as well as at least 800 ms before tone
onset in order to only identify spontaneous SW’s without any
influence of surrounding tones on the spontaneous waveform. In
addition, we classified SWs depending on the amplitude of the
peak negativity (small SW: max. —50 mV; big SW: more negative
than —50 mV) for further analyses. For stage 2-3 sleep analysis of
spindles, tones were categorized according to their occurrence out-
side (TN) or within detected spindles (TS; cf. Figure 1, Dang-Vu
etal., 2011).

BOLD SIGNAL MODULATION BY SPINDLES (fMRI DATA REPRODUCED
FROM DANG-VU ET AL., 2011)

The mean number of sounds delivered without (TN) or with ongo-
ing spontaneous spindles (TS) per subject was 534.3 (SD = 198.8)
and 30 (SD =11.2), respectively. As reported previously (Dang-
Vu et al., 2011), tones delivered in the absence of sleep spin-
dles (TN) were also — like TW (Figure 2A) — associated with
responses in thalamus and primary auditory cortex (Heschl’s
transverse gyrus) (Figure 2B), confirming that sounds can be
processed in stage 2-3 NREM sleep. Significant additional TN
responses were found in a set of cortical and subcortical areas,
in the pons, cerebellum, middle frontal gyrus, precuneus, and
posterior cingulate gyrus, all areas known to respond to audi-
tory stimuli (Holcomb et al., 1998; Portas et al., 2000; Gaab
etal.,2003). In contrast, at the same statistical threshold (p < 0.05

BOLD resporse (a.u)

0 2 4 6 8

Time (s)

FIGURE 2 | Brain regions activated in relation to tones during waking,
light NREM sleep but outside sleep spindles and light sleep during
spindles (data reproduced from Dang-Vu et al., 2011). (A) Significant
responses associated with tones presented during waking (TW). Note that
tones during wakefulness (TW) induced responses in the primary auditory
cortex (Heschl's transverse gyrus) and the thalamus, in an area compatible
with the medial geniculate nucleus. (B) Significant responses associated with
tones presented during stage 2-3 sleep, in the absence of ongoing spindles
(TN). These responses are located in the thalamus, primary auditory cortex,
brainstem, cerebellum, middle frontal gyrus, precuneus, and posterior
cingulate gyrus. The brainstem response encompasses areas compatible with

10 12 14 16 18 2u

0 2 4 6 8 10 12 14 16 18 20
Time (s)

the cochlear nuclear groups the trapezoid bodies and the superior olivary
complex. (C) Significant responses associated with tones presented within
spindles in stage 2-3 sleep (TS). Here neural populations that process sound
are found in the nuclei of the lateral lemniscus of the brainstem (insert,
marked by arrow). Lower panels depict the fitted responses in the thalamus
[x=-12, y=-22, z=—6; left panell and the auditory cortex [x =58,

y =—14, z=6; right panel] associated with sounds delivered with (red) or
without (blue) ongoing spontaneous spindles. The curves correspond to the
mean and the shaded areas to the SEM. Functional results are displayed on
an individual structural image (displayed at p < 0.001, uncorrected). (Modified
from Dang-Vu et al., 2011. Copyright by the National Academy of Sciences.)
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corrected), neither significant response to TS was found in the
thalamus nor in the Heschl’s gyri, but rather in a small area in
the caudal aspect of the inferior colliculus (Figure 2C). Further-
more, we characterized the regional brain responses according
to whether or not TN was followed by an induced K-complex
and found that tones elicited larger responses in bilateral pri-
mary auditory cortex and ventral prefrontal cortex in the presence
of an induced K-complex (for details refer to Dang-Vu et al,
2011).

RESULTS

The mean number of TW per subject was 161.3 (SD = 96.5). Last
but not least, the total number of tones during deep (stage 3—
4) sleep was on average 524.5 (SD = 166.5) per subject. Out of
these the mean number of TPre and TPost SW-peak was 142.8
(SD=43.8) and 153.2 (SD =42.4) per subject respectively.

BOLD SIGNAL MODULATION BY PHASE OF THE SLOW OSCILLATION
Functional MRI results are summarized in Table 1 and being
illustrated in Figure 3.

