
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 27 June 2014

doi: 10.3389/fneur.2014.00102

How implementation of systems biology into clinical trials
accelerates understanding of diseases
Bibiana Bielekova1,2*,Yoram Vodovotz 3,4, Gary An4,5 and John Hallenbeck 6

1 Neuroimmunological Diseases Unit, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, USA
2 Center for Human Immunology of the National Institutes of Health, Bethesda, MD, USA
3 Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
4 Center for Inflammation and Regenerative Modeling, McGowan Institute of Regenerative Medicine, Pittsburgh, PA, USA
5 Department of Surgery, Northwestern University, Chicago, IL, USA
6 Stroke Branch, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, USA

Edited by:
Amy Lovett-Racke, The Ohio State
University, USA

Reviewed by:
Nancy Monson, University of Texas
Southwestern Medical Center, USA
Marie Csete, Huntington Medical
Research Institutes, USA

*Correspondence:
Bibiana Bielekova, NIH/NINDS/NIB,
Bld10/R, 5C103, 10 Center Drive,
MSC1400, Bethesda, MD 20892,
USA
e-mail: bibi.bielekova@nih.gov

Systems biology comprises a series of concepts and approaches that have been used suc-
cessfully both to delineate novel biological mechanisms and to drive translational advances.
The goal of systems biology is to re-integrate putatively critical elements extracted from
multi-modality datasets in order to understand how interactions among multiple compo-
nents form functional networks at the organism/patient-level, and how dysfunction of these
networks underlies a particular disease. Due to the genetic and environmental diversity of
human subjects, identification of critical elements related to a particular disease process
from cross-sectional studies requires prohibitively large cohorts. Alternatively, implemen-
tation of systems biology principles to interventional clinical trials represents a unique
opportunity to gain predictive understanding of complex diseases in comparatively small
cohorts of patients. This paper reviews systems biology principles applicable to transla-
tional research, focusing on lessons from systems approaches to inflammation applied
to multiple sclerosis. We suggest that employing systems biology methods in the design
and execution of biomarker-supported, proof-of-principle clinical trials provides a singu-
lar opportunity to merge therapeutic development with a basic understanding of disease
processes.The ultimate goal is to develop predictive computational models of the disease,
which will revolutionize diagnostic process and provide mechanistic understanding neces-
sary for personalized therapeutic approaches. Added, biologically meaningful information
can be derived from diagnostic tests, if they are interpreted in functional relationships,
rather than as independent measurements. Such systems biology based diagnostics will
transform disease taxonomies from phenotypical to molecular and will allow physicians to
select optimal therapeutic regimens for individual patients.

Keywords: systems biology, clinical trials, clinical trials methodology, multiple sclerosis, polygenic diseases

INTRODUCTION
Complex polygenic diseases, whether inflammatory or degenera-
tive, represent significant societal problem (1). Multiple sclerosis
(MS) is polygenic inflammatory disorder of the central nervous
system (CNS). Its early, relapsing–remitting stage (RR-MS) is char-
acterized by aberrant immune responses causing demyelination
and axonal damage and is successfully treated with immunomod-
ulatory therapies. Later, progressive stages of the disease do not
respond to immunomodulatory treatments. Because initiation of
progressive phase of the disease is related to the patient’s age more
strongly than to parameters of previous disease activity, it has
been considered to represent an accelerated neurodegenerative
process. Pathology studies suggest that despite causal, genetic, and
phenotypical diversity, surprisingly similar pathogenic processes
(e.g., inflammation, mitochondrial dysfunction, oxidative stress,
endoplasmic reticulum (ER) stress, excitotoxicity, DNA damage,
autophagy, and tissue remodeling) are observed in the target tis-
sue of patients with varied polygenic diseases (1, 2), including

different stages of MS (3). However, it is not clear whether these
processes are irrelevant bystander effects of one dominant (i.e.,
disease-specific) mechanism, or whether they evolve, interact (4),
and contribute causally to the development of disability. This
ambiguity has stymied the development of effective, potentially
curative disease modifying treatments (DMTs).

Polygenic diseases also represent extraordinary scientific prob-
lem, because their genetic heterogeneity, multifaceted pathophys-
iologies, and complex environmental influences are difficult to
reproduce in experimental conditions. Systems biology is a com-
pendium of scientific methods complementary to the use of
pre-clinical experimental models, since pre-clinical models invari-
ably represent simplified versions of the actual disease process
(5–7). The addition of systems biology approaches to traditional
investigatory procedures is poised to accelerate understanding of
the causative disease mechanisms (8). Herein, however, we argue
that such advances require not only the use of systems biology
approaches on the part of basic scientists, but also the utilization of
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such methods in clinical trial methodology (9–12) and eventually,
as our understanding increases, also in clinical practice.

