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Disrupted sleep is more common in older adults (OLD) than younger adults (YOUNG),
often co-morbid with other conditions. How these sleep disturbances affect cognitive per-
formance is an area of active study. We examined whether brain activation during verbal
encoding correlates with sleep quantity and quality the night before testing in a group of
healthy OLD and YOUNG. Twenty-seven OLD (ages 59–82) and 27 YOUNG (ages 19–36)
underwent one night of standard polysomnography. Twelve hours post-awakening, sub-
jects performed a verbal encoding task while undergoing functional magnetic resonance
imaging. Analyses examined the group (OLD vs. YOUNG) by prior sleep quantity (total
sleep time, TST) or quality (sleep efficiency, SE) interaction on cerebral activation, control-
ling for performance. LongerTST promoted higher levels of activation in the bilateral anterior
parahippocampal in OLD and lower activation levels in the left anterior parahippocampus in
YOUNG. Greater SE promoted higher activation levels in the left posterior parahippocam-
pus and right inferior frontal gyrus in YOUNG, but not in OLD. The roles of these brain
regions in verbal encoding suggest, in OLD, longer sleep duration may be linked to the
ability to engage in functional compensation during cognitive challenges. By contrast, in
YOUNG, shorter sleep duration may necessitate functional compensation to maintain cog-
nitive performance, similar to what is seen following acute sleep deprivation. Additionally,
in YOUNG, better sleep quality may improve semantic retrieval processes, thereby aiding
encoding.
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INTRODUCTION
Disrupted sleep is more common in older adults (OLD) than
younger adults (YOUNG), often co-morbid with other conditions.
Relative to YOUNG, the sleep of OLD is generally character-
ized by decreased total sleep time (TST), poorer sleep efficiency
(SE), and a smaller percentage of time spent in slow wave sleep
(Ohayon et al., 2004). Similarly, relative to YOUNG, OLD on
average tend to perform worse on many cognitive tasks. Learn-
ing and memory are among the most widely studied cognitive
domains showing age-related declines (Johns, 1991; Salthouse
and Ferrer-Caja, 2003; Cabeza et al., 2004; Kemps and Newson,
2006). Although the general trend is toward a decline with age,
OLD show greater variability than YOUNG in both sleep and
cognition, with some OLD showing little or no decline relative
to YOUNG (Middleton and Strick, 2002; Ohayon et al., 2004).
While both sleep and cognitive performance measures tend to
decrease with age, if and how sleep changes in aging might affect
cognitive function is not well known. Since experimental sleep
deprivation studies show sleep loss is associated with performance
decline in most cognitive domains in YOUNG, there has been
speculation about whether the decline in cognitive performance

with age could be explained by the corresponding decline in sleep
with age.

Multiple studies examining the relationship between sleep and
cognition in generally healthy, non-demented OLD have con-
cluded sleep does influence some aspect of cognition. For exam-
ple, two studies using actigraphy in a cohort of over 3000 older
women found clinically significant sleep fragmentation, indexed
by a reduced percentage of time during an overnight sleep period
actually spent asleep, were associated with lower scores on mental
status and executive function tests (Blackwell et al., 2006; Nielsen
and Levin, 2007;Yaffe et al., 2007). Other studies reported increases
in obstructive sleep apnea severity over time, associated with
increased sleep fragmentation, were also associated with a decline
in mental status exam scores (Cohen-Zion et al., 2001, 2004).
Specific to learning and memory, a large scale questionnaire-
based study reported subjectively impaired sleep was associated
with decreased immediate and delayed verbal recall (Ansiau et al.,
2008). Additionally, three nights of experimental sleep restriction
in OLD reduced verbal recall performance (Stenuit and Kerk-
hofs, 2008). Together, these studies suggest the quality or quan-
tity of sleep in OLD is associated with cognitive performance.
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However, the bulk of evidence regarding sleep–cognition associ-
ations is based largely on self-report and questionnaire methods
that are prone to biases and a variety of confounds or through
experimentally imposed sleep deprivation.

