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Huntington’s Disease (HD) is a genetic neurodegenerative disease caused by a CAG expan-
sion in the gene encoding Huntingtin (Htt ). It is characterized by chorea, cognitive, and
psychiatric disorders.The most affected brain region is the striatum, and the clinical symp-
toms are directly correlated to the rate of striatal degeneration. The wild-type Htt is a
ubiquitous protein and its deletion is lethal. Mutated (expanded) Htt produces excitotoxicity,
mitochondrial dysfunctions, axonal transport deficit, altered proteasome activity, and gene
dysregulation.Transcriptional dysregulation occurs at early neuropathological stages in HD
patients. Multiple genes are dysregulated, with overlaps of altered transcripts between
mouse models of HD and patient brains. Nuclear localization of Exp-Htt interferes with
transcription factors, co-activators, and proteins of the transcriptional machinery. Another
key mechanism described so far, is an alteration of cytoplasmic retention of the transcrip-
tional repressor REST, which is normally associated with wild-type Htt. As such, Exp-Htt
causes alteration of transcription of multiple genes involved in neuronal survival, plastic-
ity, signaling, and mitochondrial biogenesis and respiration. Besides these transcriptional
dysregulations, Exp-Htt affects the chromatin structure through altered post-translational
modifications (PTM) of histones and methylation of DNA. Multiple alterations of histone
PTM are described, including acetylation, methylation, ubiquitylation, polyamination, and
phosphorylation. Exp-Htt also affects the expression and regulation of non-coding microR-
NAs (miRNAs). First multiple neural miRNAs are controlled by REST, and dysregulated
in HD, with concomitant de-repression of downstream mRNA targets. Second, Exp-Htt
protein or RNA may also play a major role in the processing of miRNAs and hence patho-
genesis. These pleiotropic effects of Exp-Htt on gene expression may represent seminal
deleterious effects in the pathogenesis of HD.

Keywords: transcription, epigenetics, chromatin remodeling, histone modifications, REST, miRNAs

INTRODUCTION
Huntington’s disease (HD) is a dominantly inherited genetic dis-
order induced by an abnormal expansion of a CAG trinucleotide
repeat at the 5′ terminal part of the Huntingtin (Htt) gene leading
to a polyglutamine expansion in the Htt protein (1). It is the most
frequent genetic disease induced by a polyglutamine expansion
with a prevalence of three to seven for 100,000 persons. Individu-
als with 39 CAG repeats or more will develop the clinical symptoms
and signs of HD including neuropsychiatric, motor, and cognitive
abnormalities that cause a progressive loss of functional capac-
ity and shorten life span (2, 3). Intermediate alleles repetitions
(between 36 and 39 repeats) are usually associated with late onset
disease and may express a variable penetrance as the patient may
die before disease onset (4–6). HD has a well-defined neuropathol-
ogy, and informative pre-manifest predictive genetic testing. Brain
weight may be reduced by as much as 25–30% in advanced HD
cases. Gross pathology in HD is mainly observed in the brain,
with atrophy predominating in the caudate-putamen, and to a
lesser extent, the cerebral cortex. Furthermore, despite the early
expression of mutated Htt (Exp-Htt) in all neuronal cells the first

symptoms and neuropathological hallmarks appear at adulthood,
around 40–45 years old. The age of onset of the disease is con-
versely proportional to the number of CAG repeats in the affected
allele. Once the first symptoms have appeared, the disease pro-
gresses and leads progressively to death. As neuro-degeneration
progresses in the striatum, the severity of symptoms increases (2).
Magnetic resonance imaging (MRI) studies indicate that striatal
atrophy begins up to 15 years before predicted onset and con-
tinues through the period of manifest illness (7). Therefore, the
pre-symptomatic phase in HD provides a unique window for
therapeutic intervention and neuro-protection.

The clinical features of HD can be divided into three groups:
movement disorders, cognitive impairment, and psychiatric man-
ifestations [see Ref. (8) for review]. Chorea is the most char-
acteristic movement disorder of HD and is characterized by
brief, involuntary, abnormal movements, which appear unpre-
dictably in all the parts of the body. Cognitive impairment can
precede motor symptoms or occur during the course of the dis-
ease, and usually leads, in turn, to dementia. Neurobehavioral
symptoms include irritability, agitation, apathy, anxiety, social
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withdrawal, impulsiveness, alcohol abuse, obsessive-compulsive
disorder. Mood disorders are very frequent, including depression
and HD patients have a risk of suicide that is 10 times higher than
in the general population.

