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In a companion paper (1), we used computer simulations to show that a strategy of activity-
dependent, on-line net synaptic potentiation during wake, followed by off-line synaptic
depression during sleep, can provide a parsimonious account for several memory benefits
of sleep at the systems level, including the consolidation of procedural and declarative
memories, gist extraction, and integration of new with old memories. In this paper, we
consider the theoretical benefits of this two-step process at the single-neuron level and
employ the theoretical notion of Matching between brain and environment to measure
how this process increases the ability of the neuron to capture regularities in the environ-
ment and model them internally. We show that down-selection during sleep is beneficial
for increasing or restoring Matching after learning, after integrating new with old mem-
ories, and after forgetting irrelevant material. By contrast, alternative schemes, such as
additional potentiation in wake, potentiation in sleep, or synaptic renormalization in wake,
decrease Matching. We also argue that, by selecting appropriate loops through the brain
that tie feedforward synapses with feedback ones in the same dendritic domain, different
subsets of neurons can learn to specialize for different contingencies and form sequences
of nested perception-action loops. By potentiating such loops when interacting with the
environment in wake, and depressing them when disconnected from the environment in
sleep, neurons can learn to match the long-term statistical structure of the environment
while avoiding spurious modes of functioning and catastrophic interference. Finally, such a
two-step process has the additional benefit of desaturating the neuron’s ability to learn and
of maintaining cellular homeostasis.Thus, sleep-dependent synaptic renormalization offers
a parsimonious account for both cellular and systems level effects of sleep on learning and
memory.

Keywords: neurons, plasticity and learning, sleep, homeostatic regulation, information

1. INTRODUCTION
In a companion paper (1), we showed with simulations of sim-
ple neuronal systems that an activity-dependent mechanism of
synaptic potentiation in wake and off-line depression in sleep can
account for several benefits of sleep on memory. At the systems
level, these benefits include the consolidation of procedural and
declarative memories, gist extraction, and the integration of new
with old memories.

In this paper, we consider the benefits of this two-step activity-
dependent process of synaptic potentiation in wake and off-line
depression in sleep at the level of the single neuron. We start from
the fundamental energy constraint that neurons should reserve
firing for rare events and use not firing as a default state. As argued
elsewhere (2–5), this asymmetry forces neurons to communicate
important events by firing more, rather than less. In turn, this leads
to the requirement that, during wake, suspicious coincidences, pre-
sumably originating from the environment, should be learned by
strengthening, rather than weakening, connections. As in Nere
et al. (1), we assume that neural circuits learn to both capture

and model the statistical structure of the environment, which can
be done by strengthening clusters of feedforward and feedback
connections in the same dendritic domain.

However, if left unchecked, the progressive increase in synaptic
strength imposed by the requirement of plasticity in a changing
world can lead to negative consequences. These include captur-
ing and modeling spurious (noisy) coincidences picked up from
the environment, leading to progressive interference. Moreover,
the selectivity of neuronal responses to suspicious coincidences
decreases, along with response specificity of different subsets of
neurons. Also, a neuron’s ability to learn new coincidences soon
becomes saturated, and there are major consequences on cel-
lular homeostasis. For these reasons, as argued by the synaptic
homeostasis hypothesis (SHY) of sleep function (2–4), neurons
need periods in which they are disconnected from the environ-
ment (off-line) and can undergo an activity-dependent process of
synaptic down-selection. As illustrated in the companion paper
(1), one way to do so is for neurons to reduce synaptic strength
in an activity-dependent manner during sleep. In this process,
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

strongly activated clusters of feedforward and feedback synapses,
presumably reflecting regularities in the environment that fit well
with previously acquired knowledge, can be protected. By contrast,
weakly activated clusters of synapses, presumably reflecting spuri-
ous (noisy) coincidences that fit less with old memories, whether
picked up from the environment or internally generated, can be
down-selected. In this way, response selectivity and specificity
are restored, learning ability is desaturated, and cellular stress is
reduced.

To illustrate the benefits of this two-step process of potentiation
in wake and down-selection in sleep in a principled manner, we
make use of the notion of Matching between a system and its envi-
ronment (6–8), which reflects how well a neural system captures
the statistical structure of its environment (deviations from inde-
pendence, i.e., suspicious coincidences) and models it internally.
Using simple examples, we show that on-line synaptic potenti-
ation in the wake phase, followed by off-line activity-dependent
down-selection during sleep can ensure high levels of Matching.
We also argue that, by a proper arrangement of connections in dif-
ferent dendritic compartments, different subsets of neurons can
learn to specialize for different suspicious coincidences and form
sequences of nested perception-action loops. By systematically
potentiating such loops when interacting with the environment
in wake, and depressing them during sleep when disconnected
from the environment, neurons can learn to match the long-term
statistical structure of the environment while avoiding spurious
modes of functioning and catastrophic interference.

2. MATERIALS AND METHODS
In this paper, we perform simulations at the level of a single
integrate-and-fire neuron. In the sections below, we describe the
neuron model, potentiation and down-selection mechanisms, the
input distributions to the modeled neurons, and the measure of
Matching.

2.1. NEURON MODEL
As in the companion paper (1), we assume a simple integrate-
and-fire neuron model with binary outputs. Similarly, the synaptic
inputs to the integrate-and-fire neurons are organized into den-
dritic compartments, composed of one feedforward and one feed-
back synapse each. This neuron model was chosen such that our
simulations would capture the constraint of requiring both feed-
forward and feedback activations to trigger synaptic plasticity. We
note that these choices for the neuron and synapse models make a
number of broad simplifications. However, in the context of this
work, simple models are chosen to explicitly focus our investiga-
tion on the role of a two-step learning process on the formation
and modification of memories in neuron-like elements. In future
work, we plan to extend this analysis to models of higher biological
fidelity.

In Figure 1, we see two examples (“uniform” neuron on the left,
“specialized”neuron on the right) of the neuron model used in this
paper, with six dendritic domains, each outlined in gray. In the
figure, dark blue connections indicate feedforward connections,
i.e., those activated ultimately by inputs from the environment
(synapses A–F). Light blue indicates feedback connections, i.e.,
those activated primarily by inputs generated from higher levels
within the brain (synapses A′–F′). In this paper, the probability of
a neuron x firing for a particular input y, p(x = 1|y), is a sigmoid
function of the synaptic weights W and of the ON (1) or OFF (0)
state of its inputs yj:

p(x = 1|y) = 1− e−z4
/4 (1)

z =
J∑

j=1

Wj yj (2)

J is the number of inputs to a neuron (here, dendritic domains).
The inset illustrates the behavior of this sigmoid. As the neuron

FIGURE 1 | “Uniform” and “specialized” neurons and their parameters. The neuron on the left shows “uniform” synapses, while the neuron on the right
has become “specialized” for coincident inputs on synapses A/A′ and B/B′. The inset shows the sigmoid firing probability of modeled neurons.
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

has only two possible outputs (1 or 0) the probability that a neuron
does not fire given the input is simply p(x = 0|y)= 1− p(x = 1|y).

2.2. CONSTRAINTS ON ACTIVITY AND PLASTICITY
To take into account the energy constraint that firing is more
expensive than not firing (9), in the following analysis we assume
that a neuron can afford to fire approximately 10% of the time
[p(x= 1|= 0.1)], meaning that firing is sparse (Figure 1). Though
the output firing rate of the neuron changes during the exper-
iments described below, the firing rate on any input synapse is
constrained to exactly 10%. Furthermore,neurons necessarily have
cell-biological constraints over both the maximum strength of a
single synapse, as well as the total amount of synaptic strength
distributed over its synapses (Figure 1). In the following analy-
sis, to keep the examples and computations as simple as possible,
we consider only 6feedforward (primarily AMPA) and 6feedback
connections (primarily NMDA, see Nere et al. (1)), and impose
limits on individual and total synaptic strengths: each individual
synaptic weight is limited to the range [0, 1]; total synaptic weight
at baseline (after synaptic down-selection in sleep) is limited to
the range [3.03, 3.71] (±10% of the optimal total synaptic weight
for the initial example of Figure 5A, as will be described below);
total synaptic weight after training is allowed to increase by 25%
over baseline, resulting in a range of [3.79, 4.64], as suggested
by molecular and electrophysiological data (10). In Figure 1, the
schematic neuron on the left has uniform connection strength
at all synapses, whereas the neuron on the right has two strong
synapses (A and B) and four weak ones, for the same total synaptic
weight.