RECONFIGURING REDUCTIONIST RESEARCH WITH
SYSTEMS BIOLOGY APPROACHES
The genetic and environmental diversity of the human popula-
tion leads to a vast, heterogeneous “input” into disease states. This
tremendous heterogeneity stands in direct contrast to the homo-
geneity of simplified pre-clinical models, such as single genetic
mutations expressed on an identical genetic background of inbred
animals housed in an artificially controlled environment (13)
(Figure 1), and often studied at very few time points. Elimination
of “biological noise” by unnaturally limiting genetic, environmen-
tal, age-related, and reproductive diversity allows isolation of the
mechanism(s) related to the studied process and underlies the tra-
ditional success of widely utilized reductionist research methods.

However, reports that pathogenic mechanisms may differ based
on the genetic background of the animal (14), or that varia-
tions in bacterial flora influence the development of pathogenic
immune responses (15, 16), question general applicability of find-
ings obtained in the simplified pre-clinical paradigms. If genetic
pre-disposition is insufficient for the development of polygenic
diseases such as MS (17), then the elimination of environmen-
tal influences (18, 19) that may interact causally with inherited
susceptibility alleles is a type of reductionism that is likely to be
detrimental to our understanding of the true disease process. Sim-
plification may indeed be necessary to discern disease mechanisms,
but it has to be simplification driven by rational means, not by con-
venience. Data-driven simplification, i.e., extraction of “essential
elements” from multimodal datasets, and modeling how these ele-
ments interact in vivo, is the basis of systems biology (5–7, 20) and
could actually inform development of better pre-clinical models.

FIGURE 1 | Simplified animal models versus complex biological systems
exemplified by human polygenic diseases. (A) Reductionist (linear)
research model (e.g., experimental autoimmune encephalomyelitis): current
animal studies are almost exclusively performed in a single animal species of
a single genetic strain (usually the one that is susceptible to induction of the
disease). Furthermore, the animals are housed in the same (often
pathogen-free) environment; they are exposed to identical food and identical
environmental stimuli, which leads to synchronization of circadian rhythms,
similar levels of activity, etc. Disease is induced by identical regimens applied
in a highly synchronized manner to animals of the same age and often only of
single sex. Therefore, animal experiments utilize highly simplified input (input
1). Despite standardized input, the outcome is usually somewhat
heterogeneous (outcome 1 and 2), but an application of traditional statistical
methods leads to clear conclusions. These conclusions are often readily
generalized across species and across diverse environmental inputs and
disease triggers. (B) Humans and other non-artificial complex biological
systems: measurements in the complex biological system exemplified by a
human being affected by a disease are the results of multiple different inputs
(i.e., an outbred genetic background, many environmental influences such as
type, dose, and virulence of an infectious agent, diverse food, premorbidities,
and drug regimens influencing both the metabolome and the microbiome,
varied endocrine regulations resulting from circadian and reproductive

rhythms and aging). The organism processes these varied inputs, utilizing
complex decision-making mechanisms and the outcomes are also diverse
(e.g., maintenance of heath or development of the disease of varied severity).
Furthermore, the outcomes are processed by the organism as additional
inputs through constant ubiquitous feedback loops, leading to dynamic
changes of behavior. Current statistical methods are largely inadequate for
analysis of such complex datasets. As a consequence, frequently no
reproducible conclusions are reached. (C) Linearity assumption of reductionist
approach: reductionist research methods are based on assumption that if an
element (e.g., gene, its transcript or protein; Element A) is linked to a disease
process (output X), then an observed or induced change in the element has to
be reflected in the change in the output. (D) Non-linear behavior of biological
systems: the existence of functional networks consisting of interacting
elements with partially overlapping functions allows biological systems to
retain a given output in a normal (non-disease) state if only one or few
elements have been altered (this is called robustness of the system). For
example, an alteration in Element A was compensated by a reciprocal change
in Element B (State 2). However, despite maintenance of the same output,
this new state is different from the original state (healthy; State 1), even
though phenotypically there is no evidence of a disease. Such an altered state
of the system is more fragile, insofar as any subsequent change in Element B
may now cause a dramatic change in the output X (i.e., disease state; State 3).
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A further problem of reductionist research lies in the extrapo-
lation of inferred linear, causal relationships between an identified
biological Element “A” (e.g., gene, mRNA, protein) and the man-
ifestation of a system-level, phenotypic output X (e.g., disease
activity) (Figure 1C). Through evolution, organisms have devel-
oped progressive complexity and redundancy via duplication and
adaptation of existing genes (21, 22) that can maintain functions
of the organism within physiological ranges, ranges which are
resilient to alterations of a single or even multiple molecules.
The elements of the system that interact and are able to com-
pensate for each other’s function form the basis of an in vivo
functional network (10, 23) or subsystem (24). Thus, a change
in Element A may be compensated for by a reciprocal alteration
in Element B to keep output X unchanged (Figure 1D, State 2).
Without monitoring changes in all interacting elements (which
requires either measurements of all components of the system
or pre-existing knowledge of which elements constitute the rel-
evant subsystem), one may come to a false conclusion about
causal relationships. In the example utilized above, Element A
is still causally related to output X, because the new “home-
ostasis” resulting from adaptation of the Element B makes this
subsystem more fragile, i.e., susceptible to failure with the next
alteration. Accordingly, even a small, successive change in Ele-
ment B, which would have been easily compensated for if the
functional network was in its original, resilient state, may now
lead to a robust change in the output X (Figure 1D, State 3).
This new state is characterized by the failure of control over
this particular functional network, expression of which is the
disease.