There is no cure for HD, although medication can be given
to help control the emotional and movement problems associated
with HD. While medicines may help keep clinical symptoms under
control, they are unable to stop or reverse the course of the disease.

Basic research has provided new insights into the complex cel-
lular and molecular alterations involved in the pathogenesis of HD.
The wild-type Htt is an ubiquitous protein, expressed in most cells
and within all cellular compartments (9). It is required for nor-
mal embryonic development, and Htt knock-out mice show early
lethality (E8,5) (10, 11). Furthermore, selective knock-down of
the Htt protein in neurons and testis produces apoptosis in these
tissues (12). Whether neuronal degeneration in HD is due to loss
of normal function of wild-type Htt, or gain of toxic functions of
Exp-Htt is still a debate. Expansion of polyglutamine in Htt leads
to protein aggregation (9), a mechanism thought to be primarily
involved in several neurological disorders caused by CAG repeats.
It still remains to be established whether the mutant Htt aggre-
gates are incidental, pathogenic, or neuroprotective. Expansion of
polyglutamine in Htt produces by itself multiple cellular dysfunc-
tions, including excitotoxicity, altered mitochondrial functions,
axonal transport deficit, altered proteasome activity, and gene dys-
regulation, that were extensively described in other reviews (8, 13).
Among these alterations, transcriptional dysregulation occurs at
early neuropathological stages in HD and seems to be seminal in
the neuropathological process.

TRANSCRIPTIONAL DYSREGULATION IN HD
Dysregulation of transcription was first described in HD brain
tissues at early neuropathological stages and then found in pre-
symptomatic HD transgenic mice. Expression of enkephalin, sub-
stance P, dopamine D1 and D2 receptor mRNAs were shown to
be altered in the caudate-putamen of HD patients in post mortem
tissue in the early grade using in situ hybridization (14). Subse-
quently, cDNA microarray performed on genetically engineered
HD mouse models allowed thousands of genes to be monitored,
and provided a global genomic view of striatal dysfunctions in
HD. From these analysis, neurotransmitter receptors, enzymes,
and proteins involved in neuron structure, stress response, and
axonal transport were found to be dysregulated (15–20). These
changes were reproducibly observed in various HD mouse models
and in the human HD caudate-putamen (19). Altogether these
observations strongly supported that changes in transcription
underlie neuro-degeneration rather than unspecific degradation
of all RNAs in affected neurons.

Importantly, more than 81% of striatal-enriched genes (genes
with higher relative expression in the striatum when compared
to other brain regions) are decreased in a HD mouse model and
in the caudate of HD patients (21). Down-regulation of novel
striatal-enriched genes involved in vesicle transport and traffick-
ing, tryptophan metabolism and neuroinflammation have also
been identified in both HD mouse striatum and caudate from
HD patients (22). Transcriptional dysregulation occurs in large
genomic regions, in a coordinated fashion and is associated with

disease progression. Hence genome-wide expression profiling of
the blood from HD patients revealed significant differences in
symptomatic patients (23) but not moderate-stage patients (20).
Thus, these biomarkers need to be further validated before their
widespread use in clinical trials.

PATHOGENIC INTERACTION OF Exp-HTT WITH NUCLEAR
PROTEINS
Huntingtin has multiple interacting partners, among which
are transcription factors or co-activators of the transcriptional
machinery, some of them exhibiting enhanced binding with Exp-
Htt, while a handful prefers binding with wild-type Htt (24, 25).
Due to its polyglutamine expansion, Exp-Htt abnormally inter-
acts with several proteins involved in transcription regulation.
These include the global transcriptional regulator TATA-binding
protein/TFIID (26), TAFII130, a co-activator involved in cAMP-
responsive element binding protein (CREB)-dependent transcrip-
tion (27). An abnormal interaction of Exp-Htt has also been shown
with specificity protein 1 (Sp1) (28), p53, CREB binding protein
(CBP) (29, 30), and nuclear receptor co-repressor (NCoR) (31).
The global consequence of these pathogenic interactions is a wide-
spread transcriptional dysregulation. Thus, overexpression of Sp1
and TAFII130 in cultured striatal cells reverses the transcriptional
inhibition of the dopamine D2 receptor gene caused by Exp-Htt,
and protects neurons from Exp-Htt-induced cellular toxicity (28).
Exp-Htt induces upregulation of p53 and its downstream targets,
Bax and Puma, both in vitro and in postmortem brains of HD
patients (32, 33). This results in mitochondrial membrane depo-
larization and decreased complex IV activity. p53 inhibition or
its genetic deletion ameliorates mitochondrial defects in HD cell
cultures (33).

