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Fibrillar deposits of highly phosphorylated tau are a key pathological feature of several neu-
rodegenerative tauopathies including Alzheimer’s disease (AD) and some frontotemporal
dementias. Increasing evidence suggests that the presence of these end-stage neurofib-
rillary lesions do not cause neuronal loss, but rather that alterations to soluble tau proteins
induce neurodegeneration. In particular, aberrant tau phosphorylation is acknowledged to
be a key disease process, influencing tau structure, distribution, and function in neurons.
Although typically described as a cytosolic protein that associates with microtubules and
regulates axonal transport, several additional functions of tau have recently been demon-
strated, including roles in DNA stabilization, and synaptic function. Most recently, studies
examining the trans-synaptic spread of tau pathology in disease models have suggested
a potential role for extracellular tau in cell signaling pathways intrinsic to neurodegen-
eration. Here we review the evidence showing that tau phosphorylation plays a key
role in neurodegenerative tauopathies. We also comment on the tractability of altering
phosphorylation-dependent tau functions for therapeutic intervention in AD and related
disorders.
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INTRODUCTION
Characteristic accumulations of highly phosphorylated tau pro-
tein aggregates are found in several neurodegenerative tauopathies
including Alzheimer’s disease (AD), progressive supranuclear
palsy (PSP), corticobasal degeneration (CBD), and some forms
of frontotemporal lobar dementia (FTLD-tau). It was assumed
that these pathological tau aggregates are the toxic form of tau.
However, recent studies indicate that soluble and highly phos-
phorylated tau species are more closely associated with synaptic
dysfunction and cell loss (1–4).

Tau is normally a highly soluble protein found predominantly
in neurons. A total of six different isoforms of tau are expressed in
the adult human CNS via alternative splicing of the MAPT gene,
which comprises 16 exons and is found on chromosome 17q21.3.
Regulated inclusion of exons 2 and 3 gives rise to tau isoforms with
0, 1, or 2 N-terminal inserts, whereas exclusion or inclusion of exon
10 leads to expression of tau isoforms with three (3R) or four (4R)
microtubule-binding repeats (Figure 1A). In normal human brain
the ratio of 4R–3R tau is approximately one, whereas in many
tauopathies, this ratio is altered; PSP, corticobasal degeneration
(CBD), and argyrophilic grain disease all exhibit over-expression
of 4R tau isoforms, whereas Pick’s disease is mainly characterized
by tau inclusions rich in 3R tau isoforms (5–9).

Tau is a phosphorylated protein, containing 85 potential ser-
ine (S), threonine (T), and tyrosine (Y) phosphorylation sites.
Many of the phosphorylated residues on tau are found in the
proline-rich domain of tau, flanking the microtubule-binding
domain (Figure 1B). Both the phosphorylation status and isoform

expression of tau are developmentally regulated and both are
important factors for cytoskeletal plasticity during embryogenesis
and early development. In early developmental stages a single tau
isoform, 0N3R, is expressed and tau phosphorylation is elevated
relative to adult brain. In contrast, all six tau isoforms are present in
normal mature human brain, and at this stage tau phosphorylation
is relatively reduced (8, 10).

Despite the significant heterogeneity that exists between and
within the various tauopathies, the deposited tau in pathological
lesions is invariably highly phosphorylated. Mass spectrometric
analysis, combined with Edman sequencing and specific antibody
reactivity, shows that approximately ten phosphorylation sites can
be detected on soluble tau purified from normal brain (10). In
contrast, when insoluble aggregated tau is extracted from tauopa-
thy brain, at least 16 phosphorylated residues have been found
in PSP (11–13), and approximately 45 different serine, threonine,
and tyrosine phosphorylation sites, representing more than 50%
of all phosphorylatable residues, have been found in AD brain (10,
14–17).

