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INTRODUCTION

Traumatic brain injury (TBI) results in a loss of brain tissue at the moment of impact in
the cerebral cortex. Subsequent secondary injury involves the release of molecular signals
with dramatic consequences for the integrity of damaged tissue, leading to the evolution of
a pericontusional-damaged area minutes to days after in the initial injury. The mechanisms
behind the progression of tissue loss remain under investigation. In this study, we analyzed
the spatial-temporal profile of blood flow, apoptotic, and astrocytic—vascular events in the
cortical regions around the impact site at time points ranging from 5h to 2 months after
TBI. We performed a mild-moderate controlled cortical impact injury in young adult mice
and analyzed the glial and vascular response to injury. We observed a dramatic decrease in
perilesional cerebral blood flow (CBF) immediately following the cortical impact that lasted
until days later. CBF finally returned to baseline levels by 30 days post-injury (dpi). The ini-
tial impact also resulted in an immediate loss of tissue and cavity formation that gradually
increased in size until 3 dpi. An increase in dying cells localized in the pericontusional region
and a robust astrogliosis were also observed at 3 dpi. A strong vasculature interaction with
astrocytes was established at 7 dpi. Glial scar formation began at 7 dpi and seemed to be
compact by 60 dpi. Altogether, these results suggest that TBI results in a progression from
acute neurodegeneration that precedes astrocytic activation, reformation of the neurovas-
cular unit to glial scar formation. Understanding the multiple processes occurring after TBI
is critical to the ability to develop neuroprotective therapeutics to ameliorate the short and
long-term consequences of brain injury.
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Traumatic brain injury (TBI) can result in significant impairment
of function, if the patient survives the initial impact. TBI induces
a series of events in the brain that trigger an instantaneous loss of
tissue and damaged area around the impact site (1). Repair of the
damaged brain may result from avoiding or reducing secondary
neuronal degeneration and decreasing glial activation that leads to
the deterioration of the neurological state.

Excessive glutamate stimulation induces excitotoxicity pre-
dominantly in neurons and has been linked to the pathological
process of various chronic CNS diseases and TBI (2). Under
this pathological environment within the injured cortex, apop-
tosis, inflammation, gliosis, and a reduction in regional cerebral
blood flow (CBF), all play a role in secondary cell injury (3). This
secondary reaction is predominately located in the primary cor-
tical lesion and around the core impact zone, referred to as the
perilesional or pericontused regions (4). A collection of detrimen-
tal mechanisms contributes to this secondary injury, including
edema, decreased CBFE disruption of the blood-brain barrier

tion. These dynamic processes, involving glial cells and vessels, are
becoming the target of potential therapeutics to treat brain trauma.
The neurovascular unit is also altered after TBI, although much
less is known about this process (5). The neurovascular system
is composed of a complex network of neurons, astrocytes, and
cerebral blood vessels (endothelium, smooth muscle cells, and
perivascular matrix) (6). Cerebrovascular dysfunction is observed
after TBI with a decrease in CBF, glucose consumption, and oxy-
gen extraction (7). However, the temporal pattern of disruption
and the underlying mechanisms remain poorly understood.
Astrocytes are thought to play a crucial role in response to
injury; they are important in neuronal antioxidant defense, secret-
ing neuroprotective factors, and in maintaining the homeosta-
sis of the extracellular environment after brain injury (8, 9).
Astrocytes also provide neurons with energy from metabolic sub-
strates and the precursors of neurotransmitters. On the other
hand, astrocytes can contribute to neuronal damage by releas-
ing glutamate in glutamate- and calcium-dependent manners
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and thus, support lesion progression (10—12). Further, astrocytic
hypertrophy, hyperplasia, and glial scar formation have negative
effects on axonal regeneration (13).

The present study reports on the patterns of neurodegener-
ation, astrogliosis, and neurovascular interactions from 5h to
2 months after TBI. We examine the short and long-term relation-
ships between vascular changes and astrocytes and their possible
involvement in neuronal cell damage after adult brain injury. Col-
lectively, our results indicate an interplay between astrocytes, blood
flow, and neurodegeneration that may guide future therapeutic
intervention for specific cell types at specific times after TBI.