A strategy to examine the sleep–cognition relationship more
directly than those methods outlined above would be to examine
neurophysiological correlates of cognition (e.g., neuroimaging or
EEG) during administration of standardized tests. For example,
functional magnetic resonance imaging (fMRI) studies compar-
ing cerebral responses in OLD vs. YOUNG have often reported
OLD show more bilateral and/or increased activation during cog-
nitive performance (Cabeza et al., 1997; Reuter-Lorenz et al.,
1999; Cabeza, 2002; Reuter-Lorenz, 2002; Han et al., 2009). This
increased bilateral activation has been shown by several authors
to correlate with better cognitive performance and has therefore
been referred to as “compensatory recruitment” (Cabeza et al.,
2002; Reuter-Lorenz, 2002; among other). This pattern is strik-
ingly similar to that seen in YOUNG following experimental sleep
deprivation, when compared to YOUNG well-rested (Drummond
et al., 2000, 2005; Drummond and Brown, 2001; Stricker et al.,
2006). The parallels between increased activation observed in OLD
relative to YOUNG and increased activation seen in sleep deprived
YOUNG relative to well-rested YOUNG suggest similar compen-
satory mechanisms may occur in both aging and sleep deprivation.
This, in turn, further supports the suggestion from the studies out-
lined above that some of the cognitive changes seen in OLD may
relate to changes in sleep. However, no study thus far has looked
at how normal sleep changes with aging affect brain activation
during cognitive tasks.

Here, we examine whether fMRI-derived measures of brain
activation during a verbal learning (VL) task correlate with sleep
quantity (TST) and/or quality (SE) the night before scanning in
a group of healthy OLD and YOUNG. Our aim was to identify
if activation in any brain regions are related to prior sleep quan-
tity and/or quality, and if these relationship differ in OLD and
YOUNG. Our hypothesis was that lower quantity and quality of
sleep would result in greater recruitment of brain regions involved
in VL for OLD, but not YOUNG.

MATERIALS AND METHODS
SUBJECTS AND SCREENING
The study was approved by the UCSD Human Research Protection
Program and the VA San Diego Healthcare System R&D Commit-
tee, and all subjects provided written informed consent. A total
of 62 adults (29 YOUNG, 33 OLD) participated in the study.
One YOUNG and six OLD were excluded due to excessive move-
ment during scanning. An additional YOUNG was excluded for
extremely poor sleep the night prior to testing. Thus, data for
54 subjects (27 OLD and 27 YOUNG) are reported here. There
were no significant differences between baseline characteristics of
the older and younger subjects except on age (Table 1). Subjects
were medically healthy and free of current and past psychiatric
diagnoses as determined by interview, history, and physical exam-
ination, Structured Clinical Interview for DSM-IV (SCID), routine
laboratory work, and urine toxicology screens. We only enrolled
subjects with a BMI <35 and without any self- or collateral-report
of sleep apnea symptoms (e.g., frequent loud snoring, witnessed

Table 1 | Subject demographics.

Group Mean Range

Age (years) Older 67.7 ± 6.0 59–82

Younger 27.4 ± 4.3 19–36

Gender Older 21F

Younger 15F

Ethnicity/race Older 25 Non-Hispanic 26 White

Younger 22 Non-Hispanic 21 White

Education (years) Older 15.4 ± 2.5 10–20

Younger 15.0 ± 2.3 12–20

BMI Older 25.1 ± 3.5 19–33

Younger 25.4 ± 4.1 20–33

Sample size = 27 subjects in each group.

Table 2 | Neuropsychological test scores.

