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Brain has a continuous demand for energy that is met by oxidative metabolism of oxygen
and glucose.This demand is compromised in the injured brain and if the inadequate supply
persists it will lead to permanent tissue damage. Zero values of cerebral glucose have been
associated with infarction and poor neurological outcome. Furthermore, hyperglycemia is
common in patients with neurological insults and associated with poor outcome. Intensive
insulin therapy (IIT) to control blood glucose has been suggested and used in neurointen-
sive care with conflicting results.This review covers the studies reporting on monitoring of
cerebral glucose with microdialysis in patients with traumatic brain injury (TBI), subarach-
noid hemorrhage (SAH) and ischemic stroke. Studies investigating IIT are also discussed.
Available data suggest that low cerebral glucose in patients with TBI and SAH provides
valuable information on development of secondary ischemia and has been correlated with
worse outcome. There is also indication that the location of the catheter is important for
correlation between plasma and brain glucose. In conclusion considering catheter loca-
tion, monitoring of brain glucose in the neurointensive care not only provides information
on imminent secondary ischemia it also reveals the effect of peripheral treatment on the
injured brain.

Keywords: glucose, microdialysis, subarachnoid hemorrhage, Traumatic brain injury, intensive insulin therapy,
hyperglycemia, neurocritical care, neuromonitoring

IMPORTANCE OF GLUCOSE MONITORING IN
NEUROINTENSIVE CARE
The development of neurointensive care (NIC) has had a huge
impact on improving outcome and reducing mortality in patients
with critical neurological conditions (1–4). This NIC includes
mainly care for patients with traumatic brain injury (TBI), sub-
arachnoid hemorrhage (SAH), intracranial hemorrhage, spinal
cord injury, and acute ischemic stroke. The acute injured brain
is characterized by a primary and a secondary injury. Primary
brain injury is the acute insult to the brain that can be ischemia,
hemorrhage, or trauma among others and is irreversible.

The different types of primary injuries trigger secondary
injury processes such as posttraumatic ischemia, energy fail-
ure, excitotoxicity, mitochondrial failure, oxidative stress and
release of free radicals, secondary cerebral swelling, and inflam-
mation (5, 6).

Ischemia plays a major role in the pathology of injured brain
and low cerebral glucose values are detected in ischemia.

The injured brain might also be subjected to secondary clinical
insults, e.g., high intracranial pressure, hypoxia, hyperglycemia,
and hypoglycemia. Hyperglycemia is a common secondary insult
in TBI, SAH, and acute ischemic stroke and has repeatedly been
associated with poor neurological outcome. A great challenge for
the treatment of patients with acute brain injury in the NIC unit
is to detect early signs of secondary injuries in order to prevent
further advancement and deterioration of the brain tissue. Micro-
dialysis is a widely used technique to monitor the metabolic state of

the injured brain and detect metabolic crises defined as low glucose
and high lactate/pyruvate ratio (7–9). Monitoring of brain glucose
has become even more important due to the increasing interest in
controlling blood glucose within defined limits.

Two landmark studies showed that tight glucose control in crit-
ically ill surgical patients, aiming for blood glucose in the range
4.4–6.1 mmol/l, reduced mortality and morbidity (10, 11). How-
ever, these results were later challenged by Finfer et al., who showed
an increase in mortality when intensive glucose control was used
to treat hyperglycemia (12).

This review will focus on monitoring of cerebral glucose in the
most common diagnoses present in the NIC; TBI, ischemic stroke
and SAH. It will also cover clinical studies investigating treatment
of hyperglycemia in the NIC.

GLUCOSE AND THE BRAIN
Brain has a continuous demand for energy that is met by oxidative
metabolism of oxygen and glucose. Inadequate supply of oxygen or
glucose causes cognitive dysfunction and dependent on the dura-
tion and severity there will be a progressive deterioration from
coma to persistent brain damage and eventually death.

Glucose is the main substrate used by the brain under nor-
mal conditions, glycogen and high-energy phosphate compounds
such as phosphocreatine and adenosine phosphates only support
neuronal functions for 1–3 min (13). During recent years the
astrocyte–neuron lactate shuttle (ANLS) hypothesis has emerged.
This hypothesis states that astrocytes produce lactate, which is then
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taken up by the adjacent neurons and used as an alternative energy
substrate (14).