This example also explains why there are often only mild dif-
ferences in causally related elements observed between individuals
with and without a disease. Absent a disease process, the con-
trols will include subjects in States 1 and 2 (i.e., with normal and
adapted Elements A or B, who are nonetheless able to compensate
functionally). In contrast, patients with the disease will exhibit
alterations in Elements A and B that have exceeded the compen-
satory potential of the network. Not surprisingly, we could expect
greatly overlapping values in Elements A or B when each of them
is measured in isolation. If studied cohorts are large enough, we
may be able to discern statistically significant differences between
controls and patients utilizing standard statistical measures. How-
ever, we will unavoidably underestimate the strength of the causal
relationship for each element because of the variance introduced
by the variable levels of network compensation. From genetic to
functional studies, we have all experienced this predictable plight
that results from the application of reductionist methodology to
non-linear biological systems (25). However, if data are integrated
non-linearly (in real life or in a computational simulation), what
appear to be trivial differences among individuals may lead to
vastly different outcomes, depending on the initial conditions of
the system.

We noted before that we can avoid making false conclusions
about causal relationships if we measure all parameters in the
system (which is practically impossible), or if we simultaneously
quantify elements belonging to the same module. We will sug-
gest later how the use of clinical trials facilitates the identification
of elements pertaining to the same functional network in vivo,

emphasizing the importance of capturing data obtained upon
perturbations of the system.

Although real networks are undoubtedly more intricate than
the example utilized in Figure 1, the described theoretical concept
can be encountered in clinical practice. For example, daclizumab,
a monoclonal antibody (Ab) that blocks formation of high affin-
ity IL-2 receptor, effectively reduces MS disease activity (26, 27)
(output X), while inhibiting FoxP3+ T-regulatory cells (T-regs;
Element A)(28,29). Paradoxically,FoxP3 T-regs are the best known
cell type that prevents development of systemic autoimmunity
(30). If interpreted in a reductionist way, the above observation
would lead to the conclusion that in contrast to other autoim-
mune conditions, T-regs do not play an immunoregulatory role
in MS and may, in fact, be detrimental. Nonetheless, this conclu-
sion is likely incorrect, because daclizumab also activates another
regulatory cell population, CD56bright NK cells (31) (Element B),
cells that belong to the same in vivo functional network as T-regs
(and effector T cells) based on their competition for IL-2 (29).
CD56bright NK cells have overlapping immunoregulatory func-
tions with T-regs, although NK cells carry out different regulatory
programs (i.e., limiting T cell expansion by granzyme-K-mediated
cytotoxicity) (32) and may be especially important for regulation
of intrathecal inflammation (33–35). The new steady state induced
by daclizumab is clearly beneficial for MS. However, this state is
nevertheless an alteration of the normal “healthy” state, and thus
may be less resilient (36). In fact, increased skin inflammation
was observed during daclizumab treatment (26, 28), which may
be related to inhibition of T-regs. Moreover, a single patient who
failed to expand CD56bright NK cells during daclizumab treat-
ment developed CNS vasculitis (37), which is perhaps an example
of a non-linear consequence of further alteration of the targeted
functional network (Figure 1D, State 3).