MATERIALS AND METHODS

ANIMALS AND CONTROLLED CORTICAL IMPACT INJURY

The experiments were performed on 75 9-week-old male C57BL/6
mice weighing 21-25g, which were kept under 12:12 light and
dark cycle with access to food and water ad libitum. Surgery
was performed 1 week after recovery from transportation-related
stress. Mice were anesthetized with isoflurane (3% induction, 2%
maintained). The skull was fixed in a stereotactic frame and a
5-mm craniotomy was performed above the left parietal cortex.
We performed mild—moderate controlled cortical impact (CCI)
injury (coordinates: 2 mm lateral, 2 mm posterior to Bregma) at
an impact depth of 1 mm, with a 2 mm diameter round impact tip
(speed 3.6 m/s, dwell time 100 ms) and a 12° angle, using an elec-
tromagnetically driven CCI injury device (Impact One stereotaxic
impactor CCI, Leica Microsystems Gmbh, Wetzlar, Germany). The
bone flap was replaced but not sealed, the skin was sutured, and the
mice were allowed to recover fully from anesthesia before transfer
to their home cages. The mice were sacrificed at 5h, 1, 3,7, 14, 30,
and 60 days after CCI injury. The control group for all comparisons
was comprised of age-matched uninjured naive mice (n =4-5). All
animal studies were approved by the USUHS Institutional Animal
Care and Use Committee and were conducted in accordance with
the NRC guide to the Care and Use of Laboratory Animals.

DETERMINATION OF CEREBRAL BLOOD FLOW

Cerebral blood flow was measured in the pericontusional region
using a laser-Doppler flowmeter (PeriFlux System 5000 LDPM,
Perimed). Changes in CBF were taken using a flexible fiber optic
extension to the LDPM probe tip 404 as described previously (14).
Baseline values were recorded after positioning the fiber optic
extension on the skull at the —2 mm posterior, and 2 mm lateral
from Bregma. After CCI injury, to record CBF, animals were anes-
thetized with isoflurane, the fiber optic extension was positioned
on the skull around the craniotomy site, 5-10 measurements were
taken at each time point for each animal and averaged. CBF was
recorded starting at 15 s after cortical impact, and subsequently at
2h, and 1, 3, and 30 days after CCI injury. Changes in CBF were
expressed as the percentage of the baseline value recorded before
CClI injury.

Nissl STAINING AND LESION VOLUME MEASUREMENTS

Mice were sacrificed at 5h, 1, 3, 7, 14, 30, and 60 days post-injury
(dpi) by transcardial perfusion with 4% paraformaldehyde (PFA)
in phosphate buffer. Brains were removed and placed in 4% PFA
overnight, then transferred to 30% sucrose solution and stored at

4°C. Brains were cut in 30 wm-thick sections using a microtome
and were stored in cryoprotectant solution. Every third section
was chosen for Nissl staining to reveal histology of the cortical
lesion area. Brain slices were mounted on polylysine-coated slides
and stained for 20 min with 0.1% cresyl-violet (Sigma) dissolved
in distilled water and filtered. Slides stained were dehydrated for
2min using 100, 95, 70, and 50% ethanol, cleared in xylene for
another 2 min, covered with DPX, and coverslipped. Lesion vol-
ume was obtained by multiplying the sum of the lesion areas by
the distance between 9 and 15 brain sections. Percent lesion vol-
ume was calculated by dividing each lesion volume by the total
ipsilateral hemisphere volume (similarly obtained by multiplying
the sum of the areas of the ipsilateral hemispheres by the distance
between sections).