Test Older Younger

Dementia rating scale 56.4 ± 3.0 Not given

CVLT 1–5 T -score 59.7 ± 8.9 59.9 ± 11.7

CVLT long delay recognition accuracy 99.8 ± 1.2 100.0 ± 0

Logical memory 1 scaled recall 14.0 ± 2.4 13.2 ± 2.8

Logical memory 2 scaled recall 14.0 ± 2.3 14.0 ± 2.7

There were no group differences on age-matched norms for any test.

apnea, etc.). We also excluded any subject with an apnea–hypopnea
index of PLM with arousal index >10 on a screening sleep
study. Stable doses of commonly prescribed medications, includ-
ing antihypertensives, hormone replacement therapy, and oral
contraceptive pills, were permitted during the study. Anyone
reporting >14 alcoholic drinks/week was excluded (OLD reported
a mean of 2.9 ± 3.5 drinks/week; YOUNG reported a mean of
2.5 ± 3.5 drinks/week). Eligible subjects reported habitually sleep-
ing 7–9 h per night with no more than one nap per week. For
7–10 days prior to the study, subjects completed daily sleep diaries
and maintained an agreed-upon sleep-wake schedule matching
their habitual sleep schedule and specifically excluded naps.

Subjects were administered standard neuropsychological tests
to insure their verbal memory function was in the normal range
and the groups were matched for performance. Subjects were
required to score within normal limits for age on all measures
for inclusion in the study (Table 2), and the two groups did
perform equivalently on each of these age-normed neuropsy-
chological tests. In particular, we assessed immediate recall and
delayed recognition for a list of words with the California Ver-
bal Learning Test-II (Delis et al., 2000) and the ability to encode
and recall a story with the Logical Memory subset of the Weschler
Memory Scale-III (Wechsler, 1997). For the OLD group only, we
also administered the Dementia Rating Scale and required subjects
to score in the normal range (Mattis, 1988).

EXPERIMENTAL PERIODS
Following the week of habitual sleep monitoring at home, sub-
jects underwent two consecutive nights of polysomnography, the

Frontiers in Neurology | Sleep and Chronobiology April 2012 | Volume 3 | Article 49 | 2

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Sleep_and_Chronobiology
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


Jonelis et al. Prior sleep and brain activation

first of which served as a screen for unreported sleep disorders.
The timing of sleep on both nights was matched to the habitual
schedule previously maintained at home. Polysomnography was
collected on Grass Heritage EEG systems and digitally recorded
with a sampling rate of 256 Hz, a low frequency filter of 0.3 Hz,
and a high frequency filter of 100 Hz. For scoring of sleep stages,
C3 and O1 served as the primary electrode sites, with contralat-
eral C4 and O2 serving as back-up sites in case of artifacts in the
primary sites. Twelve hours after waking from the second night,
subjects completed a VL task while undergoing fMRI. All subjects
were previously trained on the VL task prior to the two nights
sleeping in the lab.

EXPERIMENTAL TASK
During each fMRI session, stimuli were presented visually via an
LCD projector onto a screen placed at the foot of the MRI bed
that subjects viewed through a mirror fitted to the head coil. The
alternating block design task consisted of two visually identical
parts. During the entire task, subjects saw stimuli presented one
at a time, each for 4 s followed by 1 s of a fixation asterisk. Dur-
ing memorization blocks, subjects saw nouns and were instructed
to actively memorize the words for later testing. To aid encoding,
subjects pressed a button on a hand-held button box (Current
Designs, Philadelphia) to indicate whether the word referred to
a concrete item or an abstract concept. For baseline blocks, sub-
jects saw strings of a single, repeated letter and were instructed to
press a button to indicate the case of the letters (CAPS vs. lower-
case). The VL task contained six memorization blocks and seven
baseline blocks (the task started and ended with baseline). Each
block started with directional prompts for 2.5 s and lasted a total
of 22.5 s. The entire task lasted 300 s (including 6 s at the start for
fMRI data not analyzed due to partial saturation effects). A total of
10 different versions of the VL task were developed, with each list
matched for recallability, word length, concreteness, and imagery.
Previous pilot studies show that the versions provide similar recall
rates and subjects reached stable performance after one practice
session (Drummond et al., 2005; Stricker et al., 2006).