2.3. PLASTICITY MECHANISMS IN WAKE
As described in the companion paper (1), during wake a mod-
eled neuron potentiates its synapses within a dendritic domain

dependent on the following conditions: strong feedforward firing,
relayed by driving primarily AMPA connections; strong feedback
firing, relayed by modulatory, primarily NMDA connections (11);
strong firing of the neuron itself, suggesting that it has received
strong, coincident firing on its inputs; and high levels of global
neuromodulators (12, 13), gating learning in wake to salient inter-
actions with the environment (Figure 2A). In the present simula-
tions, although the sigmoid activation function introduces some
indeterminism, a neuron is more likely to fire the more of its input
synapses convey spikes simultaneously, i.e., when they detect suspi-
cious coincidences. Under the constraint of sparse firing mandated
by energy constraints, such suspicious coincidences reflect the
occurrence of events that happen more frequently than expected
by chance, which here are assumed to be due to the causal struc-
ture of the environment (14). Coincident firing is also required
between feedforward and feedback inputs. Such coincidences, if
they occur when the neuron fires, suggest the closure of a loop
between input and output in which the neuron may have played a
causal role. It also indicates that the feedforward suspicious coin-
cidences the neuron has captured, presumably originating in the
environment, can be matched internally by feedback coincidences
generated higher-up in the brain (7). The “specialized” neuron
from the right panel of Figure 1 is shown again in Figure 4B to
demonstrate this causal loop. The neuron receives feedforward
activations from a lower area neuron, shown in dark blue, and in
turn is activated. This activation propagates to higher area neu-
rons, shown in light blue. The dashed connections to and from the
higher area neurons indicate that several neural levels may interact
before the top-down activations return to the “specialized” neu-
ron, closing the loop. On the other hand, the “uniform” neuron
of Figure 4A, due to its weak connections on A and B, will not
reliably activate for this suspicious coincidence, and the loop may
not close.

FIGURE 2 | Synaptic potentiation in wake and down-selection in sleep.
(A) During wake, plasticity is dominated by potentiation. Synapses are
potentiated when a neuron receives persistent feedforward activation and
longer timescale feedback activations on the same dendritic domain, the
neuron itself exhibits strong activation, and global neuromodulators are
present. The orange box indicates the dendritic domain which meets these
requirements for LTP. Conversely, the gray box indicates a dendritic domain

which is missing feedback activity, so either no change happens or LTD is
induced. (B) In sleep, global neuromodulators are largely absent. The
synapses in a dendritic domain are protected when the neuron is strongly
activated by matching feedforward and feedback activations (gray box, left
dendritic domain). Conversely, LTD occurs when a neuron fires but its
feedforward and feedback are mismatched within a dendritic domain (purple
box, right dendritic domain).
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Here, to simplify the analysis and focus on a single neuron,
unlike in the companion paper (1), complex feedback loops are
not modeled explicitly. Instead, we assume that the output of the
neuron feeds back upon itself through feedback connections. For-
mally, if a neuron spikes because it received strong activations on
its feedforward and feedback synapses within the same dendritic
domain, then the weight corresponding to a synapse i within the
active dendritic domain is potentiated using the following rule:

Wi =

{
Wi + α, ifyFF

i = 1 and yDomain > 0

Wi , otherwise
(3)

yDomain =

M∑
m=1

yFF
m

N∑
n=1

yFB
n (4)

That is, if a neuron spikes, then for each of its dendritic domains
that receive both feedforward and feedback activations, the active
synapses are incremented byα. M and N are the number of feedfor-
ward and feedback synapses within the domain, respectively. For
the present simulations, the value of α is set to 0.01. For simplicity,
global neuromodulators are assumed to be high throughout learn-
ing in wake, resulting in net potentiation, in line with experimental
results (12, 13).

2.4. DOWN-SELECTION MECHANISMS DURING SLEEP
As in the companion paper (1), synaptic potentiation in wake
is balanced by synaptic down-selection during sleep, triggered
by low level of global neuromodulators (12, 13). More specifi-
cally, when a neuron fires in sleep, it depresses the synapses in
the dendritic domains where feedforward and feedback activa-
tions are mismatched, and it protects the dendritic domains where
feedforward and feedback activations are matched. As illustrated
schematically in Figure 2B, when during sleep a neuron detects
suspicious coincidences, rather than potentiating the correspond-
ing synapses, it “protects” them from depression. By contrast,
synapses that are activated in isolation are not protected and thus
depress progressively in the course of sleep.

As with the potentiation mechanisms for wake described above,
down-selection in sleep is assumed to be confined to dendritic
domains as well. Formally, when neuron spikes during sleep, but
receives either only feedforward spikes or only feedback spikes on
synapses within a dendritic domain, it depresses a synapse i in a
non-active dendritic domain according to the following rule:

Wi =

{
Wi − β, ifyFF

i = 1 and yDomain = 0

Wi , otherwise
(5)

That is, if a neuron spikes and has either received feedforward
without feedback or feedback without feedforward activations on
synapses within a dendritic domain, the active synapses in that
domain are depressed by β. For our simulations, the value of β
is set to be 0.001. As with the potentiation rate β, the depression
rate β was selected empirically during computer simulations. We
note that for the given constraints of our experiments (i.e., input
firing rates, number of connections, simulation times, etc.) a fairly
broad range of values for α (0.01–0.1) and β (0.001–0.1) behaved
similarly.

2.5. INPUT DISTRIBUTIONS IN WAKE AND SLEEP
To evaluate the extent by which activity-dependent synaptic poten-
tiation in wake and depression in sleep can account for several
benefits of sleep on memory, the synapses of the two neurons
shown in Figure 1 are activated with various input distributions.
A representative example of such a distribution is described here.
To restrict modeling to a single neuron, we assume that the feed-
forward input on synapse A, originating from the environment,
coincide with the feedback input on synapse A′, originating in
higher areas, within the same compartment (as demonstrated by
the closed loop of the“specialized” neuron in Figure 1). Therefore,
the number of possible input patterns over the 6compartments
effectively reduces to 26

= 64.
In Figure 3A, the blue bars show the input distribution corre-

sponding to independence among the 6 inputs, where every input
fires 10% of the time, reflecting the energy constraint of sparse
firing. Under independence (Chance condition), coincidences of
firing occur purely by chance (spurious coincidences), with pro-
gressively lower frequency for inputs that contain more spikes
(i.e., the number of 1s in the input). Thus, more than 50% of
input patterns are 000000; coincidences of two input spikes (e.g.,
110000) occur 1/10*1/10= 1% of the time, while the input pat-
tern 111111 occurs 0.0001% of the time. In Figure 3A, the red
bars show the input distribution for the World, which has a non-
random statistical structure. In this World(AB), inputs A and B
are 90% correlated, and hence fire together 9% of the time (sus-
picious coincidences). For the present purposes, the same input
distribution is assumed to be generated internally during sleep
(Sleep).

In Figure 3B, the blue bars show the difference in received
spikes when the neuron is exposed to World(AB) as compared to
when it is exposed to Chance. For example, input pattern 110000
(A and B both ON ) occurs more often than would be expected
by chance, whereas other input patterns, such as 100000 (A) occur
less frequently than expected by chance (since most inputs on A
are correlated with the input on B).

As argued in the companion paper (1), neurons should pay
particular attention to suspicious coincidences of firing, which
here correspond to two or more synchronous input spikes. These
suspicious coincidences of firing are illustrated by the red bars in
Figure 3B.