Data reveal that the thalamus continues to respond to tones
during deep NREM sleep, when considering all stimuli irrespective
of their phase relation with the slow oscillation. No thalamic differ-
ence in response is detected between the two categories of sounds
(TPre and TPost SW-peak). Yet, thalamic responses to tones during
deep sleep appeared spatially more extended than during waking
(cf. Figure 3A). This finding remains qualitative as direct com-
parison between waking and sleep responses is precluded by the
difference in baseline.

Likewise, primary auditory cortex (Heschl Gyrus) responds to
tones during deep NREM sleep irrespective of their phase rela-
tion with the slow oscillation and there is no significant difference
in responses to tones presented before (TPre) or after (TPost)
the SW-peak negativity. By contrast, the superior temporal gyrus
(STG), a higher auditory association cortex, responded more dur-
ing the positive going slope of the slow oscillation (TPost) than
during the negative going slope (TPpre; for additional areas also
see Table S1 in Supplementary Material). This finding confirms
that the brain response during sleep depends upon the phase of
the slow oscillation characterizing deep NREM sleep.

EEG RESPONSES TO TONES DURING SLEEP

In addition to the fMRI responses we also focused on the corre-
sponding EEG changes during the presentation of sounds in light
and deep NREM sleep (Figures 4 and 5).

Analogous to the data presented above we compared delivered
tones during the presence or absence of stage 2—3 sleep spindles (cf.
Figure 4B) as well as the dependence of the evoked response with
regards to the spontaneously present phase of the slow oscillation
during sound delivery (cf. Figure 5).

Statistical analysis revealed that EEG responses to tones pre-
sented during (TS) or outside spontaneously occurring stage
2-3 sleep spindles (TN) differed markedly at around 650 ms
(t11 =3.76, p=0.001). Tones occurring during the presence of
a sleep spindle evoked a late negativity (N550; Figure 4B) which
is also considerably larger than that in response to tones dur-
ing either waking, stage 2—3 or stage 3—4 sleep in general (cf.
Figure 4A).

In addition for deep NREM sleep, it is evident that the evoked
response to tones across stage 3—4 sleep (cf. Figure 5A) is markedly
different from either tones occurring before or after SW-peak-
negativities. Importantly, tones after SW-peak negativity (TPost)
evoke a distinctly stronger positive synchronization than tones
arriving pre-SW-peak (cf. Figures 5B,C).

Statistical analysis reveals that whereas the peak negativity of
the slow oscillation is not altered if tones are presented before
as compared to post SW-peak negativity (¢;; =0.84, p=0.42),
robust effects of SW phase are revealed when focusing on differ-
ences during the late positive wave (Figure 5B, orange shading).
Here, the positive component appears enhanced (150-550 ms post
peak negativity) if the tone was arriving at the positive going
slope (TPost) of the slow oscillation (peak amplitude: ¢;; =5.55,
p < 0.001; area under positive component: t1; = 5.65, p < 0.001;
cf. Figure 5C). Before tone presentation the positive compo-
nents of TPre and TPost are not significantly different from each
other (peak amplitude: 1) = 2.06, p = 0.064; area before SW-peak:
t11 =—0.043, p=0.97). Note that for valid statistical compari-
son we used phase-sorted averages. As there is no influence of
time jitter (300 ms grouping windows for TPre and TPost) on
averaging in that case (Figure 5C) the component amplitudes are
enhanced (as compared to Figure 5B) and better reflect real single
trial data.

Table 1 | Brain responses to tones during deep NREM sleep.

Region SW phase independent effect SW phase dependent differences (TPost >TPre)
X y z Cluster size = Z score pSVC X y z Cluster size =~ Z score pSVC

Thalamus (Portas et al., 2000) —-14 —-14 2 320 4.95 <0.001*

Heschl gyrus (Lockwood 44 -24 14 84 4.17 0.002

et al., 1999)

Superior temporal gyrus (STG; 68 —-44 18 49 3.45 0.017

Czisch et al., 2009)

Coordinates (x, y, z) are expressed in millimeter in the Montreal Neurological Institute (MNI); Z scores result from the statistical parametric analysis; ps,c refers to the

probability of the null hypothesis (i.e., absence of activity change associated with tones in deep NREM sleep), after correction for multiple comparisons either on the

whole brain volume (x) or on small volumes of interest identified in the literature (references in brackets).
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A — Tone responses

independent of SW phase

B — SW phase
dependent response
(TPost > TPre)