At the conclusion of the task, while still in the fMRI scanner,
subjects were asked to freely recall as many words as possible. Sub-
jects were then administered a series of questions: the Karolinska
Sleepiness Scale (a 9-point anchored scale assessing state sleepiness
ranging, from “1 Extremely alert” to “9 Extremely sleepy – fight-
ing sleep”; Akerstedt and Gillberg, 1990), and 10-point Likert scale
questions assessing the following subjective factors: task difficulty,
ability to concentrate, effort put into the task, and motivation
to perform the task well. These Likert scales were developed
in-house and are discussed in more detail elsewhere (Drum-
mond et al., 2005; Ayalon et al., 2006). After completion of the
entire scanning session, subjects were given a written recognition
memory test.

Data were acquired with a General Electric 3T scanner.
Functional images consisted of 120 gradient echo EPI images
(TR: 2.5 s, 3.91 mm2 in-plane resolution) of thirty-two 4 mm
axial slices covering the whole brain and measuring the blood
oxygen level-dependent (BOLD) signal. Functional data were
aligned with high-resolution anatomical images (FSPGR: 1 mm3

resolution).

DATA ANALYSIS
Overnight sleep data were scored by experienced, certified PSG
technicians according to standard criteria. TST and SE from the
night immediately prior to testing served as the sleep variables
of interest. TST is defined as the total minutes of sleep obtained
between the time when subjects first attempted to fall asleep (lights
out) and when the sleep study ended in the morning (lights on).
As mentioned above, lights out and lights on were set to match
each subject’s habitual schedule as closely as possible. The time
between lights out and lights on comprises Time in Bed. SE is a
measure of how consolidated an individual’s sleep is, and is defined
as TST/Time in Bed. Thus, it represents the proportion of time one
is in bed trying to sleep that one is actually asleep.

Behavioral data were analyzed by regressing group (OLD vs.
YOUNG), prior sleep (i.e., TST or SE), and the group-by-prior
sleep interaction on performance. Behavioral outcome variables
of interest were the number of words immediately recalled after
the task (free recall) and discriminability index (D′) for recogni-
tion memory (D′ takes into account the number of words correctly
identified and the number of foils chosen). Post-scan question-
naire data were analyzed with independent samples t -tests.

Functional magnetic resonance imaging data were processed
and analyzed with analysis of functional neuroimages (AFNI; Cox,
1996) in a two-step procedure: individual time-course analysis fol-
lowed by group statistical analysis. After motion coregistration,
individual time-course BOLD signal data were fit to a design
matrix using the general linear model (GLM). Parameters esti-
mated from the design matrix represented the constant, linear
drift, six motion-correction parameters derived from the motion
coregistration step (three relational and three translational move-
ment directions), and the reference function. The reference func-
tion of interest in the GLM was a representation of the task design
(memorization vs. baseline) convolved with an idealized hemo-
dynamic response function (Cohen, 1997). The parameter used
in group analyses was the regression coefficient associated with
this reference function. Datasets were smoothed with a Gaussian
filter of 4.0-mm full-width-half-maximum and transformed to
standard atlas coordinates (Talairach and Tournoux, 1988).

Group analyses used a search region of interest (ROI) protocol
(Eyler Zorrilla et al., 2003; Drummond et al., 2005). Our search
region consisted of the following areas bilaterally: inferior frontal
gyrus (IFG), inferior and superior parietal lobes, and hippocam-
pal/parahippocampal gyri. The coordinates of the Talairach and
Tournoux atlas within AFNI defined these regions (Talairach and
Tournoux, 1988). We chose to inspect these regions based on our
previous findings of compensatory recruitment during this task
following TSD (Drummond et al., 2000) as well as from studies in
healthy aging (Cabeza, 2002; Cabeza et al., 2002; Reuter-Lorenz,
2002). We used a cluster threshold method to protect against Type
I error (Forman et al., 1995), reporting only clusters containing
≥6 contiguous voxels (384 mm3), each activated at p ≤ 0.05. This
procedure maintained a whole brain alpha level =0.05.