In Figure 3C, the blue bars show the cause repertoire for the
“uniform” neuron in Figure 1 (left panel) when it is firing, i.e.,
the probability with which each possible input state could have
made it fire (the probability of not firing is simply the comple-
ment to 1). Note that, consistent with the fact that the “uniform”
neuron of Figure 1 has synapses which are all the same weight,
the cause repertoire indicates that, irrespective of which partic-
ular input spikes, input patterns with just one input spiking are
not likely causes of the target neuron firing, and that the prob-
ability of causing the neuron to fire increases with the number
of synapses carrying spikes, saturating at about four coincident
spikes. The red bars show the cause repertoire for the “special-
ized” neuron in Figure 1 (right panel). Note that input states
with A and B firing are more likely causes of the specialized
neuron firing, in line with the stronger connections on lines A
and B.
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

FIGURE 3 | Distributions of the “uniform” and “specialized”
neurons. (A) Probability of occurrence of each of the 64 input states.
Chance (Blue) corresponds to the distribution where each input is
equally likely and is active 10% of the time, World (Red) corresponds to
the distribution where inputs A and B co-occur 9% of the time and all the
inputs get active 10% of the time. (B) Suspicious coincidences present
in the input distributions. All possible suspicious coincidences are shown
in blue while positive only suspicious coincidences corresponding to two

or more active inputs are shown in red. (C) Cause repertoires
corresponding to the “uniform” and “specialized” neurons.
(D) “Uniform” neuron’s firing probabilities in response to the Chance and
World input distributions. (E) “Uniform” neuron’s capture (Red)
compared against the suspicious coincidences (Blue). (F) “Specialized”
neuron’s firing probabilities in response to the Chance and World input
distributions. (G) “Specialized” neuron’s capture (Red) compared against
the suspicious coincidences (Blue).
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In Figure 3D, the blue bars show the observed probability of fir-
ing for the “uniform” neuron of Figure 1 (left panel) in the Chance
condition. For each input pattern, this is the joint (product) proba-
bility of that particular input and that of the neuron firing (x = 1)
for that input. The red bars show the same for World(AB) con-
dition. Clearly, the neuron is more likely to fire for input pairs
that occur more frequently than expected by Chance(AB), but
that is merely a reflection of their increased frequency of occur-
rence, not of the neuron being selective for those pairs. In fact,
as shown in Figure 3E, the neuron’s increased firing for suspi-
cious coincidences (in red) is not proportional to their occurrence
(in blue).

Compare this with the “specialized” neuron in Figure 1 (right
panel), whose connections have been selected to detect suspicious
coincidences in World(AB) by increasing the weight of connec-
tions A/A′ and B/B′. As shown by Figure 3C (red bars), the
specialized neuron is more likely than the “uniform” neuron to fire
for coincident inputs on A and B. As a consequence, its observed
probability of firing for input patterns AB in the World condi-
tion is much higher than for the neuron with uniform synaptic
weights (Figure 3F). In fact, as shown in Figure 3G, the neu-
ron’s increased firing for suspicious coincidences (in red) captures
almost perfectly their frequency of occurrence (in blue).

2.6. MATCHING
Measures of Matching aim at quantifying how well the informa-
tional/causal structure of a system “resonates” with that of its
environment (6–8). The informational/causal structure of a sys-
tem of elements is obtained by considering the set of concepts
generated by subsets of elements within the system (7). A con-
cept is the distribution of irreducible causes and effects (cause
and effect repertoires) specified by each subset of elements in
a state (7). When considering just one neuron, e.g., the “spe-
cialized” neuron from Figure 1 (right panel), there is only the
subset corresponding to that neuron, whose cause repertoire is
shown in Figure 3C (red bars, when the neuron is firing; their
complement to 1, when it is silent). Each concept is associated
with a value of integrated information (φ), which indicates to
what extent the concept cannot be reduced to independent sub-
concepts by partitions of the subset and their causes/effects, as
measured by distance D, weighted by φ (e.g., Wasserstein’s met-
ric (7)). By this definition, φ is higher when the neuron is firing,
reflecting the greater selectivity of the causes of firing than of
silence (5). The set of concepts specified by all subsets of ele-
ments of a system specify a constellation C of points in concept
space, where each axis is a different state of the system. A con-
stellation also has an associated value of integrated information
(8), which indicates to what extent it cannot be reduced to inde-
pendent sub-constellations (by partitions of the system, measured
again by distance D, weighted by8 (7)). Conveniently, for the sin-
gle neuron considered here the constellation of concepts reduces
to a single point of weight φ, and since a point is irreducible, in
this case8=φ.

When a system interacts with its environment (World condi-
tion), over time it will specify a set of constellations C, each with
an associated value of integrated information 8. In turn, each
constellation in the set can be thought of as specifying a point of

weight8 in constellation space (where each axis is a different con-
cept specified within the system). Finally, Matching can be defined
as the weighted distance D between the set of constellations (C)
specified when the system is exposed to World and to Noise, i.e., to
a structureless environment that by definition cannot be matched
(here, the Chance condition):

Matching(M ) = D[C(World), C(Noise)] (6)

where D is a distance measure weighted by8. Again, for the single
neuron in Figure 1 (right), the set of constellations reduces con-
veniently to just two points, one for firing and one for silence. In
general, Matching will be high if a system’s response to different
inputs sampled from World is both highly differentiated (many
different constellations) and integrated (each of high8), whereas
its response to inputs sampled from Noise is not. Thus, one would
expect that a complex system such as the brain, when exposed
to a World which it is attuned to (e.g., a movie), will enter dif-
ferent states for different inputs, each activating many different
concepts. In this way, it will specify a set C (World) comprised
of many different constellations (indicating high differentiation),
each of high 8 (indicating high integration). By contrast, when
exposed to noise (e.g., a TV screen out of tune), it will enter a
small number of states (in the limit, just one state), activating very
few concepts. It will thus specify a set C (Noise) comprised of few
similar constellations of low 8. Under the assumption that a sys-
tem is integrated and that similar system states generate similar
constellations of concepts, Matching can be approximated more
conveniently as the distance D, not between sets of constellations,
but between the distributions of system states S, when the system
is exposed to World and to Noise (7):

Matching(M) = D[S(World), S(Noise)] (7)

Estimating this distance for realistic systems requires many sim-
plifying assumptions and computational approximations (Boly et
al., in preparation; Albantakis et al., in preparation). However, due
to the choice of a single integrate-and-fire neuron for the present
simulations, measuring Matching becomes straightforward: since
there is only one neuron with two states, Matching becomes sim-
ply a function of the difference between the distribution of firing
and silence in the World and Chance conditions. The more these
two distributions differ, i.e., the more the neuron fires for World
compared to Chance, the higher the value of Matching. In what
follows, this measure of Matching will be used to evaluate quanti-
tatively how well the neuron’s connection weights “resonate” with
its environment before learning, after learning in wake, and after
down-selection in sleep, as well as to compare down-selection to
other plasticity strategies.

Figure 4 shows the statistical structure of a particular environ-
ment (World(AB)), firing rates in the World, Chance, and Sleep
condition, and values of Matching for both the “uniform” neuron
(all connections of equal strength) and the “specialized” neuron
(stronger connections on synapses A/A′ and B/B′). In World(AB),
suspicious coincidences (synchronous firing above what would
be expected by chance) occur on input lines A and B, as indi-
cated in Figure 4. The “uniform” neuron in Figure 4A, having
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FIGURE 4 | Comparing the “uniform” and “specialized” neurons. Both the
“uniform” (A) and the “specialized” neurons (shown in black) are embedded
in closed loops. Feedforward connections, ultimately generated by the
outside world, are indicated by dark blue, while feedback connections,
ultimately generated by higher brain areas, are indicated by light blue. The
World has a Long-Term statistical structure (dashed red boxes) and a Training
input for a particular day (solid red boxes). (A) The “uniform” neuron is not
adapted for coincident inputs AB. As a result, it may not fire for the inputs AB,

and thus will not see corresponding feedback on connections A′ and B′.
Matching for the “uniform” neuron is low. (B) Conversely, the “specialized”
neuron is adapted to the coincident inputs AB, fires reliably when they are
active, and receives corresponding feedback on connections A′ and B′ (as
shown by the red Training box on its light blue connections). Furthermore, in
Sleep, coincident activations corresponding to these strong connections will
be much higher than by chance (9% of the time, as indicated by the green
box on the right). Matching for the “specialized” neuron is high.

the same weight (0.56) on all forward connections, has no way of
sampling preferentially the suspicious coincidences in World(AB)
(see Figure 3). As a consequence, the neuron fires at a rate of
7.3%, which is not much higher than the rate when input patterns
occur at chance (5.5%). Since we assume that feedback connec-
tions mirror feedforward ones and are thus uniform in weight, the
neuron also has no way of modeling the increased frequency of
occurrence of AB firing. In this case, calculating Matching yields
0.018. Note that the value of Matching for the “uniform” neuron
is low but non-zero because the sigmoid function is tuned in such
a way (Figure 1, inset) that the probability of firing rises sharply
(inflection point) around a total synaptic input of 1.2, and any
two active synapses for the “uniform” neuron sum to 1.12 (total
weight of two synapses= 0.56+ 0.56= 1.12). Two synapses being
co-active happen more frequently in the World(AB) than in the
Chance condition, so firing is higher with World(AB). However,
since the “uniform” neuron has not allocated synaptic strength
preferentially to connections A and B, the probability of firing
for that suspicious coincidences is just around 0.5 (and not any
higher).