In the normoxic brain more than 95% of the adenosine triphos-
phate (ATP) is derived from aerobic glucose oxidation. Each
molecule of glucose is oxidized by 6 molecules of oxygen to car-
bon dioxide and water, yielding 38 molecules of ATP. Under fully
aerobic conditions, lactate production accounts for <4% of the
glucose metabolized (15). However, the anaerobic glycolysis that
breaks down glucose to lactate and pyruvate yields only two mol-
ecules of ATP for each molecule of glucose (16). The speed of ATP
production is dramatically increased compared to oxidative phos-
phorylation. During complete ischemia glycolysis is upregulated
by seven- to eightfold, within 30 s all the glucose and glycogen are
consumed and by 1 min all ATP (17, 18).

During inadequate oxygen supply each ATP molecule generates
a hydrogen ion and coupled with lactate production leads to lactic
acidosis. The extent of lactic acid production is dependent on the
preischemic levels of glucose and glycogen (19). The intracellular
acidosis that is produced is deleterious for the neurons, never-
theless, it is not the lactate in itself that is harmful. Rather the
intracellular increase in hydrogen ion concentration is believed to
be cytotoxic (20). Interestingly, moderate increase in lactate post
ischemia has been suggested to have neuroprotective effect (21).

Hyperglycemia or hypercapnia exacerbates ischemic damage,
indicating that low pH in combination with ischemia and/or reper-
fusion enhances detrimental processes and cell death (22–24).

Glucose enters the brain through facilitated diffusion via glu-
cose transporters in the blood–brain barrier (BBB). There is a
coupling between BBB glucose transport and cerebral metabolic
rate of glucose (25).

Plasma glucose concentrations are normally maintained
between 3.0 and 5.6 mM, but can vary between 2 and 10 mM
or higher in pathological conditions. Within the brain however,
cerebrospinal fluid is buffered to the extent that the range within
which glucose concentrations vary is much lower and narrower
(0.5–2.5 mM).

BRAIN MICRODIALYSIS AND GLUCOSE
Microdialysis can be used to monitor the metabolic state of almost
any tissue and is a widely used technique for monitoring brain
energy metabolism during neurointensive care (Figure 1) (8). It
was initially used in rodents studying neurotransmitters (26) and
later developed to be used in humans to monitor brain metabolic
state (27).

A microdialysis catheter forms a “biosensor.” A semipermeable
membrane with a double-lumen concentric cannula, mimicking
a blood capillary, is attached to the microdialysis catheter. The
catheter has an inlet and outlet tube. A sterile fluid is perfused
through the inlet tube, and chemical substances from the inter-
stitial fluid diffuse across the membrane into the perfusion fluid
in the inner cannula. The inner cannula connects to the outlet
tube that ends in a vial holder where the fluid, now referred to as
dialyzate, is collected.

The recovery of a substance is defined as the concentration
of the substance in the dialyzate expressed as a percentage of the
concentration in the interstitial fluid, which is usually assumed
to be similar to blood. If the semipermeable membrane is long

FIGURE 1 | A schematic picture of microdialysis setup is presented
courtesy of M dialysis AB. The catheter is inserted in the brain tissue and
a physiological salt solution is slowly and constantly pumped through a
semipermeable membrane. This dialysis membrane at the distal end of the
microdialysis catheter functions like a blood capillary. Chemical substances
from the extracellular fluid diffuse across the membrane into the perfusion
fluid inside the catheter. The “microdialyzate” is then collected in a
microvial and analyzed in the bedside analyzer ISCUSflex.

enough and the perfusion flow slow enough, the concentration in
the dialyzate membrane will approach the concentration in the
interstitial fluid, i.e., recovery will be close to 100%.

The availability of modern analytical techniques has made
microdialysis a biosensor capable of monitoring essentially every
small and medium sized molecular compound in the interstitial
fluid of endogenous as well as exogenous origin.

Normal brain glucose levels have been measured by micro-
dialysis in patients undergoing surgery to treat benign lesions in
posterior fossa (28). The cerebral glucose with a perfusion rate
of 0.3 µl/min in anesthetized patients was 1.2 ± 0.6 mmol/l and
awake patients 1.7 ± 0.9 mmol/l.

Alteration in dialyzate glucose results from several reasons
(Table 1):

– Ischemia caused by insufficient blood flow causing decrease
levels of tissue glucose and oxygen.

– Hyperemia due to increased blood flow and thereby increased
glucose delivery.

– Hyperglycemia due to increased blood glucose that increases
the dialyzate glucose.