CRE-regulated genes have been well described for their role in
neuronal survival (34) and impairment of CRE-dependent tran-
scription can account for the neurodegenerative process in HD.
One of the CRE-regulated genes that has been directly associated
with striatal neuro-degeneration is the peroxisome proliferator-
activated receptor co-activator-1α (PGC-1α), a transcriptional
co-activator that controls the expression of genes involved in mito-
chondrial biogenesis, respiration and glucose/fatty acid metabo-
lism (35). Exp-Htt is known to cause energy dysfunction that is
mainly related to mitochondrial abnormalities (36–38). Expres-
sion of PGC1-α is down-regulated in HD patients and HD mice
(39). This down-regulation is explained by an interference of
Exp-Htt with the CREB/TAF4-dependent transcriptional path-
way. Cross-breeding of Pgc-1α knock-out mice with HD knock-
in mice leads to increased degeneration of striatal neurons and
motor abnormalities in the HD mice, whereas lentiviral-mediated
overexpression induces neuro-protection. Decreased expression
of PGC1-α accounts for abnormal myelination in HD, since Exp-
Htt-induced down-regulation of PGC1-α in oligodendrocytes
leads to inhibition of genes involved in myelination (40). PGC1-
α can also control extrasynaptic NMDAR activity in neurons,
which contributes to excitotoxicity in HD (41). Suppression of
PGC1-α contributes to Exp-Htt-induced increase in extrasynaptic
NMDAR activity and vulnerability. Others key regulators of PGC-
1α, are Mitogen and Stressed-activated protein Kinase-1 (MSK-
1), and SIRT3. MSK-1 is a striatum-enriched nuclear protein
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kinase, targeted by the pro-survival Extracellular-signal Regulated
Kinase (ERK) signaling pathway. By regulating CREB phosphory-
lation, along with histone H3 phosphorylation, MSK-1 is directly
involved in the expression levels of PGC-1α, and as such protects
against Exp-Htt-induced striatal death in vitro and in vivo (42,
43) (see below). SIRT3 is one the seven mammalian homologs of
the sirtuin gene family. This mitochondrial deacetylase, initially
described in brown adipocytes, regulates mitochondrial functions
and thermogenesis (44). In response to exercise, SIRT3 con-
trols CREB phosphorylation and PGC-1α expression, via AMP-
activated protein kinase (AMPK) (45). Exp-Htt induces decreased
deacetylase activity of SIRT3 and further leads to reduction in
cellular NAD(+) levels and mitochondrial biogenesis in cells.
Viniferin, a natural compound that activates AMPK and enhances
mitochondrial biogenesis, is neuroprotective in HD cellular mod-
els, an effect that tightly depends on SIRT3 activity (46). Strikingly,
the sirtuin family members seem to be intimately linked to patho-
genesis in HD, since the NAD+-dependent deacetylase activity of
SIRT1 is also involved in the regulation of transcription in HD.
SIRT1 is a nuclear protein that normally controls CREB phospho-
rylation levels via TORC1 (Regulated transcription co-activator
1 (TORC1) activity (47, 48). By interacting with SIRT1, Exp-
Htt inhibits its deacetylase activity, and causes hyperacetylation
of TORC1. This results in a decrease of CREB-regulated genes,
including BDNF, and probably PGC1-α.

Altogether, these data strongly support that transcriptional dys-
regulation in HD plays a major role in mitochondrial dysfunctions
and energy metabolism deficit, two important hallmarks of the
pathology.