By contrast, the “specialized” neuron in Figure 4B has allocated
higher synaptic weight (1.0) to connections A and B, for a total
synaptic weight of 2.0. Based on the sigmoid function governing
firing, when these two synapses are active, the neuron will fire with
probability near 1. Therefore, whenever inputs A and B co-occur,
the “specialized” neuron is virtually certain to fire, leading to a
high firing rate with World(AB). Inevitably, due to increased total
synaptic weight on these two synapses, the firing rate under Chance

will also be higher. However, crucially, the resulting increase in fir-
ing rate is much more likely to occur with World(AB) than with
Chance, and thus Matching is higher for the “specialized” neu-
ron (0.023). These simple examples illustrate that Matching can
be used to evaluate to what extent a system’s architecture (here,
the weight of the synapses on a single neuron) can sample the
statistical structure of its environment as well as model it. Below,
Matching will be employed to measure how learning by poten-
tiation in wake, followed by down-selection in sleep, can benefit
memory consolidation,and how alternative schemes may not work
as well.

We note here that, in the following experiments, an“ideal”value
for Matching is not defined. Primarily, this is because the value of
Matching, as defined in this paper, is determined by the differ-
ence between a neuron’s response to a set of coincidences (World)
and noise (Chance) within the context of the chosen simulation
constraints (i.e., total synaptic weight, maximum synapse value,
maximum input firing rate, etc.). Therefore, the maximum pos-
sible value for Matching will be different for a World(AB) and a
World(CDE). Rather, in the following experiments, we examine
the changes in Matching during potentiation in wake and down-
selection in sleep, but do not compare the values of Matching
across different experiments.

3. RESULTS
Given the set of constraints outlined above, we now present several
examples to analyze how Matching changes as a neuron potentiates
synapses during wake and depresses them in sleep.

www.frontiersin.org October 2013 | Volume 4 | Article 148 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hashmi et al. Sleep-dependent synaptic down-selection (II)

3.1. SLEEP-DEPENDENT SYNAPTIC DOWN-SELECTION IMPROVES
MATCHING

Figure 5A shows the same “specialized” neuron as in Figure 1
(right panel) and Figure 4B, which is well-matched to World(AB).
For a first experiment, we assume that the statistical structure
of World has changed to AB, BC, and the neuron must learn
the new coincidence (BC). Reflecting the appearance of this new
coincidence, during a particular waking day, inputs B and C are
co-activated 9% of the time (Figure 5B). There is some noise,

illustrated here by spurious coincidences of firing, 0.1% of the
time, between inputs B and D. These values were chosen so that the
total amount of synchronous input activity was always near 9%.
All other inputs were taken to be independent (as in Chance) and
were active 10% of the time. The dashed red boxes on the left indi-
cate the long-term statistical structure of World inputs (AB, BC),
the solid red boxes that of the short-term inputs to the neuron dur-
ing one episode of wake (BC, training), which in this case is taken
to be the same. On the right hand side, the green box indicates

FIGURE 5 | Sleep-dependent synaptic down-selection improves
Matching. (A) Initially, the World shows statistical correlation on inputs A and
B, and the neuron has appropriately strengthened synapses A/A′ and B/B′.
Thus, Matching is high. (B) The Long-Term statistics of the World change such
that inputs on A and B, as well as B and C are correlated (as indicated by the
dashed red boxes on the left). On this particular Training day, the neuron is
exposed to correlated inputs B and C, as well as to a small percent of
spurious coincidences on inputs B and D. Before synaptic potentiation occurs,
Matching is reduced since the neuron does not yet capture the statistics of
the World. (C) During wake, the neuron potentiates synapses C/C′, while

synapses D/D′, E/E′, and F/F′ are only slightly strengthened. The neuron now
responds appropriately to the World, but the extra synaptic weight also
means its response to Chance goes up even more. As a result, Matching is
further reduced. (D) During sleep, the neuron often reactivates inputs on A
and B (4.5%), B and C (4.5%), but also spurious inputs on A and D (0.1%) and
B and D (0.1%), as indicated by the green boxes on the right. Since
down-selection is activity-dependent, synapses A/A′, B/B′, and C/C′ are best
protected, while other synapses are depressed. As a result, the neuron still
responds well to the World, but less so to Chance, thus improving Matching
to the statistical distribution of the World.
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

the input to the neuron during sleep (Sleep). Since the synaptic
weights have not yet changed to properly capture and model this
new World(AB, BC), Matching is only 0.021 (Figure 5B).

Next, as in Nere et al. (1), we simulated wake training by apply-
ing inputs with the appropriate short-term statistical structure
while plasticity was enabled in the wake mode, within the over-
all constraints of maximum individual and total synaptic strength
indicated in the Section “Materials and Methods.” As shown in
Figure 5C, training led to a potentiation of both feedforward and
feedback synapses that sampled suspicious coincidences in the
input, especially synapses C/C′, but also, due to the occurrence
of spurious coincidences, synapses D/D′. As a consequence of this
overall strengthening of synapses, the neuron’s firing rate increases
both with World (FR(World)= 13%) and even more with Chance
(FR(Chance)= 11.1%), so that Matching shows a slight decrease,
which reflects a decrease in the neuron’s selectivity for suspicious
coincidences.

As before, we assume that feedback connections changed the
same way as feedforward ones, and that circuits upstream in the
brain would be able to provide Sleep inputs to the neuron that
resemble the long-term statistics of World(AB, BC) (green boxes
in the Figure). The Sleep inputs to the neuron also include two
infrequent “spurious” coincidences, AD and BD, which are co-
activated 0.1% of the time each. We simulated spontaneous activity
during sleep accordingly, while enabling synaptic down-selection.
As shown in Figure 5D, the result was that, while synapses A/A′,
B/B′, and C/C′ were slightly depressed, the other synapses were
depressed much more markedly, including synapses D/D′. After
sleep-dependent down-selection, the neuron’s firing rates with
World decreased (to 11.2%), but it decreased more markedly with
Chance (to 8.1%), leading to an increase in Matching.

3.2. EXTRA WAKE DEGRADES MATCHING
Figure 6A illustrates what happens if, instead of undergoing
activity-dependent down-selection during sleep, the neuron from
Figure 5C undergoes an equivalent period of wake during which
it continues to be exposed to the new feature (BC). For this exper-
iment, the constraint of the total synaptic weight was relaxed,
allowing total weight to increase up to a value of 4.49. Pre-
dictably, synapses D/D′ continued to be strengthened due to
the spurious coincidence BD, and the synaptic strength of E/E′

and F/F′ increased slightly due to occasional co-firing under
independence. Even more than after a regular period of wake
(Figure 5C), extended wake led to a further increase in firing
rate with World (FR(World)= 14%). However, the change in fir-
ing rate was even more pronounced with the Chance condition
(FR(Chance)= 12.4%). Consequently,Matching decreases further
to 0.0161, reflecting a reduction in the neuron’s selectivity for sus-
picious coincidences, the opposite of what is observed if the neuron
is allowed to undergo down-selection in sleep.

3.3. SYNAPTIC POTENTIATION IN SLEEP DEGRADES MATCHING
Figure 6B shows instead what happens if, after training in wake,
the neuron is allowed to undergo synaptic potentiation while being
exposed to spontaneous activity during sleep. That is, instead of the
down-selection rule (Figure 2B), plasticity during sleep is made
to mirror the potentiation rule as in wake (Figure 2A). As in the

previous experiment, the constraint of the total synaptic weight
was relaxed, allowing total weight to increase up to a value of
4.49. In line with experimental data on reactivation (15–17), it
is assumed that spontaneous activity during sleep, while partly
“replaying” patterns of activity observed during wake training, is
“noisy.” This is because spontaneous activity is not constrained by
environmental inputs and includes many additional constraints
reflecting prior knowledge incorporated in the network. Thus,
in Sleep, the spontaneously generated correlation structure is
assumed to be 4.5% AB, 4.5% BC, 0.1% AD, and 0.1% BD (as
shown in the green boxes of Figure 6B). As a consequence, while
synapses A/A′, B/B′, and C/C′ are further potentiated, D/D′ is also
markedly strengthened, and E/E′, and F/F′ also increase slightly
due to chance coincidences. Finally, in line with the evidence that
total synaptic strength is reduced after sleep (2–4), the synapses
were downscaled such that the total synaptic weight was 3.41 (to
be comparable to the total synaptic weight for the neuron which
underwent activity-dependent down-selection in Figure 5D). As
shown in Figure 6B, Matching is reduced as compared to when
sleep led to down-selection.