Thalamus

FIGURE 3 | Brain regions activated as a function of the phase of the
slow oscillation in deep NREM sleep. \While in the left panel (A) red
color indicates that the thalamus and primary auditory cortex responds to
tones across all phases of the slow oscillation, the right panel (B) depicts
in red the dependence of higher auditory cortex activation (STG) on the
phase of the slow-waves (SWs; TPost > TPre) during sound occurrence.
Lower panels depict the fitted responses in the thalamus (left panel), the

STG
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Heschl gyrus (middle panel), and the STG (right panel) associated with
sounds delivered after (TPost, blue) or before (TPre, red) the SW-peak
negativity. The curves correspond to the mean and the shaded areas to
the SEM. Additionally, the waking responses to tones (TW) are shown in
green for illustrative purposes. Random effect results (n=13) are
displayed on an individual structural image (displayed at p < 0.001,
uncorrected).

Furthermore, we tested whether the amplitude of the slow oscil-
lation during sound delivery has a modulatory effect on the subse-
quent differences (TPre vs. TPost) in the positive component after
tone delivery. We revealed that the positive component following
tone delivery is markedly enhanced if the tone is arriving at the
positive going slope of the slow oscillation (TPost) in both ampli-
tude conditions (peak amplitude small and big SW: ¢;; =2.21,
p<0.05 and t;; =5.91, p <0.001, respectively; or positive area
under component for small and big SW: #;; =3.63, p=10.004;
t11 = 6.00, p < 0.001, respectively). Yet, the TPre to TPost differ-
ence for the positive component was identical for tones arriving
during small or big SWs.

DISCUSSION
Our study characterizes the modulation of brain responses to audi-
tory stimulation by spontaneous NREM sleep oscillations (sleep

spindles and slow oscillations). As expected, sounds during wake-
fulness elicited responses in the thalamus and primary auditory
cortex. These responses — although somewhat altered in size and
location — persisted during NREM sleep, except during presence
of light NREM spindles. Yet interestingly, responses at a higher
cortical level became less consistent or even absent during spindles
and the negative going phase of the (deep NREM) slow oscillation.

At the EEG level we found that ERPs elicited during NREM
sleep showed a reduction in the amplitude of the N1 and an
increase in the amplitude of the P2 component compared to the
ERPs during wakefulness (Figure 4A) in accordance with previous
studies (Campbell et al., 1992; Elton et al., 1997; Cote et al., 2000).

TRANSMISSION DURING SPINDLES
Sleep spindle results clearly indicate that brain responses and the
processing of external information are for the most part absent
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A — Response to all light
and deep NREM tones
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= Stage 3-4 tones
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FIGURE 4 | Grand-averaged EEG brain activity in response to sounds
during (A) waking and NREM sleep as well as (B) in response to the
occurrence of sleep spindle events. Note the decreasing signal
complexity from waking (black line), to light (red) to deep (blue) NREM
sleep (left panel) in response to tones. On the right, EEG responses to

B — Response to tones
with/without spindles
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tones presented during (TS, red line) or outside spontaneously occurring
stage 2-3 sleep spindles (TN, blue line) are depicted. Note the massive
late negativity evoked by tones falling into sleep spindles. Data are
bandpass filtered between 0.5 and 20 Hz and reflect the grand-average of
12 subjects.

[ All deep NREM tones |

‘ Single trial phase sorted ‘
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20
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FIGURE 5 | Electroencephalography brain responses to sounds during
deep NREM sleep. On the upper left (A) the evoked response to all tones
during stage 3—4 is depicted. The lower left panel (B) shows the evoked
response if tones are categorized according to the phase of the slow
oscillation which was present during sound delivery. Note that tones
occurring before the SW-peak negativity (TPre, red line) are differently
processed (orange shading) than tones arriving at the upswing of the slow
oscillation (TPost, blue line). The black dashed line depicts the (phase
unsorted) TPre grand-average waveform which was shifted in time to the left
so that their SW-peak negativity overlays with the TPost peak negativity for