A large number of different kinases and phosphatases have
been shown to regulate tau phosphorylation, and an imbalance
in tau kinase and phosphatase activity is believed to result in tau
hyperphosphorylation in disease. Tau kinases include:

• The proline-directed kinases glycogen synthase kinase-3
(GSK-3) (18–22), cyclin-dependent kinase 5 (cdk5) (23–25),and
5′ adenosine monophosphate-activated protein kinase (AMPK)
(26, 27).
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FIGURE 1 |The human tau gene and six protein isoforms. (A) The six
isoforms of human CNS tau. Exons 2 and 3 (E2 and E3) encode two
different inserts of 28 amino acids near the N-terminus of tau. Absence of
E2 and E3 gives rise to 0N tau isoforms, whereas inclusion of E2 produces
1N and inclusion of both E2 and E3 results in 2N tau isoforms. M1–M4
represent the four imperfect-repeat microtubule-binding domains, M2
being encoded by exon 10. Lack of M2 results in the formation of 3R tau

and M2 inclusion results in 4R tau isoforms. The proline-rich domain in the
center of the tau polypeptide is indicated. Alternative-splicing produces tau
isoforms of 352–441 amino acids, as indicated. (B) Positioning of
phosphorylation sites on tau from Alzheimer brain. Approximately 45
phosphorylation sites have been identified, these are found predominantly
in the proline-rich domain and the regions flanking the microtubule-binding
domain.

• Non-proline-directed kinases, such as casein kinase 1 (CK1)
(10), microtubule affinity-regulating kinases (MARKs) (28–30),
cyclic AMP-dependent protein kinase A (PKA) (31, 32), and
dual specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRK-1A) (33, 34).

• Tyrosine kinases including Fyn (35, 36), Abl (37, 38), and
Syk (39).

In addition, several phosphatases dephosphorylate tau, includ-
ing protein phosphatase-1, -2A, and -5 (PP1, PP2A, and PP5)
(reviewed by (40).

Importantly, many of these enzymes have been implicated in
pathways affected by amyloid-beta (Aβ) in models of AD (27, 41–
43). It remains to be established if the overall phosphorylation
state of tau or phosphorylation at specific residues is important
in disease pathogenesis, as suggested by studies in flies (44). How-
ever, there is evidence that phosphorylation of individual residues
on tau can significantly impact its function, and this is discussed
below.

THE RELATIONSHIP BETWEEN PHOSPHORYLATION AND TAU
STRUCTURE
In addition to abnormal phosphorylation, tau protein in neurode-
generative disease brain can be modified in a number of ways,
including N- and C-terminal proteolytic cleavage, altered confor-
mation, nitration, glycosylation, acetylation, glycation, ubiquityla-
tion, O-GlcNAcylation, aggregation, and filament formation (45,
46). Much research has focused on elucidating the relationship
between phosphorylation and the changes in tau structure that
are common in neurodegenerative disease brain. Evidence from
this research suggests that phosphorylation occurs either prior to,
or at the same time as, these other post-translational modifications

and before aggregation occurs. It remains to be seen whether this
temporal precendence indicates a causative relationship.

PROTEOLYTIC TAU CLEAVAGE
Tau is subject to proteolytic cleavage by caspase-3 at aspartate
(D) residue 421 (47), and N-terminal cleavage by calpain-1 (48)
and caspase-6 (49). The tau fragments that are generated have
been detected in affected regions of human tauopathy brain (47,
50). Caspase-cleaved tau fragments show an increased propensity
to aggregate, and these may form a seeding nidus that promotes
the aggregation and fibrillization of full-length tau species (51).
In contrast, cleavage of tau by calpain may partially inhibit tau
aggregation (50). The temporal relationship between tau cleavage
and phosphorylation is unclear, with data showing that phospho-
rylation of different tau residues precedes (52), follows (47), and
inhibits (53) the proteolytic cleavage of tau by caspase-3. However,
substantial evidence shows that caspase-3-cleaved tau species are
particularly prone to phosphorylation in both primary neuronal
cells (54) and human tauopathy brain (47), and that phosphory-
lated and caspase-3-cleaved tau species readily form aggregates in
cells (55). These results therefore suggest that phosphorylation and
caspase-mediated cleavage of tau are important events during the
development of the characteristic tau aggregates that accumulate
in AD and other tauopathies.