3.4. SYNAPTIC DEPRESSION IN WAKE DEGRADES MATCHING
Finally, Figure 6C shows what happens if down-selection is
allowed to happen during a wake episode, when the neuron is
exposed to a limited sample of the environment (BC). As one
would expect, training on coincident inputs (BC) with both synap-
tic potentiation and down-selection enabled results in a significant
depression of synapses A/A′. This is because the wake-training
input for this particular “day” does not include the input AB,
even though the long-term statistics of this World are AB, BC
(as shown in the dashed red boxes). As a consequence, after
training with down-selection in wake, Matching is only 0.0225.
This is markedly less than the experiment in Figure 5D, with
potentiation in wake and down-selection in sleep, where Matching
was 0.0312.

3.5. SYNAPTIC DOWN-SELECTION IN SLEEP FAVORS NEW MEMORIES
THAT FIT WITH OLD MEMORIES

Next, as in Nere et al. (1), we consider the integration of new with
old memories. The neuron in Figure 7A is embedded in a World
whose long-term structure is such that inputs A and B are active
together 3% of the time, B and C 3% of the time, and A, B, and C
are active together 3% of the time. Initially, the neuron has strong
weights only on synapses A and B, and Matching is 0.023. On
a particular wake episode, the neuron is exposed to new coinci-
dent inputs B and C, which are active together 9% of the time. In
this case the “new” memory (B, C) has an overlap with the “old”
memory (A, B). As in the similar case of Section 3.1.1, training in
wake leads to the potentiation of synapses C/C′ (Figure 7B) and
sleep to down-selection, bringing about an increase of Matching
(Figure 7D).

Figure 7D shows the same neuron as in Figure 7A, which is
attuned to coincident inputs AB. However, in this case the long-
term statistics of the world contains non-overlapping coincident
inputs: AB 4.5% of the time, and EF 4.5% of the time. As in the
previous cases, on this particular day the neuron only sees one new
set of coincidences, EF, 9% of the time. As shown in Figure 7E, this

www.frontiersin.org October 2013 | Volume 4 | Article 148 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hashmi et al. Sleep-dependent synaptic down-selection (II)

FIGURE 6 | Extra wake, potentiation in sleep, and down-selection in
wake degrade Matching. (A) The same neuron shown in Figure 5C is
allowed to undergo an extended period of training. The constraint on the
total synaptic weight is relaxed. As a result, the neuron continues to
potentiate synapses D/D′, E/E′, and F/F′. While the firing rate in response
to the World increases slightly, the firing rate in response to Chance
increases more significantly, thus degrading Matching (B) The same
neuron shown in Figure 5C is allowed to undergo synaptic potentiation
during sleep, using the correlated inputs generated internally (shown in
the green boxes). Since synapses A/A′, B/B′, and C/C′ are saturated before

this sleep period, the synapses D/D′ corresponding to the spurious
activations (A and D 0.1%, B and D 0.1%) become further potentiated.
Afterward, all synapses are linearly depressed so the total synaptic weight
after sleep is comparable to the neuron shown in Figure 5D. As a result,
Matching is degraded. (C) The neuron from Figure 5B is allowed to
undergo both synaptic potentiation as well as activity-dependent
down-selection in wake. Since the Training of this particular day does not
include correlations on inputs A and B (but they are still present in the
Long-Term statistics of the World ), synapses A/A′ become depressed.
Thus, Matching is degraded.

results in a potentiation of synapses E/E′ and F/F′, and Matching
improves. However, unlike in the previous case, during activity-
dependent down-selection in sleep the new memory EF and the
old memory AB do not overlap. Hence, their reactivation is mod-
eled as occurring independently, without synergy and therefore
with less protection from depression. As a consequence, Matching
improves less (Figure 7F) than it does for the“integrated”memory
in Figure 7C.

3.6. SYNAPTIC DOWN-SELECTION INCREASES MATCHING BY
FORGETTING CORRELATIONS NO LONGER IN THE ENVIRONMENT

Finally, Figure 8A shows a neuron well-matched for World(AB).
In this case, we assume that the long-term structure of the world
changes in such a way that inputs A and B are no longer coincident,
but inputs B and C are active together 9% of the time (Figure 8B).
As expected, after the world has changed, but before the neuron
has had a chance to adapt, Matching decreases from 0.0230 to
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

FIGURE 7 | Overlapping memories are better integrated by synaptic
down-selection. (A) The neuron has initially potentiated synapses A/A′ and
B/B′, while the Long-Term statistics of the World show overlapping
correlations AB (3%), BC (3%), and ABC (3%) (shown in the dashed red
boxes on the left). During Training, the neuron is exposed to correlations BC
(9%) (shown in the solid red boxes). (B) After training in wake, the neuron
potentiates synapses C/C′, though Matching is slightly degraded by the
increase in synaptic weight (which results in a greater response to Chance).
(C) During activity-dependent synaptic down-selection in sleep (with the
inputs shown in the green boxes on the right), synapses A/A′, B/B′, and C/C′

are often active together, and thus well protected. As a result, Matching

improves. (D) Another neuron also starts with strong synapses A/A′ and B/B′.
The Long-Term statistics of the World show disjoint correlations AB (4.5%)
and EF (4.5%) (shown in the dashed red boxes on the left). During Training,
the neuron is exposed to correlations EF (9%) (shown in the solid red boxes).
(E) After training in wake, synapses E/E′ and F/F′ have been potentiated.
(F) During activity-dependent synaptic down-selection in sleep (with the
inputs shown in the green boxes on the right), inputs on A and B are activated
independently of inputs on E and F. As a result, both pairs of synapses
become slightly more depressed than for the neuron showing overlapping
reactivation of inputs from (C). As a result, Matching is worse than for the
neuron with overlapping inputs/memories (Figure 6C).

0.0193 (Figure 8B). During training in wake, the neuron potenti-
ates synapses C/C′ (Figure 8C). However, as synapses A/A′ are still
strong, they increase the neuron’s response to noise, and Matching
is low (0.0176). After activity-dependent synaptic down-selection
in sleep, synapses A/A′, B/B′, and C/C′ become slightly depressed
(Figure 8D), and Matching improves slightly (0.0195). After mul-
tiple wake-training/sleep down-selection iterations, synapses B/B′

and C/C′ continue to be potentiated in wake to balance their down-
selection in sleep, while A/A′ is only down-selected. As a result the
neuron progressively “forgets” the memory of AB (Figure 8E), and
Matching improves further (0.020).

4. DISCUSSION
The above examples show how the benefits of a two-step plas-
ticity strategy, involving net synaptic potentiation of clusters of
feedforward and feedback synapses in wake, and net depres-
sion during sleep, can be quantified with a theoretically moti-
vated measure of the match between neuronal circuits and
the environment (Matching ) (6–8). The benefits are demon-
strated here using a integrate-and-fire neuron with six dendritic

compartments composed of one feedforward and one feedback
connection, with respect to its ability to capture and model
the statistical structure of its environment thanks to changes
in connection strength. In the companion paper (1), the ben-
efits of potentiation in wake and down-selection in sleep were
demonstrated in a parallel set of simulations using neuronal net-
works engaged in memory consolidation and integration. The
results of both approaches indicate that alternative strategies,
such as additional synaptic potentiation in wake, potentiation
in sleep, or renormalization in wake, lead instead to a decrease
in Matching (this contribution) and to a worsening of memory
performance (1).

Below, we briefly review the theoretical measures employed
here and discuss why synaptic homeostasis during sleep turns out
to be beneficial for increasing Matching and preserving the selec-
tivity of neuronal responses. We also argue that the alternation of
synaptic potentiation in wake and depression in sleep, especially
when occurring at the level of synaptic clusters, can ensure that dif-
ferent subsets of neurons specialize for different perception-action
loops. Moreover, we argue that multiple cycles of potentiation in
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

FIGURE 8 | Synaptic down-selection in sleep allows “forgetting” to
improve Matching. (A) Initially, the neuron shows good Matching for a World
that exhibits statistical correlations on inputs A and B. (B) The Long-Term
statistics of the World change such that A and B are no longer correlated, but
inputs on B and C are correlated (dashed red boxes on left). Since the neuron
no longer fits with its World, Matching goes down. (C) During wake, the
neuron potentiates synapses C/C′. However, as the total synaptic weight has
increased, the neuron also responds more to Chance, and thus, Matching
does not yet improve. (D) After activity-dependent down-selection in sleep,

synapses A/A′, B/B′, and C/C′ are best protected, and Matching slightly
improves. However, after a single wake/sleep period, the connection of
synapses A/A′ has not yet been “forgotten.” (E) During subsequent
wake/sleep cycles, synapses B/B′ and C/C′ are potentiated again during wake,
while synapses A/A′ are not. Thus, synapses A/A′ continue to exhibit
progressive depression during down-selection in sleep. After multiple
wake/sleep cycles, synapses A/A′ are depressed to the same level as
synapses D/D′, E/E′, and F/F′. Thus, Matching improves further as the strong
connections for A/A′ are “forgotten.”

wake and down-selection in sleep ensure that both long-term fea-
tures of the environment and new contingencies are integrated
within neural circuits, while spurious coincidences, whether exter-
nal or internal to the system, are systematically eliminated. Thus,
the two-step strategy evaluated here represents a sensible way for
the brain to address the plasticity-stability dilemma (18, 19).