EVOLUTION OF SYSTEMS THINKING TO SYSTEMS BIOLOGY
General systems theory (21, 38) has been a long-established aca-
demic discipline based on the axiom that “a system is more than
the sum of its parts” (21). Incorporation of systems thinking into
biomedical research is being driven by the challenge of integrating
large datasets of “omics” data (39–42) in a search for organizing
principles that underlie biological functions (24). Considering the
hierarchical organization of a complex biological system (e.g., the
human body affected by MS), there are considerable differences
in our ability to quantify elements at each organizational level
(Figure 2, X -axis). Because of the ease of measurements obtained
at the genome level and the determination of gene expression in
accessible tissues, initial “omics” studies strived to directly cor-
relate the bottom layers of the hierarchical organization with its
very top. However, due to extensive subcellular and cellular lev-
els of regulation, only part of the information captured in lower
hierarchical layers directly influences functioning of the organism.
One consequence of this uncoupling is the prohibitively large sam-
ple cohorts that are required in order to identify disease-relevant
elements from lower hierarchical levels in cross-sectional cohorts
(25), as demonstrated convincingly in genomic studies.

Intriguingly, systems theory determined that individual ele-
ments are much less important determinants of the behavior of a
given system, as compared to interactions among these elements
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FIGURE 2 | Organizational hierarchy of the human body affected by the
disease (example of MS) and its simplified model. Schematic illustration
of the organizational layers (depicted by different colors) of human body
affected by MS. X axis depicts relative ease (left) versus difficulty (right) of
obtaining high-quality quantifiable data within each organizational plane.
The panel to the left of the organizational chart represents different
methodologies utilized by systems biology: “bottom-up approach” uses
genomic data to predict disease occurrence or severity. “top-down”
divides patients into diagnostic categories and analyzes disease-specific
differences in the transcriptome by expression profiling of accessible
tissues, such as blood; “middle-out” approach (probably the least utilized,
while most useful) collects and analyzes data within one organizational
plane and then expands data gathering vertically in both directions: e.g.,
one can start by analyzing data on the cellular level and expand these
analyses downward by expression profiling of studied cells and upward by
pathological studies of the affected tissues. The panel to the right of the
organizational chart represents an idealized model of the studied system
that emerges from a systems biology approach. In this simplified model,
each organizational level is represented by limited number of essential
elements, which are derived from multiple different studies (e.g., simplified
in vitro models, including those derived from iPS cells, organotypic
cultures, animal models and finally, human observational, and interventional
studies) that provide information that is relevant to the particular disease
entity, in our case MS. The interactions (protocols) among the essential
elements are schematically depicted as different types of connecting lines
(with the understanding that protocols represent complex behaviors that
go beyond currently utilized positive or negative interactions). For example,
on the genomic (yellow) level, essential elements are known MS
susceptibility alleles, as well as yet unknown genetic variants that
modulate MS disease activity or phenotype. On cellular/tissue level
(green), essential elements are all cells of the immune system that
mediate damage (e.g., cytotoxic T cells) or promote repair (e.g., regulatory
immune cells, alternatively activated macrophages), as well as cells of the

CNS that are the target of inflammation (e.g., oligodendrocytes and myelin)
or the source of healing (e.g., oligodendroglial precursors in remyelination
and neural stem cells in adult neurogenesis). Thus, each organizational level
can be said to represent a “system.” There may be further subsystems
within organizational levels, such as, e.g., myelination within cellular/tissue
system. Yet, there are also vertical interactions among individual
organizational levels, making a disease like MS a “complex system” as
defined by Mesarovic et al. (24). For example, the genetic background of
the individual together with acquired epigenetic changes and microbial
influences present at the time of disease induction determine the severity
of intrathecal inflammation, the ability of CNS tissue to survive
inflammatory insults and the forms and levels of repair. The essential
elements at all hierarchical levels form an “in vivo functional network” and
the interactions among these elements capture the essence of the
information processing and output of this functional network [i.e., different
protocols or scripts regulating behavior of each subsystem and the
interactions between them (36)]. The model itself is constructed by
integration of data analyses from different studies of the disease process,
as well as varied physiological processes (e.g., MS in its entire evolution
from early relapsing-remitting disease to late secondary-progressive MS,
but also studies of developmental myelination or basic immune regulation).
Until a complete understanding of a disease process is achieved, the
corresponding model always represents a “work in-progress.” Models
develop as each new study adds or validates information about essential
elements or about protocols within individual subsystems or about
interactions between subsystems that affect behavior of the system. The
value of this simplified model resides in its ability to predict the behavior of
the biological system based on the input data. The validity of the model has
to be determined by repeated confirmation of model-based predictions in
the studied biological system in vivo (upper red arrow). Paradoxically,
discordant observations are the most valuable for guiding further efforts to
adjust the computational or conceptual model (lower red arrow), leading to
an increasingly better understanding of the system.