ALTERED TAU CONFORMATION
Tau is a natively unfolded protein that adopts abnormal conforma-
tions in tauopathy brain. For example, tau cleavage by caspase-3
at D421 occurs early in disease development, following an alter-
ation in tau conformation detected by the Alz50 antibody, and
prior to the formation of the conformational Tau-66 epitope (tau
residues 155–244 and 305–331) which is detected in late-stage
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AD (56). Altered tau conformation is suggested to be a major
determinant in inducing tauopathy development in vivo (57), and
abnormal tau conformers are detected in mouse models of tauopa-
thy where elevated tau phosphorylation is apparent, but prior
to the appearance of substantial tau aggregation (22, 58). Thus,
caspase-3-induced tau cleavage appears to occur relatively early
during the development of tauopathies, contemporaneous with
increased phosphorylation and altered conformation of tau.

THE DEVELOPMENT OF TAU OLIGOMERS
A number of soluble and insoluble tau oligomers have been
detected in AD and FTLD brain (2). Tau oligomers display altered
conformation (59), are formed during the early stages of tau
aggregation (59), and are closely associated with neurodegen-
erative phenotypes (2, 60). For example, transgenic mice that
conditionally express a proline to leucine mutation at residue
301 (P301L) in human tau (1) exhibit high molecular weight
tau oligomers, prior to the presence of neurofibrillary tangles
(NFTs), that correlate with the development of cognitive deficits
(2). Similarly, in a Drosophila model of tauopathy, the suppres-
sion of tau-induced neurodegeneration is associated with clear-
ance of ubiquitinated and phosphorylated low molecular weight
(<250 kDa) tau oligomers, concomitant with increases in ubiq-
uitinated tau monomers and high molecular weight (>250 kDa)
tau oligomers (61). It should be noted that protection from tau-
associated toxicity in this latter study was also accompanied by
reduced phosphorylation of soluble monomeric tau. Phospho-
rylation of tau by GSK-3 promotes the formation of insoluble
oligomeric tau species that can constitute both full-length and
truncated tau species (62, 63). The majority of insoluble tau in
AD brain is intact (13). However, cleaved tau species are promi-
nent in insoluble tau preparations from PSP, CBD, and FTLD-tau
brain (13). The increased propensity of caspase-cleaved tau to
aggregation (47), and the close association of tau fragments with
cell death (64), suggests that although present as a relatively small
pool of total tau, cleaved tau may also play an important role in
disease. The presence of phosphorylated oligomeric tau species in
cortical synapses extracted from AD brain (65) supports a role for
highly phosphorylated tau multimers in tau-associated neuronal
dysfunction.

THE FORMATION OF INSOLUBLE TAU AGGREGATES
In cell-free systems, soluble tau is a hydrophilic, unstructured,
and dynamic protein (66). However, highly ordered aggregated
tau filaments constitute the characteristic neurofibrillary lesions
observed in tauopathy brain, including NFTs in AD and FTLD-tau,
astrocytic plaques in CBD and tufted astrocytes in PSP (67).

There is substantial evidence that tau phosphorylation pre-
cedes its aggregation. Highly phosphorylated mouse and human
tau undergoes self-assembly in vitro (68, 69), and dephosphory-
lation of soluble tau from AD brain inhibits its polymerization
and restores the ability of tau to stabilize microtubules (70).
Transgenic mice in which tau kinase activity is increased dis-
play increased tau phosphorylation prior to the presence of tau
aggregates (24, 25, 58, 71). Furthermore, treating tau transgenic
mice with kinase inhibitors results in reduced tau phosphoryla-
tion and also a reduced tau aggregate load (22, 72, 73). It should