The group analyses of the neuroimaging data regress group
(OLD vs. YOUNG), prior sleep (i.e., TST or SE), recognition
memory performance, and the group-by-prior sleep interaction
onto BOLD units. Recognition memory was included because of
its association with BOLD signal (Drummond et al., 2005) and
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because we sought to examine whether prior sleep contributed
to cerebral activation beyond that related to recognition memory.
This decision also helped account for the fact behavioral perfor-
mance was not equivalent between the two groups (see Results).
The main parameter of interest from the group analysis was the
interaction effect, with the other effects statistically partialed out.
Follow-up analyses consisted of analyzing the effect of sleep (i.e.,
TST or SE) on cerebral responses within each group to better
understand the source of significant interactions.

RESULTS
POLYSOMNOGRAPHY
Consistent with the literature, our healthy OLD showed sig-
nificantly shorter TST and lower SE compared to YOUNG, as
measured by PSG the night before testing (Table 3).

BEHAVIORAL DATA
Table 4 shows behavioral performance and subjective measures
from the fMRI sessions. OLD performed worse than YOUNG
on both recall and recognition memory. There were no signif-
icant group-by-prior sleep interaction effects on free recall or
recognition memory (p > 0.05). The groups did not differ on
any subjective measure related to sleepiness or task performance
(p > 0.05).

FMRI DATA
The group-by-prior sleep interaction, independent of perfor-
mance, had a significant effect on BOLD activation in four brain
regions. Table 5 provides the anatomical location, Brodmann’s
areas (BA), volume, and maximum effect size (partial r2) informa-
tion for the clusters showing an interaction. Table 6 provides the
parameters estimates, t -value, and significance for each parameter
in the models associated with each significant cluster.

For TST, the group-by-prior sleep interaction was significant in
the bilateral anterior parahippocampal gyri (APH; Figure 1). The
interaction was explained by a strong, positive correlation between
TST and cerebral responses in OLD, with no significant correla-
tion in the YOUNG in the right APH, and a negative correlation
in the YOUNG in the left APH.

For SE, the group-by-prior sleep interaction was significant in
the left posterior parahippocampal gyrus (PPH) and right (IFG;

Figure 2). Here, the interaction was explained by a strong, posi-
tive correlation between SE and cerebral responses in the YOUNG,
with no significant correlation in the OLD.

DISCUSSION
We hypothesized lower quantity and quality of sleep would result
in greater cerebral responses (index by increased BOLD sig-
nal) in brain regions involved in verbal encoding for OLD but
not for YOUNG (i.e., there would be brain regions showing a
group-by-prior sleep interaction that would be explained by a neg-
ative correlation in OLD with no correlation in the YOUNG). We

Table 4 | Behavioral performance and subjective measures during

fMRI.

Measure (scale) Older

adults

Younger

adults

VL performance # Words recalled* 4.4 ± 3.2 8.9 ± 3.9

Recognition memory D′ * 2.4 ± 1.0 3.6 ± 1.1

Questionnaires Karolinska sleepiness scale (1–9) 3.6 ± 1.7 3.6 ± 1.6

Concentration (1–10) 7.6 ± 2.2 8.5 ± 1.3

Task difficulty (1–10) 7.1 ± 2.6 6.3 ± 2.8

Motivation (1–10) 9.2 ± 1.6 9.3 ± 1.1

Effort (1–10) 9.2 ± 1.1 9.2 ± 1.1

*Significant difference between groups, p < 0.001.

Table 5 | Brain regions showing a significant group × prior sleep

interaction.

Anatomical

location

BA Volume

(mm3)

Center (x, y, z) Maximum

effect

size (r2)

TST R APH R 35 1088 26, −14, −18 0.32

L APH L 36 896 −32, −22, −19 0.31

SE L PPH L 36 1344 −26, −41, −6 0.29

R IFG R 45/46 448 42, 26, 9 0.16

APH, anterior parahippocampus; PPH, posterior hippocampus; IFG, inferior frontal

gyrus; R, right; L, left.

Table 3 | PSG-measured sleep from night prior to fMRI tests.