IMMUNOFLUORESCENCE ANALYSIS

Sections were blocked with 10% normal goat serum (NGS) in
PBS with 0.1% Triton X-100 (PBS-T) for 1 h. The following pri-
mary antibodies were incubated at 4°C overnight in PBS-T and
5% NGS: anti-glial fibrillary acidic protein (GFAP), either mouse
monoclonal (1:2000, Millipore) or chicken polyclonal (1:400,
abcam) for astrocytes; anti-vimentin, mouse monoclonal (1:200,
Sigma) for reactive astrocytes; anti-NeuN, mouse monoclonal
(1:200, Chemicon) for mature neurons; anti-Iba-1 rabbit poly-
clonal (1:750, Wako) for microglia; and anti-collagen IV rabbit
polyclonal (1:3000, Chemicon) a component of the basal lam-
ina that is used as a specific marker for cerebral microvessels
(15). Sections were washed in PBS-T three times and incubated
with the corresponding Alexa Fluor 568-conjugated (red) and
Alexa Fluor 488-conjugated (green) IgG secondary antibodies (all
1:1000, Invitrogen) for 2h at room temperature. Sections were
rinsed with PBS and distilled water and coverslipped with ProLong
Gold antifade reagent with DAPI (Invitrogen).

CELL DEATH ASSAY

Sections were processed for DNA strand breaks (TUNEL assay,
labeling of fragmented DNA) using the Fluorescence In situ Cell
Death Detection Kit (Roche, IL, USA), according to the manu-
facturer’s instructions. TUNEL-positive nuclei were counted in
cortical regions in three to five coronal sections for each animal,
with five animals per group.

QUANTITATIVE AND DENSITOMETRY ANALYSIS

Quantitative image analysis of the immunoreactive areas for GFAP,
Iba-1, and collagen IV clusters positive cells were performed
on five cortical sections per brain through the level of impact
site (AP: 2.0 mm) taken with the x20 objective and using the
same densitometric analysis method as previously described (16).
Immunofluorescence intensity was calculated using the thresh-
old method and defined as the number of pixels, divided by the
total area (square millimeter) in the imaged field with the average
background subtracted. The grade of astrogliosis was calculated
by GFAP immunoreactivity values (IR-GFAP) multiplied by the
number of GFAP-positive astrocytes. To assess astrocytic interac-
tion with microvessels, we co-stained brain sections with GFAP
and collagen IV; colocalization clusters were determined by pixel-
by-pixel quantification of both markers that connected astrocytes
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and vessels. Images were acquired on an Olympus BX61 with
attached qImaging Retiga EXi Aqua CCD camera, and iVision soft-
ware (BioVision Technologies, Exton, PA, USA). For colocalized
images, double-stained cells were analyzed with a Zeiss confocal-
laser scanning microscope (LSM 510) equipped with argon and
He/Ne 488 and 568 nm laser. Images were taken at 20x, 40x,
and 63x magnification, and cropped and adjusted using Adobe
Photoshop CS5.

STATISTICAL ANALYSES

Data were analyzed using one-way analysis of variance (ANOVA)
for comparison of measurements at different time points after CCI
injury with those of naive control brains. Quantitative data for all
figures and tables are expressed as mean £ SEM, except for CBF
measurements that are expressed as mean = SD. All statistics were
analyzed using Prism software (Graphpad).

RESULTS

In this study we determined, in the pericontusional cortical region,
the temporal progression of post-injury alterations in CBE, cell
death, and the vascular-astroglial response in the mouse after
mild—-moderate CCI injury. The study of these perilesional phe-
nomena is essential to understanding the metabolic equilibrium
between glial cells, vasculature, and dying cells. We chose to use
naive mice as our controls rather than those with craniotomy as we
have previously shown with an identical injury, the mice subject
to craniotomy had equivalent numbers of GFAP-positive prolifer-
ative astrocytes as those undergoing CCI (17). Our experience
is consistent with that of others who have shown that cran-
iotomy alone is equivalent to a minor injury in terms of the acute
inflammatory response (18). As we wanted to compare injured
mice with uninjured, we used naive mice as controls in all our
experiments.