— TPre
— TPost
— Spontaneous SW

-200 0 200 400 600 800

better comparison. Data are bandpass filtered between 0.5 and 20 Hz and
reflect the grand-average of 12 subjects. Time 0 is the tone onset. (C) Single
trial phase-sorted and re-aligned EEG brain responses to sounds during deep
NREM sleep. Note that latter analysis accentuates the amplitude as no time
jitter is present when averaging TPre and TPost trials according to SW-peak
negativity (rather than to tones) on a trial-by-trial basis. In (C) Time O is
therefore marking the SW-peak negativity for TPre and TPost trials.
Spontaneous slow-waves are plotted for comparison in green. Data are
(zero-phase lag) low-pass filtered at 4 Hz and error bars are overlaid at each
sampling point. All potentials with negativity upwards.
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when that information is occurring during the presence of a
NREM sleep spindle. Likely this is due to the fact that thalamic
neurons adopt a burst firing mode during NREM sleep which pre-
vents faithful sensory transmission of external inputs to the cortex.
Presumably, exactly that functional isolation of sensory input dur-
ing sleep spindles is of benefit for internal neuronal interactions
subserving brain plasticity.

Contrary to Elton et al. (1997) but in line with Cote et al.
(2000) we did not find an increased P2 amplitude for stimuli
occurring during a spindle as compared to stimuli outside a spin-
dle (Figure 4B). Yet, most interestingly tones presented during a
spindle elicited a much stronger N550 component than tones pre-
sented outside a spindle (Figure 4B). According to Bastien and
colleagues (2002) averaging responses to tones presented during
sleep, which include K-complexes, produce a N550 component. In
addition also Church et al. (1978) showed that auditory evoked K-
complexes were larger when stimuli were presented during sleep
spindles. It is thus possible that also the strong N550 effect seen in
our data is due to the superposition of underlying K-complexes.
In relation to the literature it is also interesting to note that we only
find a marginally enhanced P2 component across light and deep
sleep (Figure 4A); Yet we do find a strong N550 effect which is
consistent with the idea that inhibition of the incoming auditory
information is not occurring at an early (as reflected by P2) but
later stage (in time and brain hierarchy) in accordance with our
fMRI results (cf. Figure 3B).

Note that also the late negative swing of our BOLD response (at
638 s for spindles, and at 4-6 s for SWs) could be related to under-
lying K-complexes on some trials. Specifically it is interesting to
note that Czisch et al. (2009) using an acoustic oddball paradigm
reported a prominent negative BOLD response for (rare) tones,
yet no wake-like activation of the auditory cortex. In their data
only rare tones followed by an evoked K-complex, were associated
with a “wake-like activation of task-related areas in the temporal
cortex” in accordance with data from Dang-Vu et al. (2011). Our
current fMRI results showing auditory cortex activation (in the
absence of sleep spindles and across SW phases) as well as a late
negative BOLD swing might thus be interpreted as combination
of these two effects. However, note that in our data a K-complex
like N550 effect appears only when averaging EEG across all SW
phases (cf. Figure 4A, red line) or tones in the presence of sleep
spindles (cf. Figure 4B, red line), but not in response to tones just
before or after the SW-peak negativity (cf. Figure 5B).

Yet, the exact anatomical stage at which the transfer of sensory
information to auditory thalamo-cortical pathways is hindered
remains uncertain. It appears that no clear-cut change in neural
activity takes place at any of the early auditory relay structures
during NREM sleep (Velluti, 2008), but prethalamic modifica-
tions in transmission were reported in the somato-sensory sys-
tem during NREM sleep, although not specifically in relation to
spindles (Rosanova and Timofeev, 2005). On the other hand,
thalamic neurons are likely to hinder the faithful transmission
of sensory input during spindles, because the burst firing mode
that they adopt during NREM sleep, and especially during spin-
dles, distorts the transmission of sensory inputs to the cortex
in a non-linear fashion (McCormick and Feeser, 1990; Sherman
and Guillery, 2002). Finally, also note that a strong recruitment
of inhibitory interneurons was recently described during sleep

spindles (Peyrache et al., 2011). This phenomenon might add
to the absence of cortical responses to auditory stimuli during
spindles as observed in our previous study and reiterated herein.