be noted, however, that reduction of tau aggregate load in tau
transgenic mice following lithium treatment could result from
enhanced autophagy in addition to reduced GSK-3-mediated tau
phosphorylation (74). The relationship between tau phosphory-
lation and aggregation is clearly complex since phosphorylation
of tau at specific sites, that are known to result in tau detachment
from microtubules, can prevent tau aggregation (75). In addition,
disruption to tau phosphatase activity in transgenic mice leads
to the development of early disease-like tau abnormalities (76,
77). In particular, tau phosphorylation at the AT100 epitope is
apparent in mice with reduced PP2A activity (77), which show
cdk5-mediated enhanced activation of GSK3. Phosphorylation at
the AT100 site has previously been shown to precede NFT for-
mation (78), thus these findings may also suggest that changes in
tau phosphorylation precede its aggregation. However, NFT for-
mation was lacking in mice with reduced PP2A activity, an event
attributed to increased clearance of abnormal tau conformers (77).

It is possible that the formation of a small pool of cleaved
tau may be critically important in mediating the formation of
pathological tau aggregates. Caspase-cleaved tau is prone to phos-
phorylation at specific epitopes (47, 54) and forms aggregation
seeds that sequester full-length tau (51). Indeed, in vivo imag-
ing of tau transgenic mice has demonstrated that truncated tau
induces the misfolding of soluble tau and leads to the accumula-
tion of hyperphosphorylated tau in tangles (79). Whether or not
filamentous tau aggregates are toxic, protective, or inert remains
an issue of intense debate (for review, see 80). However, small
aggregated tau species have attracted interest recently because of
their reported involvement in the propagation/transmission of tau
pathology, and this topic is discussed in more detail below.

THE INFLUENCE OF PHOSPHORYLATION ON TAU
LOCALIZATION AND FUNCTION
Tau is ubiquitously expressed during early embryonic develop-
ment, but becomes localized predominantly in axons of mature
neurons. The mechanisms underlying the axonal sorting of tau
are not fully understood, but might involve selective trafficking
of tau mRNA or protein into axons (81, 82), a retrograde trans-
port barrier in the axon initial segment in mice (83), upregulation
of tau mRNA translation in axons (84) or selective degradation
of tau in dendrites (85). Tau is also found in association with
neuronal membranes, in the nucleus, dendrites and synapses,
and extracellularly. The localization of tau is altered in disease
states. In particular, the redistribution of hyperphosphorylated
tau to the somatodendritic compartment is considered a hallmark
pathological marker during early tauopathy development (86, 87).
The functional consequences of tau phosphorylation-mediated
changes in the cellular localization of tau are discussed below.

CYTOPLASMIC TAU: CYTOSKELETAL INTEGRITY AND AXONAL
TRANSPORT
A large proportion of tau is found in the cytosolic com-
partment, where it interacts with microtubules through its C-
terminal microtubule-binding domain (Figure 1, residues 244–
368). The binding of tau with microtubules is regulated by
tau phosphorylation status, with in vitro phosphorylation of
recombinant tau at S262 and S356, orthologous residues in
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adjacent microtubule-binding repeats, reducing tau interactions
with microtubules and rendering tau less susceptible to aggre-
gation (75). Phosphorylation of tau at residues outside of the
microtubule-binding domain of tau, including S214 and T231,
have also been shown to reduce its interaction with microtubules
(75, 88). These findings suggest that phosphorylation at different
tau sites may have opposing effects on the ability of tau to aggregate
Furthermore, interaction of the peptidyl-prolyl isomerase Pin1
with phosphorylated T231 mediates the interaction of PP2A with
the trans configuration of phosphorylated tau, and results in a
conformational change that restores the ability of tau to bind to
microtubules (89–91). Regardless of the particular sites involved,
increased tau phosphorylation that causes tau to detach from
microtubules leads to the disassembly of microtubules and dis-
ruption to the structure of the neuronal cytoskeleton. In addition,
the accumulation of unbound hyperphosphorylated tau in the
cytoplasm could cause further microtubule disassembly by seques-
tering normal tau and other microtubule-associated proteins (92).
When tau is in a filamentous state, its interaction with normal
(soluble) tau and its inhibition of microtubule stabilization is dis-
rupted (93). Preventing microtubule instability in tauopathies has
become an important target for drug development (94, 95).