IMPAIRMENT OF CYTOSOLIC SEQUESTRATION OF REST
Wild-type Htt sequesters R element-1 silencing transcription fac-
tor (REST), a transcriptional repressor of neuronal survival fac-
tors, including brain-derived neurotrophic factor (BDNF). This
neurotrophic factor is expressed by cortical neurons, which project
to the striatum, and is critical for striatal survival. Interestingly,
both transcriptional regulation and axonal transport of BDNF
(49, 50) are altered in HD. Htt interacts with REST in the cyto-
plasm, and this interaction is impaired by Exp-Htt. Thus, increased
nuclear translocation of REST is observed in the presence of
Exp-Htt. Locally, REST exerts a potent inhibitory role on Bdnf
transcription and other neuronal genes (49, 51, 52). In this context,
the consequence of the loss of function of Htt is directly correlated
with HD pathogenesis. Expression level of BDNF is decreased in
the striatum of HD patients and in the cortex of HD mouse models
(49, 53, 54). Down-regulation of BDNF in the striatum specifically
worsens the HD phenotype, whereas elevating BDNF expression
in the forebrain alleviates it (54–58). The role of REST in HD may
not be restricted to the regulation of Bdnf transcription since sev-
eral REST targets are known to be dysregulated in HD (52, 58).
REST seems to have a widespread role on gene dysregulation in
HD, since it also controls non-coding RNAs (see below). In vivo
delivery of a dominant negative form of REST in the motor cor-
tex restores the expression of BDNF mRNA and protein along
with other REST-regulated genes in this region (59). Surprisingly,
despite this important effect on gene regulation, no therapeutic
effects were found in motor function in HD mouse models. These

data raised the question as to whether a more widespread rescue
of REST-regulated genes in the brain may be necessary.

CHROMATIN REMODELING IN HUNTINGTON’S DISEASE
Chromatin remodeling is an“above the genome” molecular mech-
anism, that gates DNA access, and hence transcription. It is crit-
ically controlled by post-translational modifications (PTM) of
histones (H2A and H2B, H3 and H4), a group of highly basic
proteins tightly linked to DNA. By modifying the electrostatic
interactions between the N-terminal domain of histones and DNA,
PTM of histones contribute to the chromatin structure, and access
of the transcriptional machinery to the DNA (60). In particular,
the methylation or acetylation state of histones is closely linked
to regions of transcriptional activity, by regulating transcription
factor access to promoter regions in the DNA.

The enzymes that catalyze histone acetylation are histone
acetyltransferases (HATs) whereas Histone Deacetylases (HDACs),
catalyze the reverse deacetylation reaction (60–62). By interact-
ing with CBP and p300/CBP-associated factor (P/CAF), Exp-Htt
blocks their intrinsic HAT activity (29, 30, 63, 64). This results in
a global reduction of histones H3 and H4 acetylation levels, along
with CBP-regulated gene transcription. Overexpression of CBP
reduces Exp-Htt-induced toxicity (30).

Determining experiments were performed to demonstrate that
HDAC inhibitors (HDACis), including SAHA, sodium butyrate, or
phenylbutyrate improved behavioral performance and increased
neuronal survival in several HD models (64–67). These data lead
to the general concept that HDACi could be a new therapeutic
avenue in HD. This concept is however weakened by the toxicity
of the aforementioned HDACi compounds at therapeutic doses.
Furthermore, it must be emphasized that the levels of acetylated
histones are not decreased globally in HD mouse models, but
rather selectively in the promoters of genes that are specifically
down-regulated in HD (68).

So far, HDACis act broadly on the HDAC family, which com-
prises 11 members divided into four classes: I (HDAC1, 2, 3 and 8),
IIa (HDAC4, 5, 7 and 9), IIb (HDAC6 and 10), and IV (HDAC11)
(69). Their relative toxicity can be due to either inhibition of a
pro-survival HDAC isoform, or low substrate specificity, a single
enzyme being capable of deacetylating multiple sites within his-
tones (60). Thus, it was postulated that inhibitors targeting one
specific HDAC might produce a better benefit to side effect ratio.

To unravel this issue, genetic invalidation of each single HDAC
was investigated in the R6/2 mouse model. These studies revealed
that reduction of Hdac3, 5, 6, 7, and 9 expression had no effect
on HD-related phenotype (70–72), whereas reduction of Hdac4
expression showed a significant beneficial effect (73). This raises
the interesting question as to whether specific HDAC4 inhibitors
may be more adapted for HD treatment, an issue that is now under
investigation (73).