Measure Older adults (n = 27) Younger adults (n = 27)

Mean ± SD Range Mean ± SD Range

Total sleep time** 391.8 ± 51.6 min 280–479 min 437.3 ± 35.4 min 361–512 min

Sleep efficiency** 85.0 ± 8.6% 67–96% 92.2 ± 4.4% 82–98%

Sleep latency 14.6 ± 18.6 min 1–67 min 11.1 ± 11 min 1–43.5 min

Wake after sleep onset** 49.7 ± 29.2 min 11–116 min 23.2 ± 18.3 min 5–75 min

Stage 1% 4.9 ± 2.3% 1.4–11.4% 4.6 ± 2.4% 1.6–12.4%

Stage 2%** 65.8 ± 8.5% 44.4–78.4% 53.2 ± 7.2% 34.0–68.0%

Slow wave sleep (stage 3 + 4)%** 8.8 ± 9.1% 0–29.0% 17.7 ± 7.7% 1.0–35.0%

REM%* 20.5 ± 6.5% 3.4–33.2% 24.6 ± 4.8% 15.1–32.1%

*p < 0.05; **p < 0.001.
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Table 6 | Statistical results of fMRI regression models.

Brain region Independent variables Beta T Sig.

R APH Recognition D′ 0.38 2.80 0.007

Group 0.24 1.66 0.104

Total sleep time −0.43 −1.84 0.073

Interaction (group ×TST) 0.83 3.81 <0.001***

L APH Recognition D′ 0.22 1.59 0.119

Group −0.16 −1.09 0.279

Total sleep time −0.55 −2.34 0.023

Interaction (group ×TST) 0.87 4.03 <0.001***

L PPH Recognition D′ 0.13 0.85 0.4

Group 0.43 2.68 0.01

Sleep efficiency 1.06 3.31 0.002

Interaction (group × SE) −0.98 −3.33 0.002**

R IFG Recognition D′ −0.08 −0.54 0.593

Group −0.07 −0.42 0.676

Sleep efficiency 0.93 2.81 0.007

Interaction (group × SE) −0.87 −2.86 0.006**

APH, anterior parahippocampus; PPH, posterior hippocampus; IFG, inferior frontal

gyrus; R, right; L, left.

**p < 0.01; ***p < 0.001.

fMRI regression analyses found four regions (see Figures 1 and 2;Table 5) where

the interaction of group and prior sleep predicted BOLD activation, after partialing

out group (OLD vs. YOUNG), prior sleep (i.e., TST or SE), and performance.

found there were indeed differences in the influence of prior sleep
on cerebral responses to verbal encoding for OLD vs. YOUNG
and these were above and beyond the correlation between perfor-
mance and cerebral responses. However, the interactions were not
explained in the manner hypothesized. Rather, longer TST were
correlated with higher activation levels in bilateral APH in OLD
but lower activation levels in YOUNG. On the other hand, greater
SE was correlated with higher activation levels in the left PPH
and the right IFG in YOUNG (but not OLD). Together, these data
suggest greater sleep may be associated with acute compensatory
recruitment responses in OLD, while more consolidated sleep is
associated with such responses in YOUNG. To our knowledge, this
is the first fMRI study to look at the effects of prior, habitual levels
of sleep on brain activation in OLD and YOUNG.

PRESUMED FUNCTIONS OF INVOLVED BRAIN REGIONS
The bilateral APH are known to be essential for memory encod-
ing, with the left side typically more involved in verbal encod-
ing (Rosazza et al., 2009). Previous fMRI studies showed OLD
often display more bilaterality in cerebral responses than YOUNG
(Cabeza et al., 2002; Reuter-Lorenz, 2002; van der Veen et al., 2006;
Han et al., 2009). Consistencies in the pattern of increased bilat-
eral fMRI activity across multiple studies and with a variety of
behavioral tasks led Cabeza (2002) to propose a model of hemi-
spheric asymmetry reduction in older adults (HAROLD). The
HAROLD model argues the observed hemispheric asymmetry
normally observed in YOUNG becomes more bilateral in high-
performing OLD and thus reflects functional compensation in the
face of age-related declines in neural efficiency (see also Han et al.,
2009; for discussion). If we assume higher levels of bilateral APH