(24, 38). Thus, defining interactions among the elements of a com-
plex system [otherwise called “protocols” (36)] is expected to pro-
vide a deeper understanding of the system than simply cataloging
system parts (13, 24). Indeed, understanding the operational pro-
tocol(s) in one module may provide predictive understanding
of another module, because the robust organizing principles are

evolutionarily conserved and re-used in different functional net-
works (24). For example, the knowledge about the ability of IL-
15Rα expressed on one cell to trans-present IL-15 to another cell
(43) informed the discovery that IL-2Rα (CD25), which is closely
related to IL-15Rα, can also present IL-2 to different immune cells
in-trans (44).

Frontiers in Neurology | Multiple Sclerosis and Neuroimmunology June 2014 | Volume 5 | Article 102 | 4

http://www.frontiersin.org/Multiple_Sclerosis_and_Neuroimmunology
http://www.frontiersin.org/Multiple_Sclerosis_and_Neuroimmunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bielekova et al. Systems biology in translational research

While first hints about interacting elements can be derived from
their association (e.g., correlations) observed in vivo (10), a full
understanding of the nature of relationships among individual
elements requires functional assays that are generally laborious,
expensive, and difficult to standardize. Such assays can be applied
only to a limited number of samples. We will argue that imple-
menting such mechanistic studies into Phase I/II clinical trials,
in conjunction with systems biology approaches, poses consider-
able advantages in comparison to the attempts to gain mechanistic
insight from cross-sectional cohorts.

SYSTEMS BIOLOGY WORKFLOW FOR TRANSLATIONAL
RESEARCH
Ideker et al. in their seminal paper (5) described a general systems
biology workflow of four steps.

DEFINE THE COMPONENTS OF THE SYSTEM
Some level of understanding of the components and the organiza-
tional structure of the system is necessary for formulation of initial
hypotheses about how the system operates. If the critical elements
of the studied system are unknown, we need to acquire high-
quality data spanning multiple hierarchical levels. The inability
to collect complete datasets should not dissuade us from imple-
menting a systems biology approach. Rather, we should recognize
that the development of an accurate model – be it conceptual or
computational – of a given disease is an iterative process that will
require multiple rounds of adjustments to hone in on key bio-
logical mechanisms (45). Standardized collection and storage of
biological samples may bridge the present inability to measure data
comprehensively by exploiting future methodological advances.
What is essential, however, is that in addition to sample collection
for cataloging “elements,” we start implementing functional and
mechanistic studies that reveal “protocols” (36).

SYSTEMATICALLY PERTURB THE SYSTEM AND MONITOR ITS
COMPONENTS IN ORDER TO IDENTIFY IN VIVO FUNCTIONAL
NETWORKS AND DEVELOP FIRST MODELS OF THE SYSTEM
Interventional experimentation, employing biological, genetic, or
chemical manipulations, is vital to basic science. In contrast, trans-
lational scientists strive to gain insight primarily through observa-
tional studies. Such a strategy is extraordinarily ineffective, for the
reasons outlined previously.

Utilization of exogenous perturbations provides an opportu-
nity to collect multi-modality data from the same human being
before and in specified time period(s) after application of the stim-
ulus that perturbs the system in a highly standardized manner
(Figure 3). Because each subject serves as his/her own control,
such a paradigm limits influences of genetic and environmental
diversity and allows scientists to identify those components of the
system that were specifically affected by the perturbation. Such an
approach represents a unique opportunity to identify key compo-
nents of the system that interact in vivo, i.e., that are part of the
same functional module.

Identification of the elements that belong to the same module
then radically facilitates mechanistic studies aimed at defining pro-
tocols that regulate the behavior of the module (Figure 3), because
such studies can now focus only on identified components. This

concept is again exemplified in clinical trials of daclizumab in MS,
which were heavily supported by mechanistic studies (26, 29, 31,
34, 44, 46). For example, observations that daclizumab therapy
causes coordinated changes in the numbers of activated T cells
and CD56bright NK cells (31) prompted an intense search for the
protocols that guide interactions between these two cell types (32).
This led to the discovery of the granzyme-K-mediated cytotoxi-
city of CD56bright NK cells toward autologous activated T cells,
despite the fact that CD56bright NK cells were thought to have low
cytotoxic potential (47) and the prevailing immunological dogma
stipulated that NK cells cannot kill autologous, MHC-I express-
ing cells. Despite controversy raised by the publication of human
studies, physiological NK-mediated killing of activated autologous
T cells has now been decisively confirmed in animal systems (48).
Similarly, it was the observation that daclizumab therapy causes
reciprocal expansion of CD56bright NK cells and contraction of
pro-inflammatory lymphoid tissue inducer (LTi) cells that incited
search for the functional relationship between these cell types.
Benefiting greatly from published animal studies (49, 50), we were
able to rapidly formulate and mechanistically confirm a unifying
hypothesis about developmental association between CD56bright