PHASE DEPENDENCE OF BRAIN RESPONSES WITH RESPECT TO THE
SLOW OSCILLATION

While the phase of the slow oscillation does not appear to alter
brain responses in primary sensory cortex (cf. Figure 3A), it does
modulate responses at higher cortical levels as shown in superior
temporal gyrus (cf. Figure 3B; for additional areas also see Table
S1 in Supplementary Material). On the one hand, the results are
consistent with the hypothesis that brain responses during deep
NREM sleep vary as a function of the fluctuating state of thalamo-
cortical circuits (Massimini et al., 2003; Rosanova and Timofeev,
2005). In accordance with Massimini and colleagues the brain
appears most receptive to the environment at the negative-to-
positive going slope of the slow oscillation. Yet, a direct comparison
to our data is difficult as stimulation was done in another sensory
modality (somatosensory vs. auditory) and EEG components of
interest were markedly earlier. Last but not least we compared
pre- vs. post-SW-peak phases (300 ms bins each) whereas Mas-
simini and colleagues used smaller and differently grouped time
windows (e.g., =50 ms directly around the SW-peak negativity).
On the other hand, the current data suggest that the slow oscilla-
tion does only modulate responses in higher associative cortices.
In keeping with this observation, the slow oscillation was also
found to be more associated with a pronounced modulation of
neuronal firing in associative than in primary cortices at a cel-
lular level (Steriade and McCarley, 2005). This response pattern
also concords with the breakdown of local functional connectivity
reported during NREM sleep (Massimini et al., 2005) and is remi-
niscent of auditory responses recorded in unconscious patients in
whom primary auditory cortices still respond whereas higher asso-
ciation cortices do not (Laureys et al., 2000; Boly et al., 2004). The
results suggest that the residual cortical processing during NREM
sleep is insufficient for ignition of processes thought to be neces-
sary for conscious awareness but might very well allow to trigger
awakening responses to salient and personally important stimuli.

The analysis of EEG data simultaneously recorded during fMRI
sessions further dissect the reciprocal interactions between spon-
taneous brain activity and responses to external stimuli. Impor-
tantly, EEG data allow us to probe how the intrinsic state of
neural responsiveness (i.e., SW phase) influences responses to
external stimuli. They allow us to go one step closer to the actual
neural events subtending sound processing during NREM sleep
although the exact phase relation between the scalp-recorded
human sleep EEG and the underlying intracellular dynamics can
only be extrapolated from animal experiments (Massimini et al.,
2003; Vyazovskiy et al., 2011).

Tones delivered after the peak negativity (i.e., possibly during
the ON state) probably contribute to further synchronize neural
firing (cf. Figure 5), already ongoing due to the ON state. Tones
delivered before SW-peak negativity (supposedly at the end of the
OFF state) potentially initiate the cascade of events that lead to
the ON state. The smaller amplitude of the second positive evoked
component might suggest that the neural recruitment induced by
sounds in the negative going slope (TPre) is smaller as compared to
the — probably synchronized — TPost response during the positive
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going phase. On the other hand one could argue that the auditory
evoked potential during deep NREM sleep — presumably reflecting
a K-complex related N550 around 650 ms (cf. Figure 5A) — “atten-
uates” the late positive component (also around 650 ms) of the
tones arriving before SW-peak negativity (Figure 5B). Yet, the
reconstruction of a spontaneous SW without tone delivery (cf.
Figure 5C, green line) clearly favors the earlier interpretation. In
either case the EEG data reveal a clear phase-dependent modula-
tion of the auditory ERP response post-event which is not present
before tone delivery (Figure 5C).

Future studies should elaborate on the reported findings and
investigate phase-dependent effects of smaller temporal windows
(100 ms or less) as well as auditory stimuli of varying complexity.

CONCLUSION

Present evidence extends previous findings and suggests that SWS
is not a static phenomenon as mutually assumed by many ear-
lier studies (Perrin et al., 1999; Portas et al., 2000; Bastuji et al,,
2002; Campbell et al., 2005). Altogether, brain responses during
NREM sleep appear to be non-stationary and highly dependent
upon spontaneous brain activity such as prominent sleep spindles
or the phase of the slow oscillation. The exact temporal window
when a stimulus arrives might thus not only determine the fate of
that very material during waking but likewise all stages of NREM
sleep.
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