DECREASE OF CEREBRAL BLOOD FLOW IN THE PERICONTUSIONAL
AREA AFTER CCI INJURY

Cerebral blood flow was measured in the pericontusional region
around the impact site where a hole was perforated in the skull.
CBF was decreased 34% immediately (seconds) after the impact
contusion (“during CCI”) (Figure 1) compared to baseline levels.
Three hours after injury, we found the CBF to be 53% of baseline
levels, the lowest CBF measured. CBF increased at 1 and 3 dpij,
reaching 35 and 23%, respectively, of the baseline levels initially
obtained before CCl injury (Figure 1). By 30 dpi, CBF was restored
to baseline.

PERICONTUSIONAL-DAMAGED AREAS AND CORTICAL CAVITY
GENERATED AFTER CCI INJURY

We assessed the pattern of cortical lesion volume at 5h and 1,
3, 7, 14, 30, and 60 dpi (Figure 2), dividing tissue damage into
lesion cavity and pericontusional area (Figure 2C). Nissl staining
revealed an immediate loss of cortical tissue after the impact-
rounded tip entered the sensorimotor cortex. As early as 5h
post-injury, neocortical Nissl staining diminished in intensity, and
scattered cell loss and shrinkage was evident through all neocor-
tical layers (Figure 2). A damaged region around the contusion
site was also generated early. Damaged tissue was evident via
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FIGURE 1 | Cerebral blood flow decreases in the pericontusional region
after CCl injury. Cerebral blood flow (CBF) measurements were expressed
as percentage of baseline levels before injury. CBF was reduced in the
injured cerebral cortex during CCl injury, and at 3 h, 1dpi, and 3 dpi; it
increased at 4 weeks after CCl injury. Values are expressed as the

mean =+ SD, n=28-10 per group, *p < 0.05, ***p < 0.0001 compared to
baseline.

a loss of Nissl intensity with the pyknotic and apoptotic neu-
rons delimiting the pericontusional region (Figures 2c1-c3). At
1dpi, the injury cavity increased despite a loss of necrotic tis-
sue, while the pericontusional region remained unchanged. At
3 dpi, the cavity expanded further, contributing to the peak vol-
ume of both lesioned cortex and damaged pericontusional regions
(Figures 2B,C). This cortical lesion volume decreased at 7, 14, 30,
and 60 dpi.

BIPHASIC PEAK OF CELL DEATH IN THE PERICONTUSIONAL REGION
Quantification of cell death (by TUNEL-positive cells) within the
ipsilateral sensorimotor cortex following injury revealed marked
loss overtime during the evolution of cortical damage. By 5h
after injury, we observed a significant increase in the number of
apoptotic cells that were diffusely distributed throughout the peri-
contusional region (Figure 3A). At 1 dpi, there was a reduction in
dying cells; however, at 3 dpi there was a secondary peak in apop-
tosis around the lesioned area, which correlated with increased
astroglial reactivity (Figure 4). TUNEL labeled morphologically
distinct cells were principally neurons with apoptotic bodies and
chromatin condensation (Figure 3Aa). Dying astrocytes were
also identified at 1 and 3 dpi with double staining via vimentin
and GFAP (Figure 3Ab). Additionally, Iba-1-positive microglial
cells with TUNEL-positive nuclei (Figure 3Ac) showing typical
phagocytic morphology were observed at 3 dpi (Figure 3Ad).
At 7 dpi, we occasionally observed dying neurons and sporadic
Iba-1/TUNEL-positive cells. At longer time points (14, 30, and
60 dpi), rare cases of dying neurons were observed (Figure 3C).
Combined, these findings suggest that neurons are the main cell
population susceptible to death, especially at early time points
after TBI.
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FIGURE 2 | Temporal progression of the cortical lesion.