4.1. MATCHING, SELECTIVITY, AND S/N
As discussed in Tononi (7, 8) and briefly in the Materials and Meth-
ods, measures of Matching between a system and its environment
can be used to assess how well the system’s connectivity resonates
with the causal structure of the environment. Matching reflects the
ability of the system to capture suspicious coincidences from its
inputs and distribute them to many subsets of its units. Moreover,
in an integrated system such as the brain, the ability is closely tied
to the ability to model the structure of the environment internally
(7). Thus, high Matching for the brain means that, compared to
exposure to noise (a TV screen out of tune), exposure to its envi-
ronment (a naturalistic movie) will trigger the activation of many
different patterns of activity involving many brain areas, which
will specify many different constellations of concepts. Moreover,
high Matching means that, even when the brain is disconnected

from the environment (sleep), spontaneous activity will be able to
generate experiences (dreams) that will resemble those of wake.
In general, Matching can be increased both by changing the con-
nections within the system to better match the environment, and
by exploring or modifying the environment itself to match the
expectations of the system (Albantakis et al., in preparation). For
simplicity, the present examples have focused on changes occur-
ring within the system. In the course of evolution, development,
and learning, one would expect that the mechanisms of a system
change in such a way as to increase Matching. This is because,
everything else being equal, an organism is better off if it is highly
sensitive to the structure of the environment. Moreover,an internal
generative model that matches well the overall causal structure of
the environment frees the organism from the tyranny of the “here
and now,” allowing it to plan ahead and try out imaginary scenar-
ios. Finally, as shown here, the ability to spontaneously activate
this internal model during sleep allows the brain to consolidate
and integrate memories in a way that, rather than being at the
mercy of a day’s limited experiences, takes into account its overall
knowledge of the environment.

Ideally, calculating Matching exhaustively requires complete
knowledge of the architecture of a system, as well as systematic
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Hashmi et al. Sleep-dependent synaptic down-selection (II)

sampling of its possible inputs. Since this is not generally feasible,
various heuristics can be employed (Albantakis et al., in prepara-
tion; Boly et al., in preparation). On the other hand, in the present
case of a single binary neuron, Matching can be measured pre-
cisely simply by comparing the distribution of firing and silence
in the World and Noise (Chance) conditions. In this way, we could
examine how learning in wake and down-selection in sleep affect
the overall match between a simple neural system and its environ-
ment, complementing the result obtained in the companion paper
(1) with a focus on specific aspects of memory and performance.

In the above examples, a single neuron learns to sample
suspicious coincidences from the environment during wake (for
example, the frequent co-occurrence of inputs A and B) by
strengthening the corresponding feedforward connections as well
as the corresponding feedback connections. Eventually, this pro-
duces an increase in Matching as compared to a neuron with
uniform synaptic strength (Figures 3 and 4). Since the uniform
neuron has not tuned its connections to emphasize inputs on A
and B, its firing does not show a differential sensitivity to AB inputs,
but merely reflects their frequency of occurrence. By contrast, the
specialized neuron, having strengthened connections AB, is espe-
cially sensitive to AB inputs, and fires for them in proportion to
their degree of “suspiciousness.” In richer environments and more
complex networks, including those simulated in the companion
paper, there will be many more suspicious coincidences, includ-
ing many of high order (14). Moreover, changes in connection
strength during learning in wake will occur at multiple levels and in
diverse neural circuits. Nevertheless, as long as such changes pro-
duce a differential sensitivity to representative inputs from World
as compared to Chance, Matching will increase as shown here.

As also shown here (Figure 5), however, given some reasonable
assumptions about limitations in firing rates and synaptic strength,
Matching will only increase after new learning if synaptic poten-
tiation in wake is followed by synaptic down-selection in sleep.
This is because, if learning is not followed by renormalization,
while the model neuron will fire more for newly detected suspi-
cious coincidences (e.g., BC, the new “signal”), its average firing
rate will increase even more for Chance inputs (the “noise”), lead-
ing to an overall reduction of Matching. This decrease in Matching
reflects, in the most general terms, the decrease in the S/N of per-
formance indices observed after learning in the companion paper
(1), in previous modeling work (20), and in experimental studies
of procedural learning (21). On the other hand,activity-dependent
down-selection during the sleep phase leads to a marked increase
in Matching, reflecting an increased differential in the neurons
response to suspicious coincidences (signal) vs. spurious ones
(noise).

Within the limitations of the present single-neuron model, the
above simulations also indicate that alternative strategies for plas-
ticity are not beneficial for Matching. As shown in Figure 6, simply
adding extra learning in wake does not improve Matching, but
rather further decreases it. Once again, this result is consistent
with a further reduction of S/N observed in simulations (1, 20, 22)
and experimentally (21).

Similarly, spontaneous activity accompanied by synaptic poten-
tiation in sleep, even if followed by an overall scaling down of
synaptic weights, decreases Matching rather than increasing it.
This happens because spontaneous activity in the Sleep mode

is partly according to chance, not being constrained by envi-
ronmental inputs. If these additional spurious coincidences lead
to synaptic potentiation in absolute terms, rather than sim-
ply achieving better protection against depression, Matching is
inevitably reduced. Analogous results were obtained in Nere et
al. (1) and in Olcese et al. (22) in terms of memory perfor-
mance.

The above simulations also indicate that, if synaptic renormal-
ization were to occur in wake, it would disrupt memory traces that
should not be obliterated, again leading to a reduction in Matching.
As argued elsewhere (2–4) and demonstrated in the companion
paper (1), this is because a particular episode of wake does not
afford a comprehensive sampling of the overall statistical struc-
ture of the environment, but forces the organism to learn what is
available “here and now.” Under these circumstances, renormal-
izing synaptic strength would lead to inappropriate forgetting of
important memories merely because they do not happen to be
engaged by current interactions with the environment. For this
reason, it is essential that synaptic renormalization takes place
off-line, i.e., during sleep (2–4).

Finally, the present simulations suggest that, if after initial
acquisition a particular memory trace is never activated during
wake, and if it does not fit well with the rest of the memories
incorporated inside the network, it will be erased progressively
over many wake-sleep cycles. Such a mechanism allows the brain
to slowly forget old memories that do not correspond anymore to
relevant features of the environment, thereby increasing Matching,
in line with neuropsychological results (23). By contrast, activity-
dependent down-selection during sleep preferentially protects
those new memories that fit with old ones, and are thus frequently
co-activated in the Sleep mode, at the expense of those that do not.
This finding is consistent with both experimental evidence on the
role of sleep in memory integration (24, 25) and with the benefits
for memory performance observed in the companion paper (1).

4.2. DENDRITIC COMPARTMENTS, SPECIFICITY OF CLIQUES, AND
PERCEPTION-ACTION LOOPS

In the present paper, we have considered a single integrate-and-
fire neuron and showed that, by employing a two-step strategy of
synaptic potentiation in wake and depression in sleep, the neu-
ron could increase its ability to capture suspicious coincidences in
its input, as conveyed by feedforward connections and modeled
internally through feedback connections. As shown in the com-
panion paper (1), this strategy works not only at the level of the
individual neuron, but also at the systems level, leading to mem-
ory consolidation, gist extraction, and integration of new with old
memories. At the systems level, the benefits of this two-step pro-
cedure become even clearer when combined with the provision
that plastic changes are sensitive to coincidences within individual
dendritic domains (Figure 2). This is because, by taking advan-
tage of distinct dendritic domains, a neuron with a single output
(axon) can learn to organize its inputs so as to fire at different times
in cooperation with different subsets of other neurons (cliques),
engaging in different perception-action loops that produce different
functions (for other proposals potential advantages of dendritic
computation, see for example (26–28)).