Methylation of histones affects lysine and arginine residues and
is associated to either activation or repression of transcription,
depending on the modified residues. One of the proteins involved
in methyltransferase activity at histone H3 (K9) is ERG-associated
protein with SET domain (ESET). ESET expression is increased
in HD patients and R6/2 HD mice (74). Sp1 acts as a tran-
scriptional activator of the ESET promoter at guanosine-cytosine
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(GC)-rich DNA binding sites (75). Inhibiting Sp1 binding to these
sites using mitramycin (a clinically approved antitumor antibi-
otic) suppressed basal ESET promoter activity in a dose dependent
manner and lead to extended survival, enhanced motor perfor-
mance and improved brain histopathology in R6/2 mice (74).
Interestingly, the reduction of H3K9 hypermethylation induced
by mithramycin or chromomycin, is associated with an increased
acetylation of the same residue (76). On the other hand, the
beneficial effect of the HDACi phenylbutyrate in HD mice is
accompanied by an increase in H3 and H4 acetylation and a con-
comitant decrease in H3 methylation (67). These data illustrate
that a crosstalk between acetylation and methylation participates
to the nucleosomal dynamics, and that disequilibrium between
these two epigenetic marks can be corrected by the inhibition of
either deacetylation or methylation.

Monoubiquitylation of histones has also been implicated
in HD-related transcriptional dysregulation. This modification,
which involves E3-ubiquitin ligase complexes, affects lysine
residues of histone H2A (uH2A) and H2B (uH2B) and is associ-
ated to either activation or repression of transcription depending
on the modified residues. Exp-Htt expression alters the activity
of specific E3-ubiquitin ligases, and modifies uH2A and uH2B.
Knocking down the H2A E3-ubiquitin ligase reduces uH2A and
rescues transcriptional repression in Exp-Htt knock-in cells. In
contrast, knocking down the H2B E3-ubiquitin ligase induces
transcriptional repression in wild-type Htt knock-in cells (77).

Core histones can be post-translationally modified by trans-
glutaminases (TG), which catalyze transamidation of glutamine
residues. All four mammalian core histones, H2A, H2B, H3, and
H4, were shown to be glutaminyl substrates of TG2, a nuclear
TG, and their crosslinking contributes to chromatin condensa-
tion in vitro (78–80). Total TGs activity is elevated in brain
extracts from HD patients (81) and treatment of R6/2 mice with
a TG competitive inhibitor, cystamine, extends survival, reduces
tremor and abnormal movements and ameliorates weight loss in
these mice (82). Therefore, TGs were suggested to participate to
chromatin remodeling and gene expression dysregulation in HD.
McConoughey and colleagues showed that TG2 polyaminates H3
N-terminal tail which increases its positive charge and therefore its
propensity to more tightly interacts with DNA (83). TG2 occupies
the promoter/enhancer regions of two genes essential for energy
production, PGC1-α and cytochrome c, and a selective inhibi-
tion of TG2 in a HD striatal cell line corrects gene dysregulation.
Therefore TG2 inhibition has emerged as a HDAC-independent
epigenetic therapeutic strategy for HD.

Histone phosphorylation is mainly described as an activating
chromatin mark of gene activation. This PTM affects serine, threo-
nine and tyrosine residues. Histone phosphorylation is controlled
by the interplay between kinases and phosphatases that respec-
tively add and remove phosphate onto each of these residues.
Histone kinases phosphorylate the hydroxyl group of the tar-
geted amino-acid side chain therefore leading to a change of the
global charge of histones, a reduced interaction between histones
and DNA and a relaxation of chromatin (60). Phosphorylation of
H3S10 involves MSK-1 that was shown to be down-regulated in
HD cells, mice and patients (42). Restoration of MSK-1 expres-
sion in striatal neurons in vitro and in the lentiviral-based rat

model of HD protects against neuronal dysfunctions induced by
Exp-HTT (42, 43). In contrast, MSK-1 knock-out mice exhibit
spontaneous striatal atrophy when they age, and a higher sensitiv-
ity to the 3-nitropropionic acid (3NP),a mitochondrial neurotoxin
that induces selective degeneration of striatal neurons and HD-like
symptoms in humans, monkeys, and rodents (43). In addition to
its H3S10-kinase activity, MSK-1 phosphorylates, and activates
CREB, leading to the regulation of PGC-1 α, both in vitro and
in vivo (Figure 1).

In addition to histone PTMs, chromatin remodeling is con-
trolled by DNA methylation. A recent study showed that Exp-HTT
induces an extensive alteration of DNA methylation on a large pro-
portion of genes that change in expression in HD (84). The authors
of this study identified more specifically two transcriptional regu-
lators, AP-1 and Sox2, associated with DNA methylation changes.
Since these epigenetic changes are more stable, this could explain
the long-term modifications of gene expression in HD.