(A) Representative drawings of Nissl| staining from coronal sections at 5h,
and 1, 3, 7 14, 30, and 60 days post-CCl injury (dpi). Black lines delimit the
lesioned cortex (gray). (B) Graph shows the percent lesioned area relative to
the area of the whole ipsilateral hemisphere, starting at 5 h after injury, with
a peak at 3 days and remaining up to 60 days after injury. (C) Graph illustrates
the composition of the total lesion that is either cavity (or lost tissue) versus
the damaged pericontusional region as a percentage of the area of the total

1d 3d 7d 14d 30d 60d

ipsilateral hemisphere at different times post-injury. (c1) Representative
images showing the delimited damaged cortical regions corresponding to
cavity or tissue loss or the pericontusional region. High magnification image
of the unaffected cortex and pericontusional region (c2) containing apoptotic
cells (c3, arrow) and chromatin condensate (c3, arrowhead). Scale bar;

100 uwm (c1), 50 um (c2), and 20 wm (c3). Values are expressed as the

mean + SEM, n=3-5 per group, *p <0.05, **p <0.01, ***p < 0.0001
compared to 3 dpi.

DYNAMIC OF ASTROCYTIC ACTIVATION IN RESPONSE TO CORTICAL
DAMAGED

Astrogliosis, observed by GFAP staining, was not apparent at
early time points (5h post-injury and 1 dpi) but appeared in the
pericontusional region at 3 dpi (Figure 4). Activated astrocytes
possessed thick, labeled processes, and hypertrophic astrocytic
bodies (Figure 4c2). Reactive astrocytes occupied an extended
region corresponding to cortical layers II through VI at 3 dpi,
mainly around the impact site and near the lesion border.
GFAP/vimentin double-labeled cells identified astrocytic activa-
tion that was extended to the peripheral cortical regions near
the lesion core. At 3 dpi, vimentin expressing astrocytes were dis-
tributed around the impact site, mainly associated with reactive
astrocytes in the gliotic tissue (Figures 4a—c). At 7 dpi, the branches
of vimentin/GFAP-positive cells were arranged parallel to each
other and perpendicularly to the border of the lesion starting to
form the glial scar (Figures 4d—f). GFAP-positive astrocytes were
observed at 14 dpi bordering the lesion near the formation of a glial
scar (Figures 4g—i). This chronic astrogliosis persisted up until
60 dpi with a notable involvement in maintaining the glial scar,
defining the border of the cavity (Figures 4m—o0). Quantitative
analysis revealed that the grade of astrogliosis had a peak at 3 dpi
(Figure 4p). No changes in GFAP upregulation in undamaged
areas of the contralateral or naive control cortex were observed
(data not shown).

ASTROCYTIC-VASCULATURE INTERACTION AFTER INJURY

Cerebral vasculature within the pericontusional region was stained
with the collagen IV antibody; we observed varying distribution
of immunoreactivity after injury (Figures 5a—f). Distribution of
cortical microvessels in the perilesional region at 5h post-injury

(Figure 5a) and 1dpi (Figure 5b) was similar to uninjured
control brains (Figure 5g). After 3 dpi, vessels increased in thick-
ness (Figures 5c—f). Interactions between astrocytes and vessels
were detectable at 7dpi, and this interaction peaked at 14 dpi
(Figure 5e). Initial formation of the glial scar was detected at 7 dpi
(Figures 5d,d1). Interactions between astrocytes and thick-walled
blood vessels remained detectable until 30dpi (Figures 5fh).
Astrocytic-vessel contacts with the cavity border were maintained
until 60 dpi (Figure 5i).