This notion is illustrated graphically in Figure 9, where the
black neuron (X) is part of 3 cliques (A in green, B in red, and C
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FIGURE 9 | A neuron can participate in multiple perception-action
loops. Top: through its multiple dendritic domains, a single neuron can
participate in multiple perception-action loops. As shown in the figure, the
black neuron is part of three different cliques, shown in green, red, and
blue. Coincident spiking events are surrounded by gray boxes, while

coincident spiking events that cause plastic changes (i.e., both
feedforward and feedback spikes) are surrounded by yellow boxes.
Bottom: the black neuron may have different cause repertoires when
participating with different cliques, as shown by the different red, green,
and blue cause repertoires.

FIGURE 10 | Systematic potentiation of neural loops including the
environment in wake and depression of those excluding it in sleep.
(A) During wake, neurons participate in a “grand loop” which includes
sensory input from and motor outputs to the outside world. During wake,
synaptic potentiation leads to the formation of new memories by
strengthening several perception-action loops. (B) During sleep, the grand

loop with the outside world is interrupted, and only loops internal to the brain
can be active. Thus, a systematic process of synaptic potentiation in wake,
followed by activity-dependent down-selection in sleep, will enhance circuits
that capture important environmental contingencies, especially those that fit
with previously formed memories, while progressively eliminating those that
do not.
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in blue), each associated with a different dendritic compartment.
By strengthening subsets of connections from clique A (in green),
when a persistent feedforward input that made X spike (medi-
ated primarily by AMPA receptors) is associated with persistent
feedback activations (mediated primarily by NMDA receptors) on
the same dendritic domain, X can eventually ensure that firing
together with clique A will produce input A, while firing together
with a different clique B will produce input B, and so on.

This is illustrated at the top of Figure 9. The propagation of
spikes is shown relative to a timeline (blue arrow). Initially, feed-
forward activations from the green clique (on the left) cause X to
fire. This, in turn, produces an effect on a downstream green neu-
ron (on the right). Whether directly, or through multiple levels of
neurons, this feedback ultimately reaches back to neuron X. In the
Figure, coincident input spikes in a dendritic domain are boxed
in gray, and if coincident inputs contain both feedforward and
feedback activation (and thus, induce plasticity) they are boxed
in yellow. These closed loops are shown within the red and blue
cliques as well. The bottom of Figure 9 shows that, for each differ-
ent clique the neuron X interacts with, it may have a distinct cause
repertoire, and in turn, a related effect repertoire on downstream
neurons within the same clique.

Furthermore, these perception-action loops can also exist
between different cliques. As shown in the figure, the perception-
action loop is first closed between the neurons in the green
clique, which then prime the perception-action loop of the red
clique, which finally prime the perception-action loop of the
blue clique. Thus, neuron X can participate in sequences of
perception-action loops as its input changes.

By following such a local synaptic rule, the neuron will be
able to produce different effects for different outputs, thereby
ensuring that different cliques of neurons carry out different
functions (functional specialization). A local mechanism capa-
ble of ensuring functional specialization not just for individual
neurons, but for different combinations of neurons (cliques),
should provide an economic means to generate a large number
of concepts with comparatively few units (7), as required by envi-
ronments with a rich causal structure. Such an exuberance of
available perception-action loops will be reflected in high values
of Matching, indicating an increased ability to capture correlations
in the environment as well as an increased ability to model such
correlations internally.

4.3. WAKE-SLEEP CYCLES AND THE PLASTICITY-STABILITY DILEMMA
The benefits of a two-step strategy of selective potentiation in
wake, guided by environmental constraints and novelty, and
down-selection in sleep, guided by internal constraints and accu-
mulated memories, become especially relevant if one considers
the regular alternation between states of wake and sleep. Dur-
ing a wake episode, the “grand loop” between the behaving brain
and the environment is functioning (Figure 10A). In this way,
the multiple brain circuits that are actively involved (selected for)
in perception-action loops with that particular environment tend
to be potentiated, leading to the incorporation of new memo-
ries. During the following sleep episode, the grand loop with the
environment is interrupted, the brain goes off-line, and the loops
internal to the brain are activated spontaneously, disconnected

from the contingencies of a particular environment (Figure 10B).
Instead, internal loops are activated in a comprehensive man-
ner, calling into play a vast body of old memories. Moreover,
plasticity switches to a mode where internal loops that are most
activated are protected rather than potentiated, while other loops
are depressed (selected against). As suggested by the present and
the companion paper, repeated cycles of positive selection favor-
ing novelty in wake, coupled with negative selection protecting
consistent memories in sleep, should lead to two related benefits:
(i) the progressive incorporation of environmental contingencies
that are consistently present in the environment and/or fit the over-
all structure of knowledge, and (ii) the progressive elimination of
those that are spurious, do not fit previous knowledge, or rep-
resent “fantasies” generated by free-running neural circuits. Over
multiple cycles, such a dual process offers a potential solution to
the classic plasticity-stability dilemma: a learning system should be
plastic enough to incorporate new information, but stable enough
to preserve important memories over time: that is, learning new
associations should not wipe out previous learned ones (18, 19).
This is especially true of a system, such as the brain, in which the
majority of elements connect to other elements within the sys-
tem rather than directly to the environment. Such an organization
has the advantage of allowing the brain’s actions to be guided by
memory (intrinsic models) and thereby go far beyond the cur-
rent sensory evidence (6, 29). On the other hand, in such systems
it becomes important to ensure that the memories continue to
match the environment. As shown here, this can be done by sys-
tematically selecting in favor of the concepts generated when the
system is embedded in the grand loop that includes the external
environment (wake), and against those produced by the system in
isolation (sleep/dreaming).

5. CONCLUSION
The synaptic homeostasis hypothesis (2–4), investigated here as
well as in a companion paper (1), postulates that memory func-
tions utilize a two-step process: in wake, neurons learn to cap-
ture suspicious coincidences in the environment predominately
through synaptic potentiation; in sleep, when disconnected from
the outside world, a neuron samples the memories it has formed
and synapses it has strengthened and uses activity-dependent
down-selection to selectively depress circuits. Unlike other models
which allow further synaptic potentiation during memory reacti-
vation in sleep, the two-step process proposed by the synaptic
homeostasis hypothesis demonstrates all the associated benefits
of sleep on memory, without the risk of forming “spurious” or
“fantasy” memories in sleep. In this paper, we investigated the
benefits of synaptic down-selection during sleep using a single,
simplified neuron model and the theoretical measure of Match-
ing which assesses how well a neuron is tuned to a particu-
lar environment. Furthermore, we demonstrated how extended
wake, potentiation in sleep, and down-selection in wake each can
reduce the measure of Matching, providing complementary evi-
dence to the systems level simulations presented in a companion
paper (1).

ACKNOWLEDGMENTS
The study was supported by NIMH (1R01MH091326).

www.frontiersin.org October 2013 | Volume 4 | Article 148 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hashmi et al. Sleep-dependent synaptic down-selection (II)

REFERENCES
1. Nere AT, Hashmi A, Cirelli C,

Tononi G. Sleep dependent synap-
tic down-selection (I): modeling the
benefits of sleep on memory consol-
idation and integration. Front Neu-
rol (2013) 4:143. doi:10.3389/fneur.
2013.00143

2. Tononi G, Cirelli C. Sleep and
synaptic homeostasis: a hypoth-
esis. Brain Res Bull (2003)
620(2):143–50. doi:10.1016/j.
brainresbull.2003.09.004

3. Tononi G, Cirelli C. Sleep func-
tion and synaptic homeostasis. Sleep
Med Rev (2006) 100(1):49–62. doi:
10.1016/j.smrv.2005.05.002

4. Tononi G, Cirelli C. Time to be
SHY? Some comments on sleep and
synaptic homeostasis. Neural Plast
(2012) 2012:415250. doi:10.1155/
2012/415250

5. Balduzzi D, Tononi G. What
can neurons do for their
brain? Communicate selec-
tivity with bursts. Theory
Biosci (2013) 1320(1):27–39.
doi:10.1007/s12064-012-0165-0

6. Tononi G, Sporns O, Edelman GM.
A complexity measure for selec-
tive matching of signals by the
brain. Proc Natl Acad Sci U S A
(1996) 930(8):3422–7. doi:10.1073/
pnas.93.8.3422

7. Tononi G. Integrated information
theory of consciousness: an updated
account. Arch Ital Biol (2012)
1500(2-3):56–90.

8. Tononi G. On the irreducibility of
consciousness and its relevance to
free will. In: Suarez A, Adams P edi-
tors. Is Science Compatible with Free
Will? New York: Springer (2013). p.
147–76.