FIGURE 1 | Group-by-prior sleep interaction forTST. Bilateral anterior
parahippocampal regions showing a group-by-TST interaction. (A) Color
scale represents r 2 associated with the interaction term in the statistical
model (max r 2 = 0.5). (B,C) Graphs show a strong, positive TST–BOLD
correlation in OLD (both regions p < 0.001), with no significant correlation
for the YOUNG (p > 0.05) in the right APH and a significant negative
correlation for the YOUNG in the left APH (p < 0.05). (Effect sizes are partial
r 2 for OLD and YOUNG separately, accounting for effects of performance
and the main effects of group and TST.)

activation in our OLD represents functional compensation, our
results suggest that perhaps, in OLD, sufficient prior sleep quan-
tity may be a necessary pre-condition for successful functional
compensation.
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FIGURE 2 | Group-by-prior sleep interaction for SE. Left posterior
parahippocampal gyrus and right inferior frontal gyrus regions showing
group-by-SE interaction. (A,C) Color scale represents r 2 associated with
the interaction term in the statistical model (max r 2 = 0.5). (B,D) Graphs

show a strong, positive SE–BOLD correlation for the YOUNG (both
p < 0.05), with no significant correlation for the OLD (both p > 0.05).
(Effect sizes are partial r 2 for OLD and YOUNG separately, accounting for
the effects of performance.)

Younger adults have been shown to engage functional com-
pensation during verbal encoding tasks after sleep deprivation
via increased or newly bilateral activation, similar to what is seen
when comparing normally rested OLD to normally rested YOUNG
(Drummond et al., 2000, 2005; Drummond and Brown, 2001;
Stricker et al., 2006). Since left APH activation is strongly associ-
ated with verbal encoding in YOUNG (Rosazza et al., 2009), the
negative correlation of TST with left APH activation may actu-
ally suggest lower TST necessitates mild functional compensation
during VL in YOUNG.

The role of the left PPH region (showing higher activation levels
in the YOUNG, but not OLD, with greater SE) in VL and memory is
less well characterized than the anterior region. Work by Qin et al.
(2009) suggests the PPH is involved in memory retrieval more than
encoding. Prince et al. (2005) found left PPH activity was associ-
ated with retrieval success. Because we only examined the encoding
phase of our task, we hypothesize left PPH activity in our YOUNG
may be involved in retrieving information related to the words
presented. This hypothesis is supported by Mestres-Misse et al.
(2008) who found the PPH to be involved in semantic associa-
tive processing. Perhaps in our YOUNG, more consolidated sleep
allowed subjects to better retrieve semantic information related
to the words they were learning. Such semantic elaboration, in

turn, may have aided the abstract/concrete judgment required,
buttressed encoding strategies, or both.

Right IFG also showed higher activation levels in YOUNG, but
not OLD, with greater SE. This area may be playing a similar
role to PPH in YOUNG by being involved in semantic catego-
rization. Prior studies have found areas near the right IFG to be
related to: (a) judgments about metaphoric but not literal semantic
relatedness of words (Stringaris et al., 2006); (b) meaning-based
processing tasks (Fletcher et al., 2002); and (c) item familiarity
during a memory encoding task (Mitchell et al., 2008). Further-
more, there are functional connections between PPH and areas
near right IFG region (Kahn et al., 2008), suggesting a possi-
ble relationship between the increased PPH and IFG activation
in our YOUNG. Lichter and Cummings (2001) have also found
indirect connections between IFG and the hippocampus via the
basal ganglia and thalamus. Together, the above findings suggest,
in our YOUNG, better SE may have allowed for improved semantic
retrieval resulting in higher activation levels in both left PPH and
right IFG.