– Hyper- or hypometabolism this will cause an increase or
decrease of glucose uptake into the cells and thereby affect the
extracellular glucose available to the microdialysis catheter.

ISCHEMIC STROKE AND GLUCOSE
Extensive research has been performed on ischemic stroke and a
review of these is outside the scope of the current paper. Ischemic
infarcts are usually not admitted to the NIC unit and thus do not
receive invasive neuromonitoring. This is because they have typ-
ically motor or sensory deficits with little or no impairment of
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Table 1 |The table presents conditions that can lead to low or high

dialyzate glucose.

High dialyzate glucose Low dialyzate glucose

Hyperemia due to increased blood

flow and thereby increased

glucose delivery

Ischemia caused by insufficient

blood flow causing decrease

levels of tissue glucose

Hyperglycemia due to increased

blood glucose that increases the

dialyzate glucose

Hypoglycemia due to decreased

blood glucose that decreases the

dialyzate glucose

Hypometabolism this will cause a

decrease of glucose uptake into

the cells and thereby lead to high

extracellular glucose available to

the microdialysis catheter

Hypermetabolism this will cause

an increase of glucose uptake into

the cells and thereby lead to low

extracellular glucose available to

the microdialysis catheter

consciousness. A group of ischemic stroke patient that do attend
the NIC unit are patients with massive or malignant infarcts and
thus are the patient group in focus in this review.

Massive hemispheric infarctions constitute 10% of hemispheric
strokes and 5% of all ischemic strokes and have a mortality rate of
50–80%, which led to the term malignant infarct (29, 30).

Infarcts in these patients are followed by a space occupying
brain edema causing malignant midline shift and compression of
the basal cisterns on neuroimaging.

Admission hyperglycemia has been shown to be present in
more than one-third of patients with acute ischemic stroke and is
significantly more common in those with more severe strokes (31).

Several studies both in humans and animals have shown wors-
ening neurological outcome following preischemic hyperglycemia.
The first study was performed in monkeys receiving glucose solu-
tion before cardiac arrest that exacerbated the neurological and
histopathological outcome (22). Several additional studies have
repeated these result following global ischemia in monkeys (32),
cats (33), and dogs (34, 35) showing increased neuronal cell
death, neurological dysfunction, and mortality. In rats, preis-
chemic hyperglycemia induced post injury seizure and increased
structural damage (36, 37).

A systemic review and meta-analysis of the middle cerebral
artery (MCA) occlusion model showed that the infarct size of the
hyperglycemic animals was 94% larger than normoglycemic ani-
mals (38). However, the relevance of these animal hyperglycemia
models to the clinical conditions was questioned.

Several studies have shown that hyperglycemia in patients with
acute stroke is associated with poor outcome (39–45). This was
a key-contributing factor in generating glucose treatment with
insulin therapy. Several randomized clinical studies have evalu-
ated the effect of intensive insulin therapy (IIT) (46–53), they
included small number of patients and with no conclusion on the
clinical efficiency of IIT. The largest randomized clinical trial was
UK Glucose Insulin in Stroke Trial, which enrolled 933 patients
and showed no clinical benefit of IIT (48). However, the study
has been criticized for several significant weaknesses that cause
interpretation difficulties.

In a recent randomized study INSULINFARCT trial, 180
patients with acute stroke were randomized to receive IIT or subcu-
taneous insulin treatment during the first 24 h (54). It was shown
that IIT in the first 24 h was associated with larger infarct growth
and was not recommended.

There are a few studies that have used microdialysis in
patients with ischemic stroke but unfortunately none of them
report on dialyzate glucose. Dohmen et al. used cerebral micro-
dialysis in patients with MCA infarction to predict malig-
nant course, but dialyzate glucose was not analyzed (55).
Additional studies have used cerebral microdialysis in patients
with ischemic stroke but did not report on the dialyzate
glucose (55–60).

SUBARACHNOID HEMORRHAGE AND GLUCOSE
It is estimated that 1–7% of all strokes are SAH (61). SAH has
a huge impact because of the relatively young age of onset and
high morbidity and mortality. In aneurysmal SAH, 10–15% of the
patients die before reaching medical care, more than half of the
patients die within 2 weeks and the overall mortality is 45% (62,
63). For the survivors observation and monitoring is necessary in
order to prevent and detect possible secondary insults.