Alterations in tau phosphorylation also affect its anterograde
axonal transport. In general, reducing tau phosphorylation at
S/T residues decreases, whereas mimicking tau phosphorylation
increases, the rate of axonal tau transport in fly, rodent, and human
neurons (21, 96–98). The influence of tau phosphorylation on
its transport appears to be associated with differential binding of
S/T phosphorylated tau to the molecular motor protein kinesin-1
(97, 98) and differential degradation rates of phospho-tau species
through the lysosomal autophagy system (98).

The interaction of tau with microtubules is critically involved
in the regulation of microtubule-dependent axonal transport (99),
therefore tau phosphorylation also plays a key role in regulating
the transport of other important cargoes. Increasing tau phos-
phorylation at N-terminal Y residues relieves the inhibition of
anterograde axonal transport observed in the presence of highly
phosphorylated tau aggregates in squid axons (100). However, tau
is not usually highly phosphorylated in squid axons and there-
fore it is unclear whether this provides a good model to examine
mammalian tau functions. In mice over-expressing FTLD-tau
mutations, there is impaired anterograde axonal transport of
vesicles containing the dopamine-synthesizing enzyme tyrosine
hydroxylase, which precede the loss of dopaminergic neurons
in the substantia nigra (101). The transport deficits reported in
this mouse model were shown to be mediated by interactions
between phosphorylated tau and JNK-interacting protein 1 (JIP-
1) (102). Since JIP-1 regulates the binding of cargo to kinesin, these
results further support the idea that increasing tau phosphoryla-
tion disrupts axonal transport. Alternatively, reduced degradation
or clearance of aggregated or mutant forms of tau might con-
tribute to a “clogging” of microtubules and consequent disruption
in axonal transport (103).

Disruption to axonal transport is predicted to be an early
event in several neurodegenerative diseases (104) and recent evi-
dence suggests that dysregulated axonal transport may contribute
to tau-induced degeneration. Genetic suppression of Miro, an

adapter protein essential for mitochondrial axonal transport, exac-
erbates the neurodegenerative phenotype in Drosophila expressing
human tau, through a mechanism dependent upon phosphoryla-
tion of tau at S262 by PAR-1, the Drosophila homolog of MARK
kinase (105). Similarly, deletion of kinesin light chain-1 results in
accumulation of hyperphosphorylated tau and the appearance of
axonal spheroids in mice (106), in line with numerous reports that
have characterized the binding of tau to kinesin (21, 96–98).

Finally, alterations in mitochondrial transport and function
are intrinsically linked with several neurodegenerative diseases
(107). Over-expression of tau in vivo results in alterations to
mitochondrial distribution that are associated with soluble, rather
than fibrillar, tau species (108). In addition, tau phosphorylation
alters the axonal transport and distribution of mitochondria in
cultured neuronal cells (109, 110), an effect recently attributed
to tau phosphorylation-dependent changes in inter-microtubule
spacing (110). Furthermore, highly phosphorylated tau has been
shown to interact with the mitochondrial fission protein, Drp1
(111), and DuBoff et al. (112) demonstrated that this relation-
ship is important for neurodegeneration. They show that actin
is over-stablised in Drosophila that express human tau, and that
this impairs the actin-based translocation of Drp1 and mitochon-
dria, which reduces their interaction and leads to accumulation
of Drp1 on F-actin, mitochondrial elongation, and downstream
neurotoxicity (112). Thus tau phosphorylation is closely linked to
alterations in the localization and/or function of mitochondria.
It is therefore likely that phosphorylated tau influences synaptic
dysfunction in tauopathies by contributing to the depletion of
functional mitochondria from synapses (113).