DIFFERENCES BETWEEN OLD AND YOUNG
A novel finding from our study is cerebral responses to the ver-
bal encoding task were affected differently by prior sleep in OLD
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and YOUNG. This result suggests different aspects of prior sleep
acutely impact the brain’s response to cognitive challenges as we
age. Here, OLD seemed less sensitive to the effects of poor SE
than YOUNG. One possible explanation for this difference is
mildly decreased SE is a common and not necessarily patholog-
ical aspect of normal aging. Indeed, the seminal meta-analysis
of age-related sleep changes found reduced SE was the most
common sleep alteration in adults over 60-years-old. Cognitive
performance of YOUNG, on the other hand, has been shown
in other studies to be sensitive to fragmented sleep. For exam-
ple, Howell et al. (2004) and Pilcher and Walters (1997) both
found relationships between academic performance in high school
or college and sleep quality. Another age-related difference is
that, while prior sleep produced larger effects sizes in OLD than
YOUNG, the effects of prior sleep seem be more multi-faceted in
YOUNG. Better SE seems to have aided semantic processing in
YOUNG, and longer TST promoted neural efficiency within left
APH (to the extent that lower activation levels, while controlling
for performance, can be interpreted as neural efficiency). Thus,
in YOUNG, better sleep seems to both promote efficiency of the
main cognitive process tested here (i.e., encoding) and facilitate
ancillary cognitive processes (i.e., semantic retrieval) that likely
aided performance.

The age-related differences in the effects of prior sleep reported
here have direct implications for potential interventions aimed
at maximizing cognitive function. For example, in OLD, clini-
cians involved in cognitive rehabilitation or efforts to improve
memory performance may wish to encourage increased sleep
time in their patients as a way to promote more robust cerebral
responses to encoding challenges. Those working with YOUNG,
for example to improve academic performance, may instead wish
to focus on interventions designed to maximize the consolidation
of sleep.

LIMITATIONS
A few limitations of this study should be acknowledged. First, our
OLD were ostensibly quite healthy. While this aids internal valid-
ity by reducing the probability that medical co-morbidities are
responsible for the findings, it may impact generalizability to some
extent. Similarly, both groups averaged a college level education
and none of the subjects in either group had frankly patholog-
ical sleep. Future studies may wish to include a wider range of
subjects, in terms of both cognitive ability and sleep, to further
explore the relationship between sleep and cerebral responses to
cognitive challenges. Second, we only examined the influence of
sleep on a single night preceding testing. Bed time and wake time

the night before testing were based on subjects’ habitual, at home
sleep schedules, but we nonetheless cannot glean with certainty
that our single night sleep data fully reflects the longer-term sleep
patterns of these subjects. Future studies may wish to examine
sleep over more nights to determine the impact of longer-term
sleep quantity/quality on cerebral responses.

CONCLUSION
In summary, our study used a verbal encoding task to examine
whether the quantity and quality of sleep during the night imme-
diately preceding testing affected the cerebral response to this
cognitive challenge differently for OLD and YOUNG. We found
four distinct brain regions that were differentially sensitive to prior
sleep, independent of the association between cerebral responses
and performance. Longer TST promoted higher BOLD activation
in the bilateral APH in OLD and lower BOLD activation in the
left APH in YOUNG. Greater SE promoted higher BOLD acti-
vation levels in the left PPH and the right IFG in YOUNG but
not in OLD. The roles of these brain regions in verbal encod-
ing suggest different mechanisms by which sleep may influence
brain function in older vs. younger adults. In OLD, greater sleep
quantity appears linked to greater engagement of functional com-
pensation during cognitive challenges. By contrast, in YOUNG,
lower sleep quantity may necessitate functional compensation to
maintain cognitive performance, similar to what is seen with acute
sleep deprivation. Additionally, in YOUNG, better sleep quality
may improve semantic retrieval processes, thereby aiding encod-
ing. OLD with longer TST may have improved cognitive function
over their peers with shorter TST, whereas objectively lower SE
in the absence of sleep complaints or other sleep pathology may
not play as great a role in cognition in this group as previously
thought. This suggests that future studies of brain function in
OLD may benefit from accounting for variations in TST and/or
excluding those subjects with abnormally low TST the night prior
to testing.
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