DISCUSSION
In this study, we have characterized the pattern of neurodegen-
eration and astrogliosis occurring in the cortex, in conjunction
with glial-vascular interactions and alterations of regional CBE,
at multiple times points after CCI injury. Our regional analysis of
neurovascular interaction provides further understanding of the
different responses of astrocytes and vasculature after brain injury.
Our results suggest that a chronically progressive degenerative
process in the pericontusional-injured region is initiated hours
after CCI injury, but persists for weeks after impact. Thus, there
seems to be a relatively broad therapeutic window for drug admin-
istration to exert maximum efficacy and ameliorate the short and
long-term consequences of TBI. The cascade of events that lead
to the initial response could correspond with the rapid release of
glutamate and excitotoxic metabolites that subsequently induce
cell death (19). This phenomenon has been observed in several
models of brain injury, mainly after ischemia, where necrotic cell
death has been observed to have a quick yet extended response in
the ipsilateral hemisphere (20). We have shown here that a corti-
cal cavity, generated via an impact tip, had maximal extension at
3 days after CCI injury. However, other studies in different brain
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FIGURE 3 | Distribution of apoptotic cells in the perilesional cortex at
several time points after TBI. (A) lllustration of the spatial-temporal
distribution of TUNEL-positive cells (green dots). TUNEL-positive cells were
distributed around the impact site at 5 h until 3 days post-injury (dpi) but
were then limited to the lesion border at 7, 14, 30, and 60 dpi. Images of
TUNEL:-positive cells in a single field for each time point are shown. High
power images indicate that dying cells (TUNEL, green), are neurons (NeuN,
red) (a) reactive astrocytes (vimentin, red, and GFAR blue) (b) or microglia
(Iba-1, red) with nuclear TUNEL staining (c). Phagocytic
microglia/macrophages (d) colocalize with TUNEL while engulfing

C
Neurons  Microglia Astrocytes
5h +++ ++ +
1d ++ +/- -
3d +++ + -
7d + +/- -
14d +/- - -
30d +/- . -
60d +/- - -

TUNEL-positive cells. Scale bar; 20 um (a-d) and 50 um (A). (B) Plot depicts
the temporal density of TUNEL-positive cells in the injured cortex with an
early peak at 5 h after injury and declining by 7 dpi. (C) Table highlighting the
identity of TUNEL-positive cells at different time points. Degree of
colocalization of TUNEL:-positive cells with neurons (NeuN), microglia (Iba-1),
and astrocytes (GFAP) is graded as; +++ (high), ++ (moderate), +
(occasional), + (in rare cases), and — (no observed) at several time points
after CCl injury. Values are expressed as mean & SEM, n=3-5 per group,
***p <0.001, **p <0.01, ***p <0.0001 compared to 5h group **p <0.01
compared to 3 dpi group.

injury models have shown that the size of the cortical cavity was
fully developed as early as 6 h after TBI (21). At 3 dpi, we identified
apoptotic cell death located in the lesion periphery, limited to the
lesion border and mainly corresponding to neuronal death. This
results from neurons being more susceptible to CNS insults than
astrocytes, as they have limited antioxidant capacity and rely on
their metabolic coupling with astrocytes to combat oxidative stress
(20, 22,23).

Astrocytes become reactive after trauma, ischemia, or neu-
rodegenerative diseases (astrogliosis). Hypertrophy of astro-
cytic processes is accompanied by the upregulation of GFAP

and vimentin, two intermediate filaments that are abundantly
expressed in immature and reactive astrocytes (24, 25). Reac-
tive astrocytes can form GFAP positive filaments in vimentin-
deficient mice, but with more compact bundles than in wild-type
astrocytes, showing that both vimentin and GFAP normally con-
tribute to the cytoskeletal structure of astrocytes (26). Other
studies have suggested that GFAP-positive reactive astrocytes con-
tribute to the resistance of CNS tissue to specific types of severe
mechanical stress (27), taking up excess glutamate (10), rebuild-
ing the blood-brain barrier (28, 29), and production of growth
factors (30).
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FIGURE 4 | Spatial-temporal pattern of astrogliosis. GFAP (a—m) and
vimentin (b—n) immunoreactivity in the ipsilateral cortex of lesioned mice at 3,
7,14, 30, and 60 days post-injury (dpi). The sensorimotor cortex lesion of the
young adult mouse brain evoked extensive reactive astrogliosis at 3 dpi, as
shown by upregulation of GFAP and vimentin expression, surrounding the
lesion site (a—c). Enlarged detail of the lesion site (box in ¢) shows that
reactive astrocytes are vimentin-positive (arrowhead in c1) have large
hypertrophic astrocytic bodies and an increased number of short processes
(arrow in ¢2). These reactive astrocytes have an enlarged body with an
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increased number of short, thick processes that are directed towards the
border of the lesion at 7 dpi (d—f). Extensive reactive astrogliosis was primarily
detected in the border of the damaged cortex at 14 dpi (g—i). Once the glial
scar has formed, both GFAP and vimentin expression is weak and restricted
to the superficial part of the injured cortex at 30 and 60 dpi (m-o).
Quantification of the grade of astrogliosis (p) showed a peak at 3 dpi that
decreases overtime. Scale bar; 100 um (a-0), 50 um (c1), and 20 um (c2).
Values are expressed as mean + SEM, n=3-5 per group, ****p < 0.0001,