MEMBRANE-ASSOCIATED TAU: A CELL SIGNALING ROLE FOR TAU?
Tau interacts with several neuronal membranes, including the
endoplasmic reticulum (114), the Golgi network (114), and the
plasma membrane (115, 116). An increasing body of evidence
shows that the association of tau with plasma membranes is
regulated by phosphorylation (116–118). Plasma membrane-
associated tau is dephosphorylated at several sites known to be
aberrantly phosphorylated in AD brain (116, 117, 119, 120).
Indeed, phosphorylation of tau at N-terminal, but not C-terminal,
residues prevents its membrane localization in tau-transfected
cells, demonstrating that the phosphorylation state of tau directly
impacts its positioning at membranes (116).

Tau has also been detected within cell-surface lipid-rich
microdomains of the plasma membrane (35, 41, 121), and the
amount of tau associated with these lipid rafts is regulated by
tau phosphorylation at N-terminal tyrosine residues (121). Tau
interactions with the non-receptor tyrosine kinase Fyn are critical
for the interaction of tau with lipid rafts (35, 41, 121) and neu-
ronal plasma membranes (116). Tau can interact with Fyn via its
SH2 and SH3 domains (121, 122). Phosphorylation of tau at Y18
is important for tau interactions with Fyn-SH2 (121), whereas
phosphorylation of S/T residues on tau negatively influences its
interaction with Fyn-SH3 (122). Accumulating evidence there-
fore suggests that targeting of tau to the plasma membrane may
be regulated by the interaction of the tau N-terminal projection
domain with the SH3 or SH2 domains of tyrosine kinases such
as Fyn (118). Furthermore, these data suggest that by binding to
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several important signaling molecules in a manner that is regu-
lated by phosphorylation, tau has the potential for a broad role in
cell signaling (122).

DENDRITIC TAU AND SYNAPTIC TOXICITY
A number of recent cell and animal studies have shown an impor-
tant role for tau in dendrites leading to the suggestion that tau-
mediated synaptic dysfunction may be one of the earliest events
in the pathogenesis of tauopathies. Several studies have indicated
that the presence of tau aggregates is detrimental to synaptic health
(123, 124), however, soluble tau species are associated with synapse
loss in mouse models of tauopathy (125) and phosphorylated tau
oligomers have also been detected in synapses in postmortem AD
brain (126).

A small amount of tau exisits in dendrites under normal
conditions, where it acts to target Fyn post-synaptically, regu-
lating N -methyl-d-aspartate (NMDA) receptor subunit 2 phos-
phorylation and interactions between NMDA receptors and the
post-synaptic density protein PSD-95 (3). Disease insults, such
as increased concentrations of Aβ in AD, lead to the detach-
ment of highly phosphorylated tau from microtubules and its
accumulation in intact dendritic spines (3). This in turn causes
local elevations in Ca2+ and disruption of synaptic function
through impaired trafficking and/or synaptic anchoring of glu-
tamate receptors (3, 127, 128). In a related study, the redistri-
bution of hyperphosphorylated tau into dendritic spines led to
reductions in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor subtypes that caused impairments in basal
synaptic transmission and long term potentiation (129). Thus,
there is increasing evidence that tau-mediated synaptic dysfunc-
tion might be one of the earliest events in the pathogenesis of
tauopathies (reviewed by 130). Therefore, correction of aber-
rant tau phosphorylation may be therapeutically beneficial during
very early stages of disease progression when synaptic deficits
first develop. In this respect, it is worth noting that inhibi-
tion of GSK3 has previously been shown to attenuate deficits in
LTP (131).