9. Attwell D, Laughlin SB. An energy
budget for signaling in the grey mat-
ter of the brain. J Cereb Blood Flow
Metab (2001) 210(10):1133–45.

doi:10.1097/00004647-200110000-
00001

10. Vyazovskiy VV, Cirelli C, Pfister-
Genskow M, Faraguna U, Tononi G.
Molecular and electrophysiological
evidence for net synaptic potentia-
tion in wake and depression in sleep.
Nat Neurosci (2008) 110(2):200–8.
doi:10.1038/nn2035

11. Self MW, Kooijmans RN, Supèr H,
Lamme VA, Roelfsema PR. Different
glutamate receptors convey feedfor-
ward and recurrent processing in
macaque v1. Proc Natl Acad Sci U
S A (2012) 1090(27):11031–6. doi:
10.1073/pnas.1119527109

12. Jones BE. Chapter 11 - basic mecha-
nisms of sleep-wake states. 4th ed.
In: Kryger MH, Roth T, Dement
WC editors. Principles and Practice
of Sleep Medicine. Philadelphia:W.B.
Saunders (2005). p. 136–53.

13. Watson CJ, Baghdoyan HA, Lydic
R. Neuropharmacology of sleep
and wakefulness. Sleep Med Clin
(2010) 50(4):0513. doi:10.1016/j.
jsmc.2010.08.003

14. Barlow HB. The twelfth Bartlett
memorial lecture: the role of sin-
gle neurons in the psychology of
perception. Q J Exp Psychol (1985)
370(2):121–45.

15. Kudrimoti HS, Barnes CA,
McNaughton BL. Reactivation
of hippocampal cell assemblies:
effects of behavioral state, experi-
ence, and EEG dynamics. J Neurosci
(1999) 190(10):4090–101.

16. Nádasdy Z, Hirase H, Czurkó A,
Csicsvari J, Buzsáki G. Replay and
time compression of recurring spike
sequences in the hippocampus. J
Neurosci (1999) 190(21):9497–507.

17. Ji D, Wilson MA. Coordinated
memory replay in the visual cor-
tex and hippocampus during sleep.
Nat Neurosci (2007) 100(1):100–7.
doi:10.1038/nn1825

18. Grossberg S. Competitive learning:
from interactive activation to adap-
tive resonance. Cogn Sci (1987)
110(1):23–63. doi:10.1111/j.1551-
6708.1987.tb00862.x

19. Abraham WC, Robins A. Memory
retention – the synaptic stability ver-
sus plasticity dilemma. Trends Neu-
rosci (2005) 280(2):73–8. doi:10.
1016/j.tins.2004.12.003

20. Hill S, Tononi G, Ghilardi MF.
Sleep improves the variability of
motor performance. Brain Res Bull
(2008) 760(6):605–11. doi:10.1016/
j.brainresbull.2008.02.024

21. Huber R, Ghilardi MF, Mas-
simini M, Tononi G. Local
sleep and learning. Nature
(2004) 4300(6995):78–81.
doi:10.1038/nature02663

22. Olcese U, Esser SK, Tononi G.
Sleep and synaptic renormalization:
a computational study. J Neurophys-
iol (2010) 1040(6):3476–93. doi:10.
1152/jn.00593.2010

23. Hardt O, Nader K, Nadel L. Decay
happens: the role of active forget-
ting in memory. Trends Cogn Sci
(2013) 170(3):111–20. doi:10.1016/
j.tics.2013.01.001

24. Diekelmann S, Born J. The memory
function of sleep. Nat Rev Neurosci
(2010) 110(2):114–26.

25. Stickgold R, Walker MP. Sleep-
dependent memory triage:
evolving generalization through
selective processing. Nat Neu-
rosci (2013) 160(2):139–45.
doi:10.1038/nn.3303

26. Polsky A, Mel BW, Schiller J. Com-
putational subunits in thin den-
drites of pyramidal cells. Nat Neu-
rosci (2004) 70(6):621–7. doi:10.
1038/nn1253

27. Behabadi BF, Polsky A, Jadi M,
Schiller J, Mel BW. Location-
dependent excitatory synap-
tic interactions in pyramidal

neuron dendrites. PLoS Comput
Biol (2012) 8(7):e1002599.
doi:10.1371/journal.pcbi.1002599

28. Legenstein R, Maass W. Branch-
specific plasticity enables self-
organization of nonlinear compu-
tation in single neurons. J Neurosci
(2011) 310(30):10787–802. doi:10.
1523/JNEUROSCI.5684-10.2011

29. Tononi G, Edelman GM. Infor-
mation: in the stimulus or in
the context? Behav Brain Sci
(1997) 20:698–700. doi:10.1017/
S0140525X97401607

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 25 May 2013; paper pending
published: 29 July 2013; accepted: 17 Sep-
tember 2013; published online: 04 Octo-
ber 2013.
Citation: Hashmi A, Nere A and
Tononi G (2013) Sleep-dependent synap-
tic down-selection (II): single-neuron
level benefits for matching, selectivity,
and specificity. Front. Neurol. 4:148. doi:
10.3389/fneur.2013.00148
This article was submitted to Sleep and
Chronobiology, a section of the journal
Frontiers in Neurology.
Copyright © 2013 Hashmi, Nere and
Tononi. This is an open-access article
distributed under the terms of the Cre-
ative Commons Attribution License (CC
BY). The use, distribution or reproduc-
tion in other forums is permitted, pro-
vided the original author(s) or licensor
are credited and that the original publica-
tion in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neurology | Sleep and Chronobiology October 2013 | Volume 4 | Article 148 | 16

http://dx.doi.org/10.3389/fneur.2013.00143
http://dx.doi.org/10.3389/fneur.2013.00143
http://dx.doi.org/10.1016/j.brainresbull.2003.09.004
http://dx.doi.org/10.1016/j.brainresbull.2003.09.004
http://dx.doi.org/10.1016/j.smrv.2005.05.002
http://dx.doi.org/10.1155/2012/415250
http://dx.doi.org/10.1155/2012/415250
http://dx.doi.org/10.1007/s12064-012-0165-0
http://dx.doi.org/10.1073/pnas.93.8.3422
http://dx.doi.org/10.1073/pnas.93.8.3422
http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1038/nn2035
http://dx.doi.org/10.1073/pnas.1119527109
http://dx.doi.org/10.1016/j.jsmc.2010.08.003
http://dx.doi.org/10.1016/j.jsmc.2010.08.003
http://dx.doi.org/10.1038/nn1825
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00862.x
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00862.x
http://dx.doi.org/10.1016/j.tins.2004.12.003
http://dx.doi.org/10.1016/j.tins.2004.12.003
http://dx.doi.org/10.1016/j.brainresbull.2008.02.024
http://dx.doi.org/10.1016/j.brainresbull.2008.02.024
http://dx.doi.org/10.1038/nature02663
http://dx.doi.org/10.1152/jn.00593.2010
http://dx.doi.org/10.1152/jn.00593.2010
http://dx.doi.org/10.1016/j.tics.2013.01.001
http://dx.doi.org/10.1016/j.tics.2013.01.001
http://dx.doi.org/10.1038/nn.3303
http://dx.doi.org/10.1038/nn1253
http://dx.doi.org/10.1038/nn1253
http://dx.doi.org/10.1371/journal.pcbi.1002599
http://dx.doi.org/10.1523/JNEUROSCI.5684-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5684-10.2011
http://dx.doi.org/10.1017/S0140525X97401607
http://dx.doi.org/10.1017/S0140525X97401607
http://dx.doi.org/10.3389/fneur.2013.00148
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Sleep_and_Chronobiology
http://www.frontiersin.org/Sleep_and_Chronobiology/archive

	Sleep-dependent synaptic down-selection (II): single-neuron level benefits for matching, selectivity, and specificity
	Introduction
	Materials and Methods
	Neuron model
	Constraints on activity and plasticity
	Plasticity mechanisms in wake
	Down-selection mechanisms during sleep
	Input distributions in wake and sleep
	Matching

	Results
	Sleep-dependent synaptic down-selection improves matching
	Extra wake degrades matching
	Synaptic potentiation in sleep degrades matching
	Synaptic depression in wake degrades matching
	Synaptic down-selection in sleep favors new memories that fit with old memories
	Synaptic down-selection increases matching by forgetting correlations no longer in the environment

	Discussion
	Matching, selectivity, and S/N
	Dendritic compartments, specificity of cliques, and perception-action loops
	Wake-sleep cycles and the plasticity-stability dilemma

	Conclusion
	Acknowledgments
	References