NK cells and LTi cells in humans, where intermediate affinity IL-
2/IL-15 signal plays a decisive role in promoting differentiation
of common innate lymphoid cell (ILC) precursors away from LTi
and toward NK cell lineage (46). These two examples demonstrate
how, in conformity with systems biology workflow, incorporation
of biomarker, and mechanistic studies to small (Phase I/II) clinical
trials generated unexpected insight about human functional net-
work that contains elements not previously linked to MS disease
process (i.e., CD56bright NK cells and LTi cells), but with possibly
high pathophysiological potential (33, 47, 51).

Thus, although the only widely available perturbations that can
be utilized in humans are exogenously applied therapies within
the context of clinical trials, we should not view this as a lim-
itation. Rather, clinical trials, especially in their earliest stages
(Phase I/II) embody a unique opportunity in this regard: first,
the clinical infrastructure is already assembled and the acquisition
of clinical, laboratory, and imaging data is much denser than in
clinical practice. Therefore, highly standardized multi-modality
data are already collected as part of clinical trials, and thus in
general no additional investments are required. Second, these tri-
als are often performed in leading academic centers that have a
broad research infrastructure, which can be employed for collec-
tion and processing of biological samples and, most importantly,
for implementation of targeted functional assays. While this step
does require additional resources, the investment is remarkably
smaller than situations in which sample collection and functional
assays were not coupled to a clinical trial, and the entire infrastruc-
ture for systems biology studies would have had to be created de
novo. Additionally, because only a minority of treatments proceed
to Phase III testing, focusing on Phase I/II trials offers an advantage
for studying a broad array of perturbations, including those that
will fail (11) and therefore go against a current conceptual model of
the disease. Indeed, such “failures” hold the potential to dramat-
ically increase knowledge through the necessary revision of the
disease model (45, 52). For example, if biomarker measurements
in treated patients demonstrated that the drug had the predicted
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FIGURE 3 | Utilization of clinical trials with associated biomarker studies
to increase understanding of the biological system. Clinical trials
represent a unique opportunity for employing systems biology research
methods. Data are obtained on multiple organizational levels before and after
treatment from the same set of patients. Subtraction analysis (i.e., comparing
within each subject data collected before and at specified time-intervals after
initiation of treatment and considering those markers that change
synchronously in subjects sharing the same treatment allocation) then
identifies those changes that are direct, or, more often, indirect
consequences of applied therapy. While applied therapy affects some
elements directly (for example rituximab directly depletes B cells), this
primary effect induces multiple secondary effects, as the system “adjusts” to
the induced change. For example, inhibition of certain T cell functions under
rituximab therapy would “alert” the investigators to the fact that T and B cells
normally interact in vivo in mediating antigen-specific immunity, because the

lack of B cells has to directly or indirectly explain the observed functional
deficit in T cells, as T cells do not express CD20, the target of rituximab. Of
course, it was known before initiation of rituximab trials that T and B cells
interact together, but by analyzing samples from clinical trials of daclizumab
we gained new insights into elements of the immune system that had
previously been obscure such as innate lymphoid cells and their unexpected
role in the MS disease process. Elements that are changing synchronously by
applied therapeutic perturbation are part of the same “in vivo functional
network” that has been disturbed by treatment. Identification of gene
transcripts, proteins, and cell types that interact with each other in vivo then
greatly facilitates investigation of interactions between these elements in
simplified models, such as in vitro functional assays, ex vivo signaling assays,
or in vitro pharmacology studies. Mechanistic insight (i.e., identified protocols)
gained from these simplified models has to be verified in vivo, either by
studying a new set of patients or by applying new therapies.

effect on a particular molecular mechanism in the target tissue,
but no efficacy on tissue destruction was observed, we would then
be able to conclude that the targeted molecular process does not
contribute directly to the higher-order phenomenon at the tissue
level. Such a “negative” trial would still significantly advance the
field.