HD AND miRNAs
About 98% of human transcribed genome is dedicated to non-
protein-coding RNAs (NcRNAs) genes, with regulatory properties
on gene expression. Among ncRNAs, microRNAs (miRNAs) are
21–23 nucleotide RNA molecules that regulate gene expression
by promoting either degradation or translational-inhibition of
target mRNAs (85). The miRNA pathway starts in the nucleus
with the RNA polymerase II-mediated transcription of primary
(pri-miRNAs) hairpins, which are cleaved into precursor of miR-
NAs (pre-miRNAs) by the nuclear proteins Drosha and DiGe-
orge syndrome critical region 8 (DGRC8) (86, 87). Pri-miRNAs
are then transported to the cytoplasm (88, 89) and processed
into 22nt duplex mature miRNAs by the RNAseIII Dicer (90),
which is then assembled into the RNA-induced silencing com-
plex (RISC) with the protein Argonaute (Ago) (91). MiRNAs
suppress post-transcriptional expression of genes by guiding
RISC interaction with their specific sequence motifs within the
3′untranslated region (3′UTR). This results in either degradation
or translational-inhibition of the target mRNAs (92–95).

Many miRNAs are selectively and abundantly expressed in the
CNS where they play key roles in the elaboration of the neu-
ronal transcriptome (96) and seem to be important mediators
of plasticity (97). MiRNA dysregulation has been associated with
several human disorders of the CNS. The first evidence came from
studies showing that Dicer or DGCR8 ablation impairs neuronal
differentiation, produces synaptic dysfunctions, disturbs axonal
path-findings, and induces neuro-degeneration, suggesting that
miRNAs play important roles in neurological disorders (98, 99).
Evidence of miRNA dysregulation in HD exists. Two different and
complementary aspects of this dysregulation arise from the recent
literature. First, there is now increasing evidence that multiple
neural miRNAs are decreased in HD neurons, with concomitant
de-repression of downstream target mRNAs (58, 100–102). Sec-
ond, several elegant studies demonstrate that Exp-HTT protein
(103) or RNA (104) may play a major role in the processing of
miRNAs and hence pathogenesis.

Using an in silico approach, the group of Cataneo identified
17 miRNA genes as likely targets of REST (58) (Figure 2). The
regulation of these miRNAs by REST was evaluated in embryonic
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FIGURE 1 | Illustration of a signaling pathway involved in histone
PTMs in HD. Under normal conditions, activation of nuclear MSK-1
induces phosphorylation of (1) histone H3 and (2) the transcriptional
factor CREB. Phosphorylated CREB recruits CBP, and activates its
histone acetyl transferase (HAT) properties. Post-translational
modifications (PTM) of histones (phosphorylation, acetylation) lead to
modification of chromatin structure from heterochromatin to

euchromatin, which allows gene transcription to occur. One of the key
genes regulated by CREB is PGC1α, a crucial gene involved for the
regulation of mitochondrial and metabolic functions. In Huntington’s
disease, Exp-Htt expression results on (1) down-regulation of MSK-1
expression and (2) sequestration of CREB and CBP within Exp-Htt
aggregates. Therefore, the heterochromatin structure is favored, a
structure that impairs transcription of CREB target genes.

striatal cell lines, and mir-29a, mir-124a, mir-132, and mir-135b
were shown to be significantly upregulated upon loss of REST
function and in the cortex of 12-week-old R6/2 mice. In humans,
mir-132 expression level is significantly lower in HD samples com-
pared to control. In contrast, mir-29a and mir-330 expression
is significantly higher in HD samples. Packer et al. (102) used
a screen of predicted REST-regulated miRNAs from HD patient
brain samples, and found significant decreases of miR-9, miR-
9*, and miR-29b as well as a significant increase of miR-132 at
late stages. They also found that the bi-functional brain enriched
miR-9/miR-9* targets two components of the REST complex: miR-
9 targets REST and miR-9* targets CoREST. A characterization
of miRNAs profiling and sequence modification was performed
by Illumina sequencing in the frontal cortex and the striatum. It
showed a strong deregulation of miRNA and IsomiRs (miRNAs
containing length and sequence heterogeneity) in HD, most being