Cerebral ischemia is one of the devastating secondary insults
in SAH (64). This is sometimes reversible, but may also progress
to infarction, which is associated with increased mortality and
severe disability (65, 66). Detection of early perturbation of energy
metabolism and cerebral ischemia is highly important in NIC
management of SAH patients (67).

In many clinics around the world, cerebral microdialysis is used
routinely to detect metabolic disturbances in patients with SAH.
Monitoring of brain glucose in these patients has shown to pro-
vide essential information. Persson et al. showed that in patients
who develop an infarct the glucose values in the MD catheter
area decrease to zero and zero values of glucose were detected in
patients with unfavorable outcome (68).

The association of zero cerebral glucose value and ischemia in
SAH patients was also shown by Schulz et al. They observed sig-
nificantly lower levels of glucose in patients with severe and com-
plete ischemia when compared with patients without symptoms
of ischemia (glucose 0 compared with 2.12 ± 0.15 mmol/l) (69).
Decreasing levels of brain glucose and increasing lactate/pyruvate
ratio have shown to predict new infarcts in the territory of the
microdialysis catheter (70). A low level of glucose (≤0.7 mmol/l)
and high L/P ratio (≥45) was used to define metabolic crises and
these were associated with low cerebral perfusion pressure and
worse outcome (71).

Delayed cerebral ischemia caused by vasospasm is a common
contributing factor to increased morbidity and mortality in SAH.
Many methods have been developed to detect and monitor signs
of vasospasm including monitoring ischemic metabolites (72, 73).
Microdialysis catheters were placed in the vascular territory most
likely to be affected by vasospasm and it was shown that cerebral
glucose was significantly lower in SAH patients presenting signs of
clinical vasospasm than in asymptomatic patients (74). Extremely
low levels of cerebral glucose were also found in SAH patients with
acute ischemic neurologic deficits who developed cerebral infarc-
tion (75). Low levels of cerebral glucose have also been associated
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with poor clinical status or neurological deterioration in SAH
patients (76).

The correlation between brain MD glucose levels and plasma
glucose concentrations has shown to be heterogeneous with pos-
itive, negative, and no correlation at all (77). Plasma glucose
concentrations play a major role since hyperglycemia in SAH
patients is common and is associated with poor clinical outcome
(78–84). One study showed that SAH patients with persistent
hyperglycemia are seven times more likely to have poor outcome
than patients with normoglycemia (85).

A causal relation between hyperglycemia and poor outcome
in SAH patients remains elusive, but it has been suggested
that hyperglycemia may exert a detrimental effect by increas-
ing secondary complications such as infection, cerebral ischemia
and by facilitating the progression from ischemia to irreversible
infarction (86).

These results instigated the need of glucose control and insulin
therapy in SAH patients. Several studies have reported on IIT in
SAH patients (87–92). One of the major findings is that insulin
administration per se decreases the brain glucose independent of
serum glucose levels.

Schlenk et al. inserted a microdialysis catheter into the vascular
territory of the aneurysm after clipping and treated blood glucose
levels above 140 mg/dl with intravenous insulin. This induced a
decrease of cerebral glucose though blood glucose remained nor-
mal (93). These results were confirmed in an additional study
where hyperglycemia was not related to high cerebral glucose (93).
Low cerebral glucose was more frequently observed in sympto-
matic patients and with unfavorable outcome if combined with
hyperglycemia. They concluded that low as well as high levels of
brain glucose could occur independently of blood glucose levels in
patients with SAH. Also Schmidt et al. reported an association of
insulin administration with a relative reduction of interstitial brain
glucose concentrations independent of serum glucose levels (94).

The majority of the studies using IIT reported episodes of hypo-
glycemia. Episodes of hypoglycemia pose additional risks to the
brain with compromised metabolism.

Insulin therapy inducing episodes of low glucose (<4.44 mmol/l)
was associated with cerebral infarction, vasospasm, and worse
functional outcome 3 months following SAH (92).

Despite several reports on use of IIT in SAH patients there
is only one randomized trial where 40 patients receive IIT. This
study showed no significant improvement in clinical outcome or
the incidence of vasospasm (88).

In conclusion, currently there is no evidence that hyperglycemia
in SAH patients should be treated with IIT. This treatment is
accompanied by an increase in hypoglycemic episodes, which
should raise concerns about the safety of this therapy. Monitor-
ing of cerebral glucose with microdialysis in SAH patients have
shown to detect secondary ischemia that could reflect develop-
ment of vasospasm. It has also been correlated with outcome and
thus provides valuable information.