The inclusion of systems biology (e.g., modeling) as a core
part of the clinical trial process also poses great advantages for
drug development. Accompanying biomarker studies may not
only determine whether or not the candidate drug has the expected
mechanistic effects in vivo, but could also guide rational dose selec-
tion for subsequent Phase III trials, generate candidate biomarkers
that either predict or reflect therapeutic efficacy (31), and optimize
the target patient population [by identifying subjects with a thera-
peutic target and/or screening out subjects with a pre-disposition
to side effects (53)]. Such candidate biomarkers may be then val-
idated seamlessly in Phase III trials, as is currently being done
for CD56bright NK cells as a biomarker of therapeutic efficacy of
daclizumab therapy in MS (27, 31).

Although the inclusion of systems biology methods in clinical
trials requires additional resources, the combined benefits of this
approach for the sponsor (i.e., lower cost of Phase III trials due
to optimal selection of therapeutic dose and patient population,
potentially joint biomarker/drug regulatory approval leading to
post-marketing advantage), for the patients/society (i.e., enhanced
risk/benefit stratification, avoidance of dosing subjects that lack
the therapeutic target), and for scientific community (i.e., obtain-
ing critical mechanistic insight into the disease process) should
provide an impetus for all interested parties to advocate, search
for, and find creative solutions to the funding problem.

RECONCILE THE EXPERIMENTALLY OBSERVED RESPONSES WITH
THOSE PREDICTED BY THE COMPUTATIONAL MODELS
A key concept is that the more complex the system is, the more
difficult it is to determine whether any model truly predicts the
behavior of the system (38, 45). From the standpoint of model
refinement, the failure of model predictions – rather than its suc-
cesses – paradoxically carries more information for an eventual
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understanding of the system (7, 21). Concordance of the behav-
ior between the model and the system tells us only that the
model faithfully predicts functioning of the system within tested
parameters. Discordance, on the other hand, indicates that our
understanding of the system is either incorrect or insufficient and
requires modification. For example, efficacy of immunomodu-
latory therapies in RR-MS, including long-term efficacy of high
dose immunosuppression followed by autologous bone marrow
transplantation (aBMT) (54), if applied to young patients with
short disease duration, provide strong evidence for the immune-
driven pathogenesis of RR-MS. On the other hand, failure of
the same therapeutic modalities to stop accumulation of disabil-
ity in progressive MS, while retaining its high efficacy on MRI
contrast-enhancing lesions (CEL) (54, 55), provides a basis for the
currently broadly accepted view that neuro-degeneration, rather
than inflammation drives disability in progressive MS. While this
is certainly a possibility, it represents only one of several possi-
ble explanations. We assume that therapeutic modalities such as
alemtuzumab or high dose immunosuppression followed by BMT
successfully inhibit all intrathecal inflammation in progressive MS
based on their efficacy on CEL. However, rare instances when the
level of remaining CNS inflammation was quantified directly (i.e.,
by pathology studies after patient’s death) suggests otherwise (56)
and point to the fact that our assumptions are often simplistic rep-
resentation of complex reality. While CEL may indeed be caused by
dense perivascular infiltrates in some RR-MS patients, they cannot
be viewed as a biomarker of all types of intrathecal inflammatory
activity. Therefore, rather than committing to the first, perhaps
most obvious interpretation, systems biology approach searches
for all possible explanations of a given observation and utilizes a
new perturbation experiment to distinguish between alternatives.

DESIGN AND PERFORM NEW PERTURBATION EXPERIMENTS TO
DISTINGUISH BETWEEN MULTIPLE AND COMPETING MODEL
HYPOTHESES AND TO PROVIDE ADDITIONAL DATA FOR
IMPROVEMENT OF THE MODEL
Clearly, a single experiment embodied by a single interventional
trial will not provide a complete understanding of a given disease.
Rather, different clinical trials will generate partially overlapping,
but mostly complementary information that, when integrated on
the bioinformatics level (11, 45), can ultimately reveal the true
nature of the disease process in a manner analogous to how
assembled pieces of the jigsaw puzzle reveal the underlying image.
Although such bioinformatics-based integration of information
derived from different clinical trials has not been performed yet in
MS, the closest existing example we could think of is the Bayesian-
based design and analysis of the I-SPY-2 TRIAL (Investigation of
Serial Studies to Predict Your Therapeutic Response with Imaging
and Molecular Analysis 2; www.ispy2.org). This innovative clini-
cal trial randomizes patients with newly diagnosed breast cancer to
different treatment arms based on the analysis of patient-specific
tumor biomarker profiles in relationship to accumulating knowl-
edge from the ongoing analyses of outcomes of previously enrolled
patients. Thus, each patient’s molecular tumor signature is pref-
erentially paired with the type of chemotherapeutic agent that
previously showed the best efficacy for that particular type of
tumor. The efficacy data are processed and incorporated in real

time to generate an optimized predictive scheme for the next set
of enrolled patients. At the same time, the outcomes from different
studied treatments are compared to each other so that ineffectual
or toxic drugs can be abandoned and substituted with novel agents.
I-SPY-2 TRIAL can be viewed as a compendium of multiple trials,
which all benefit from the shared infrastructure and know-how
(biomarker analyses, mathematical modeling), providing societal
value way beyond determination of the efficacy of a single agent.
The trial is sponsored by the Biomarker Consortium, a unique
partnership between the Foundation for NIH (FNIH) and a large
number of pharmaceutical companies, academic medical centers,
and patient advocacy groups. As such, it represents the prime
example of the creative funding solution(s) we advocated for in
the previous section.