common to both frontal cortex and striatum (105). Of interest, the
co-regulated miRNAs contained regulatory sequences for REST
and p53, suggesting a key role of these genes in down-regulation
of gene expression in HD. Profiling of miRNAs expression was also
performed in the YAC128 and R6/2 mice, showing that nine miR-
NAs (miR-22, miR-29c, miR-128, miR-132, miR-138, miR-218,
miR-222, miR-344, and miR-674*) are commonly down-regulated
in 12-month-old YAC128 mice and 10-week-old R6/2 mice (100).
Concomitantly, the expression of Dicer is decreased at the late
stages in these two mouse lines, indicating that miRNA biogenesis
is altered in HD. More recently, Soldati and collegues, found the
same results in HD cell lines (101). Rescuing miR-22 expression
in in vitro HD models, protected against Exp-Htt-induced neu-
rotoxicity (106). Very recently, miR-196a was shown to reduce
the expression of Exp-HTT in vitro, and to improve molecu-
lar, pathological, and behavioral phenotypes in a HD transgenic
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FIGURE 2 | REST-mediated gene repression is favored in HD. Wild-Type Htt
interacts with REST, a transcriptional repressor, within the cytoplasm. This
leads to de-repression of REST target genes like BDNF or non-coding
miRNAs, which are essential for neuronal survival, neuronal plasticity or

dendrites growth. Expansion of Htt disrupts its binding with REST and
facilitates nuclear entry of REST along with the formation of the repressor
complex on the RE1 site. Activation of RE1 site results on target gene
silencing and participates to neuro-degeneration.

mouse model (107). Of importance, miR-196a ameliorated the
formation of aggregates in iPSC (inducible Pluripotent Stem Cells)
from HD patients, when differentiated in the neuronal stage. The
down-regulation of Exp-HTT by miR-196a is of prime impor-
tance, since it forms the bases of new strategies for allele-specific
silencing in HD. miR-196a did not regulate Exp-Htt levels directly,
but rather indirectly, probably through the regulation of the
ubiquitin-proteasome system, gliosis, and the CREB pathway.

Additionally, HTT has a more direct role in post-transcriptional
gene silencing by miRNAs. An elegant study from Naoko Tanese’s
group (103) has shown that HTT itself contributes to RNA-
mediated gene silencing through its association with Ago in
Processing bodies (P-bodies). Mouse striatal cells expressing Exp-
Htt showed fewer P-bodies and reduced reporter gene silenc-
ing activity compared to wild-type. More recently, a pathogenic
role of the Exp-HTT RNA was provided (104). The authors
showed that Exp-HTT mRNA generates small CAG-repeated
RNAs (sCAGs) having a neurotoxic activity. This toxic effect

was dependent on Dicer and Ago proteins, as they were inhib-
ited by their knock-down. They thus provide the first demon-
stration that these sCAGs generated by Exp-HTT may con-
tribute significantly to the neuro-degeneration pattern observed
in HD.

CONCLUSION
Most of the cellular dysfunctions in HD are due to alterations of
gene expression: from mitochondrial dysfunctions and metabo-
lism energy deficit, to excitotoxicity. Furthermore, dysregulation of
transcription is a widespread, reproducible, and early event in the
pathogenic process of HD. Therefore, new therapeutic approaches
targeting transcription factors, chromatin remodeling, or miRNAs
can be proposed. Obviously targeting signaling pathways that con-
trol expression levels of the trophic factor BDNF or the mitochon-
drial gene PGC1-α will provide interesting perspective. Targeting
the REST transcriptional repressor, CREB, or Sirtuins remain
interesting strategies. Although therapeutic trials, including safety
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and tolerability studies, with the global HDACi, phenylbutyrate,
have been conducted in patients, these compounds remain highly
unspecific, since they act on multiple classes of HDACs, hence
on numerous non-selected genes and sometimes non-nuclear tar-
gets. Alternative approaches could be to design compounds that
target more specifically one type of HDAC, for example HDAC4 –
an issue that is under investigation – or to target other PTMs of
histones (including phosphorylation, methylation, ubiquitylation,
or polyamination), each PTM targeted alone, or in combination.

It was recently discovered that non-coding RNAs are dysregulated
in HD. Because one miRNA can target multiple pathways, this
suggests that miRNAs could have pleiotropic, widespread effects
on HD pathogenesis. An elegant demonstration of this assump-
tion was recently made both in vitro and in vivo, using miR-196a,
including in IPSC from HD patients. One important finding in
this regard was that Exp-HTT itself was down-regulated by miR-
196a. Therefore, a new and fascinating therapeutic avenue is now
offered with miRNAs in HD.
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