*p < 0.05 compared to control.

Interestingly, we found that the pericontusional region at early
time points after injury is devoid of GFAP-positive astrocytes.
Further, we found that some astrocytes are TUNEL-positive 5h
after injury (Figure 3) illustrating that astrocytes are vulnera-
ble in the acute phase of injury. This early astrocytic demise has
been previously demonstrated in ischemic animal models (31).
Previous studies have also suggested that there is an immense
variability in the subpopulation structure of astrocytes, charac-
terized by several grades of susceptibility in their response to brain
injury (25, 32). We show that, in the vicinity of the lesion, reac-
tive astrocytes on day 3 increase the thickness of their main cellular
processes and convert to a hypertrophic morphology. We also iden-
tified a strong astrogliosis from 7 days after injury until 2 months
after injury, where astrocytes contribute to the formation of the
glial scar.

Astrocytic hypertrophy, hyperplasia, and glial scar formation
all have negative effects on regeneration, although some evidence
favors a positive role for astrocytes in brain injury as they have
phagocytic capabilities and are partially responsible for clean up
of the lesion site in the acute stages after trauma (33). While, at
later stages they facilitate the formation of a post-traumatic glial
scar (25, 34). Formation of the glial scar, a barrier composed of
extracellular matrix, where collagen IV is a major constituent of
basement membranes, has been considered a major factor involved
in inhibition of neurite outgrowth and repair after CNS injuries
(15). Thus, some treatments under development seek to limit the
formation of the astroglial scar in order to repair the injured CNS.
Some studies have shown how the inhibition of collagen IV syn-
thesis enhances regeneration of axons that become remyelinated
with compact myelin after brain injury (35, 36). Spatial-temporal
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FIGURE 5 | Vascular interaction with astrocytes. Representative
photomicrographs showing double immunohistochemistry for microvessels
stained using Collagen type IV (red) and GFAP (astrocytes, green) in the
cortex, at 5h (a), 1day (b), 3days (c), 7 days (d, d1), 14 days (e,h), and 30 days
(f) post-injury (dpi), and in uninjured mice (control, g). Inset blue boxes
indicate the location within the cortical regions that the image was taken. (h)
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Shows the interaction of blood vessels and astrocytes. Integration of their
respective stains results in yellow colocalization (called clusters). (i) Density of
clusters (measured in pixels per area) in the pericontusional regions of the
cortex. Clusters are first detected at 7 dpi, and peak at 14 dpi. Values are
expressed as mean + SEM, n=23-5 per group, **p <0.01, ***p <0.001,
***p < 0.0001 compared to control levels.

analysis of reactive astrocytes in the injured cortex may help to pro-
vide a better understanding on the role of diverse astrocytes, and
accordingly, the distinct glial responses, depending on the distance
from the injury core and the time point studied.