Given the scope and complexity of the systems under study,
integration of knowledge from different sources will almost cer-
tainly require both biological (e.g., in vitro experiments with
immune cells or iPS cells differentiated in CNS cell subtypes,
as well as enhanced animal models) and mathematical model-
ing [e.g., in silico experimental workflow (57)]. Investigators can
then draw on these data and the correlations derived from bioin-
formatics analyses both to better understand causal mechanisms
and to guide the selection and design of future interventions.

FROM SYSTEMS BIOLOGY TO PERSONALIZED MEDICINE
AND BEYOND
Although in this paper, we advocate implementation of systems
biology methods to clinical trial methodology as a tool to gain
predictive understanding of disease processes, we need to acknowl-
edge that methods of systems biology will have much broader
application to all of clinical medicine. Systems biology-derived
informatics that goes beyond the current paradigm of statistically
based bioinformatics (53, 58), are an absolute prerequisite for
personalized or precision medicine (13). For example, although
we currently utilize in clinical practice a large number of val-
idated laboratory measurements, we judge the abnormality of
these measurements independently of each other. However, they
do not represent independent values, as many of them actually
belong to shared functional modules. If instead, we applied an
understanding of the protocols that underlie relationships between
these dynamic biomarkers in a living system to interpretation of
laboratory results (i.e., by using all simultaneously obtained lab-
oratory measurements as “input” into a computational model of
human homeostatic regulation) we would obtain information that
greatly exceeds current designation of “normal” or “abnormal”
results. The predictive model should be able to pin-point labora-
tory error (if obtained values in one biomarker are incompatible
with obtained values in remaining biomarkers that are part of the
same functional network) or specify the type of homeostatic fail-
ure that is capable of producing the obtained results. We have little
doubt that such methodology will be the basis of future diagnostic
processes.

Furthermore, once we can model diseases computationally as
an integrated, ongoing, and evolving process, we will also gain
the ability to more effectively treat individual patients. Due to
advances in molecular diagnostics, it is now well-appreciated that
defects in different genes can lead to phenotypically similar disease
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expression (59). Similarly, many neurodegenerative diseases have
both polygenic (common) and monogenic (rare) disease variants.
Indeed, failure of the regulation of one functional network can
have multiple different causes and it is likely that optimal therapies
may likewise differ depending on causal element(s).Validated mol-
ecular, cellular and functional biomarkers will be able to pin-point
specific types of regulatory failure that underlies disease expres-
sion in a particular subject from whom these measurements were
obtained. For example,we envision that in the not so distant future,
development of new, more sensitive, and cell-specific biomarkers
of intrathecal inflammation will be able to select those patients
with progressive MS who will benefit from novel immunomodu-
latory therapies. Such biomarkers will also facilitate development
of these novel treatments and serve as guidance for the treating
clinician who is monitoring their efficacy in clinic. Thus, clini-
cians will no longer think about “old” categories of diseases, but
instead about molecular signatures that define new disease taxon-
omy (58), about dysregulated pathways, stochastic processes, and
failed functional networks (8). We will gain individualized prog-
nostic insight, and, above all, we will be able to rationally select
and optimize treatment combinations for this particular patient.

CONCLUSION
Systems biology is not an approach in which the mindless appli-
cation of powerful technologies can compensate for the lack of
creative thinking. Rather, the integration of systems thinking with
dynamic computational modeling can lead to the development
of a “virtual sandbox” in which researchers can utilize their cre-
ativity and intuition to try out and explore multiple different
hypotheses and lines of investigation. From creative design of
clinical protocols, accompanying functional assays and computa-
tional algorithms for data analyses, to imaginative data integration
and reduction (60), thoughtful adaptation of knowledge from
previously identified protocols to new regulatory modules and bio-
logical systems, it is clear that success of systems biology requires
pioneering visionaries as much as highly collaborative teams.
While technical developments provide opportunities, conceptual
advances are the true drivers of the progress.
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