NUCLEAR TAU – A ROLE IN DNA PROTECTION
It was first suggested that tau might have novel functions medi-
ated by interactions with DNA or RNA following observations
that tau is present in the nuclei of human neuroblastoma cells
(132). Full-length tau was identified in neuronal nuclei, where
it colocalizes with the chromosome scaffold, nuclear and nucle-
olar organization centers and can exist as SDS-insoluble species
(132, 133). Further studies revealed that the microtubule-binding
domain of tau can bind RNA (134),and single and double stranded
DNA (135, 136). The interaction of tau with RNA enhances tau
polymerization; the RNA acting as a nucleation center for tau
aggregation (134), whereas interaction of tau with DNA results in
conformational changes in DNA (133) and suppression of DNA
amplification in vitro (136). Insights into the nuclear function
of tau were recently revealed with the observation that tau pro-
tects DNA from heat damage and oxidative stress (137). Nuclear
tau appears to be largely dephosphorylated (137), suggesting that
increased tau phosphorylation in diseased states could interfere
with protective functions of non-phosphorylated tau in neuronal
nuclei.

EXTRACELLULAR TAU AND THE PROPAGATION OF TAU PATHOLOGY
Tau is present in brain insterstitial fluid in the absence of any
neurodegeneration (138). Recent evidence suggests that this extra-
cellular tau is likely to have important functional consequences
for neuronal health and for the spread of tau pathology across the
brain during disease progression.

To allow investigation of tau pathology spread in vivo, trans-
genic mice have been created with neuropsin-promoter targeted
expression of tau in layer II neurons of the entorhinal cortex. These
mice demonstrate an age-dependent spread of phosphorylated
and aggregated abnormal tau confomers from the site of transgene
expression to neighboring neurons and anatomically connected
brain regions (139, 140). There are several mechanisms that could
account for this observed spread of tau pathology. Firstly, degen-
erating neurons with high levels of transgene expression might
release pathological forms of tau that subsequently propagate in
a “prion-like” fashion through their uptake by neighboring neu-
rons. In support of this process, Frost et al. (141) demonstrated
that extracellular tau aggregates, but not tau monomers, are taken
up by cultured human embryonic kidney (HEK293) cells and neu-
ronal stem cells, leading to fibrillization of full-length intracellular
tau. Similarly, small oligomers of tau, similar to those found in
human tauopathy brain, can be taken up by cultured neuronal
cells via bulk endocytosis (142). It is possible that this process also
underlies the postulated prion-like transmission of tau pathol-
ogy to distal brain regions observed when pathological forms of
human tau are injected into mice expressing wild-type human tau
(143, 144). Secondly, tau pathology in the neuropsin-promoter
regulated tau transgenic mice appears to spread to anatomically
connected pathways in the absence of any notable cell loss (139,
140), suggesting that tau is released from intact neurons and then
taken up by connected cells. This process is supported in part by
recent findings showing endogenous tau release from cultured
neurons in the absence of cell death (145, 146). Interestingly,
the release of endogenous full-length tau from rat primary neu-
rons was shown to be a dynamic and physiological process that is
calcium-dependent and stimulated by AMPA receptor activation
and neuronal activity (146), suggesting that tau release may play
a role in signaling between neurons. Indeed, exogenously applied
tau can interact with muscarinic receptors on the surface of cul-
tured neuronal cells, promoting increases in intracellular calcium
that alter cell signaling pathways (147). It is also possible that tau
propagation may be mediated via glial cells, since cytosolic tau
accumulations are observed in neurons surrounded by activated
microglia (148) and astrocytes promote tau phosphorylation in
neighboring neurons (54).

The relationship between tau secretion and tau phosphoryla-
tion state is not yet established. However, extracellular tau released
from primary neurons, neuroblastoma cells and non-neuronal
cells is dephosphorylated at several epitopes known to be highly
phosphorylated in AD brain (145, 146, 149) and this has been pro-
posed to result from the action of extracellular tissue non-specific
alkaline phosphatase (149). How this relates to the phosphoryla-
tion state of intracellular tau is not clear, although the secretion of
C-terminally cleaved tau from non-neuronal cells can be enhanced
by the increased phosphorylation or cleavage of intracellular tau
(150). These studies indicate that changes in tau phosphorylation
can modulate its release from neurons, and therefore is also likely
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FIGURE 2 |The impact of phosphorylation on tau functions in different
cell locations. The figure shows the functions of tau in different cellular
compartments that are influenced by tau phosphorylation, and that likely
contribute to the development or progression of neurodegenerative
tauopathies.

to influence the effects of extracellular tau on neuronal health and
the spread of tau pathology in diseased brain.