TRAUMATIC BRAIN INJURY AND GLUCOSE
Traumatic brain injury is the leading cause of death in young adults
in industrialized nations and in the population under 35 years, the
death rate is 3.5 times that of cancer and heart disease combined

(95). The primary injury initiates metabolic crises, posttraumatic
ischemia, and neuronal death (5, 96). In addition, the injured
brain might also be subjected to secondary insults, e.g., hypoxia,
hypercapnia, hypocapnia, hypotension, hyperglycemia, and hypo-
glycemia. A great challenge for the treatment of TBI patients in
the NIC unit is to detect early signs of secondary injuries in order
to prevent further advancement and deterioration of the brain
tissue. Brain microdialysis is widely used to detect ischemia and
metabolic crises in TBI (8, 97).

Several studies have reported on increased glycolysis in the
acute phase of brain injury (98–100) and low dialyzate glucose
levels have been associated with poor outcome (101, 102). Hence
the importance of adequate glucose supply from systemic circu-
lation to the injured brain. It has been shown that the intracere-
bral glucose concentration increased significantly during transient
episodes of both moderate and pronounced hyperglycemia (103).
Increased dialyzate glucose has shown to be associated with high
mortality (104). A linear correlation between peripheral glucose
and brain glucose was demonstrated in TBI patients (105). How-
ever, there were opposing results in a study monitoring both the
injured hemisphere and non-injured hemisphere in TBI patients.
While the non-injured hemisphere showed a positive correlation
with plasma glucose, the injured hemisphere presented a more
heterogeneous pattern with no significant correlation to the blood
glucose in the first 12 h of NIC unit (106). This emphasizes the
importance of microdialysis catheter placement.

Hyperglycemia is frequently observed in patients with TBI
and the degree of hyperglycemia observed can be a predictor
of outcome (107–111). As previously discussed, hyperglycemia
exacerbates ischemic neurological injury and contributes to poor
outcome also in TBI patients. Thus, the effect of insulin therapy
has also been studied in TBI patients.

Reducing the plasma glucose by insulin therapy has been shown
to decrease cerebral glucose and was associated with brain energy
crises in TBI patients. As previously mentioned,Oddo et al. defined
brain energy crisis as a cerebral microdialysis glucose <0.7 mmol/l
with a lactate/pyruvate ratio >40. It was shown that insulin admin-
istration was associated with brain energy crises, which in turn
correlated with increased mortality (100). Vespa et al. also showed
decreased dialyzate glucose upon insulin therapy but did not find
an effect on mortality or functional outcome (112). A retrospective
study compared clinical outcomes before and after implementa-
tion of IIT in 228 TBI patients. Although episodes of hypoglycemia
were significantly more common in the IIT group the overall
mortality was similar in both groups (113).

A randomized controlled trial of 97 patients with severe
TBI compared a regimen of IIT (target blood glucose 4.42–
6.63 mmol/l) versus conventional management (target blood glu-
cose 4.42 and 12.15 mmol/l). The only favorable endpoint asso-
ciated with the use of IIT was a shorter stay in the NIC unit.
No significant differences were observed in rates of mortality and
poor functional outcome at 6 months. Meanwhile, the incidence
of hypoglycemic events was markedly increased among patients
treated with IIT (114). This was confirmed in an additional ran-
domized trial with total of 523 patients including 94 TBI patients.
IIT was not associated with improved survival and was associated
with increased occurrence of hypoglycemia (115).
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In conclusion, current clinical trials do not show any benefit of
tight glucose control with IIT in TBI patients. On the contrary it
might increase the incidence of hypoglycemia, exacerbating brain
metabolic crises (116). Available data suggest that high as well as
low cerebral glucose measured by microdialysis is associated with
high mortality. There is an indication that the placement of the
catheter is important for correlation between plasma and brain
glucose.

CONCLUDING REMARKS
There is a vast amount of evidence that hyperglycemia is com-
mon in patients with TBI, SAH, and ischemic stroke and that
it is related to poor outcome. However, no solid evidence exist
that tight glycemic control improves outcome in these patients.
It might on the contrary lead to hypoglycemic episode with dele-
terious effect on the injured brain. Monitoring of glucose with
microdialysis has proven to predict ischemic infarcts and detect
glucose zero values despite normal blood glucose. Zero dialyzate
glucose values are associated with poor outcome. These results
also emphasize the importance of catheter location to detect and
predict brain tissue at risk of developing infarct.
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