Astrocytes, as a result of their close relationships with neurons,
microglial cells, and blood vessels have long been hypothesized
to be involved in cerebrovascular regulation (1, 37). The terminal
processes or “endfeet” of astrocytes cover the majority of the albu-
minal vascular surface of microvessels, intracerebral arterioles,
and venules (38). Glutamate released during synaptic transmis-
sion stimulates astrocytic calcium signaling, which in turn induces
vasodilatation (39). Other agents released from neurons or ves-
sels participate in the increase in CBF induced by neural activity,
such as nitric oxide, ATP, or calcium (40-42). While the interac-
tion between adjacent reactive astrocytes and vasculature in the
pericontusional-injured cortex remains minimal at early stages,
it becomes densely packed near the lesion borders at later times
after trauma. Our immunobhistological analysis highlighted the
link between astrocytes and large vessels in the border of the
lesion starting at 7 days after injury when the surfaces of large
to medium-size vessels were densely covered by GFAP astrocytic
endfeet (Figure 5).

The structural and functional integrity of the brain depends
on a continuous vascular supply of oxygen and glucose, and

if CBF is interrupted or unable to meet an increased meta-
bolic demand, neurons cease to function, and reduced thresholds
for activation of pathways leading to delayed neuronal death
(1, 8, 43). A phasic elevation in CBF after acute head injury
is a necessary condition for achieving functional recovery (44).
Lower levels of blood flow further contribute to an excitotoxic
cascade explosion with the release of glutamate to the extra-
cellular space, as well as other toxic metabolites that induce a
rapid expansion of cell death surrounded by an intense astro-
cytic reaction (33, 45). Mean arterial pressure (MAP), intracra-
nial pressure, and other physiological variables also influence
CBF (46).

Cerebral blood flow has been measured following experimental
TBI (41,47, 48) and an increase in CBF has a neuroprotective role
after brain injury (8). Our results demonstrate a sudden decrease
in CBF after traumatic impact within the cerebral cortex, from the
first seconds after the impact tip was removed from the brain, and
persisting for several days. Coinciding with a decrease of CBF in
the pericontusional cortical regions, a massive astrocytic response,
cell death, and an increase in perilesional vasculature all occur
after mild-moderate TBI in mice. Astrocytes have processes in
direct contact with blood vessels, which has long indicated that
they may be involved in neurovascular regulation. These cells have
the ability to dilate and constrict blood vessels and finely modulate
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FIGURE 6 | The balance between degenerative and vascular
phenomena is altered with time after injury. At early time points, cell
death and decreased cerebral blood flow predominate, while astrocytes are
not yet reactive. At later time points, cerebral blood flow levels are restored
fewer cells die, but astrogliosis becomes stronger, and the neurovascular
units reform.

the distribution of CBF changes during neuronal activation (49,
50) and energy metabolism (7). We show that CBF was restored
to baseline values by 30 dpi (Figure 1) but did not determine at
which point between 3 and 30 dpi, the CBF normalized. However,
we also show increased formation of astrocytic—vascular clusters
starting at 7 dpi and continuing until 60 dpi. Thus, it is possible
that the formation of these clusters could help restore the CBF to
baseline levels, even though these structures are not found in naive
mouse brain.

The pathological disruption of vessel interactions with astro-
cytes may be involved in neurovascular regulation, glial scar forma-
tion, and CBE. However, despite intense research in neurovascular
interactions, the role that astrocyte—vasculature interaction may
play in neuronal survival remains poorly understood. Modu-
lating the energy demands or interacting with microvessels to
influence the vascular flow in the pericontusional cortex may
be one mechanism by which astrocytes contribute to neuronal
recovery.

CONCLUSION

In this study, we determined the spatial-temporal course of the
astrocytic—vascular reaction, in parallel with apoptotic cell death,
after mild—moderate brain injury in mice. We focused on assessing
changes detected in the pericontusional cortical regions, target-
ing the possible involvement of astrocytes with cerebrovascular
dysfunction and neurodegeneration.

A clear understanding of the molecular regulation of cellular
damage including the neurovascular unit will be crucial for the
design of new treatments for brain injury. Further elucidation of
the temporal response of the astroglial-vasculature complex after
brain injury should indicate potential critical points for inter-
vention to increase CBF after injury that should have clinical
relevance.
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