TAU PHOSPHORYLATION AS A THERAPEUTIC TARGET
As summarized above, tau phosphorylation plays a key role in reg-
ulating tau function at different neuronal locations, including the
involvement of cytosolic tau in stabilizing the neuronal cytoskele-
ton and influencing axonal transport; the role of membrane tau
and extracellular tau in cell signaling and neurofibrillary pathology
spread through diseased brains; the relationship between nuclear
tau and protection from DNA damage; and dendritic functions of
tau that are involved in synaptotoxicity (Figure 2). These data sug-
gest that inhibition of tau phosphorylation could have widespread
disease-modifying effects in tauopathies. Therapeutic strategies
aimed at targeting tau phosphorylation have been widely reviewed
elsewhere (e.g., 8, 9, 67, 151), therefore we will comment only
briefly here.

Although several kinases and phosphatases regulate tau phos-
phorylation, only GSK-3 inhibitors have entered clinical trials for
the treatment of AD or rarer tauopathies such as PSP. Based on
promising data from animal models (21, 22, 152), the relatively
non-specific GSK-3 inhibitor, lithium, was tested in small-scale
clinical trials for mild to moderate AD. Whilst lithium did not
cause significant adverse effects in an open label study of a year

(153), neither did it have any beneficial effects in a short-term
trial (154). However, a small trial of lithium in patients with mild
cognitive impairment reduced phosphorylated tau in CSF and
reported better performance of treated patients in cognitive and
attention tasks (155), suggesting that administration of lithium
during the early stages of disease could have some therapeutic
benefit in defined patient populations.

Tideglusib (NP-12) is a non-ATP competitive inhibitor of GSK3
that has entered clinical trials. Tideglusib has disease-modifying
effects when administered to transgenic mice that develop both
tau and amyloid pathology (156). Pilot trials for tideglusib in AD
and PSP showed good tolerance of tideglusib (157) and phase II
studies are underway.

Kinase inhibitors have entered clinical use for conditions unre-
lated to neurodegeneration (158). However, kinases make for com-
plex therapeutic targets, and probably because of incomplete drug
specificity, off-target effects are problematical. An alternative strat-
egy may be to modulate the activity of proteins that directly affect
the activity of tau kinases. One interesting target in this respect is
lemur tyrosine kinase-2 (LMTK2). LMTK2 phosphorylates PP1C
on T320, thereby inhibiting PP1C activity (159–161). PP1 regu-
lates phosphorylation of GSK3β at the inhibitory phosphorylation
site S9 (162, 163), and therefore, via its effect on PP1C, LMTK2
regulates GSK-3β phosphorylation at S9, and ultimately GSK-3
activity (160, 161). Therefore, an alternative strategy for inhibiting
GSK-3 activity may be to increase LMTK2 expression or activity.
Small molecule allosteric agonists for a variety of kinases have now
been described, and the development of kinase agonists has been
identified as key area for the development of new therapies (164).

Finally, biomarkers are increasingly used to follow the progres-
sion of AD, and in some cases to support early diagnosis of the
disease (165). However, to accelerate the clinical translation of
therapeutics that modify tau phosphorylation, it is essential that
sensitive and specific biomarkers are available to allow the mea-
surement of drug–target interactions, and the impact of treatment
on downstream pathophysiology. The development of such target
validation biomarkers will allow a faster selection of candidate
treatments, and appropriate dose ranges. This should accelerate
the clinical development of tau phosphorylation inhibitors that
are likely to have wide-ranging benefit for the treatment of AD
and related tauopathies.
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