
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 02 September 2014
doi: 10.3389/fneur.2014.00159

Microdialysis monitoring of CSF parameters in severe
traumatic brain injury patients: a novel approach
Eric P.Thelin1*, David W. Nelson2, Per Hamid Ghatan3 and Bo-Michael Bellander 1

1 Section for Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
2 Section of Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
3 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

Edited by:
Firas H. Kobeissy, University of
Florida, USA

Reviewed by:
Inga D. Neumann, University of
Regensburg, Germany
Ajeesh Koshy Cherian, University of
Michigan, USA

*Correspondence:
Eric P. Thelin, Section for
Neurosurgery, Department of Clinical
Neuroscience, Karolinska Institutet,
Building R2:02, Karolinska University
Hospital Solna, S-17176, Stockholm,
Sweden
e-mail: eric.thelin@ki.se

Background: Neuro-intensive care following traumatic brain injury (TBI) is focused on pre-
venting secondary insults that may lead to irreversible brain damage. Microdialysis (MD) is
used to detect deranged cerebral metabolism.The clinical usefulness of the MD is depen-
dent on the regional localization of the MD catheter.The aim of this study was to analyze a
new method of continuous cerebrospinal fluid (CSF) monitoring using the MD technique.
The method was validated using conventional laboratory analysis of CSF samples. MD-CSF
and regional MD-Brain samples were correlated to patient outcome.

Materials and Methods: A total of 14 patients suffering from severe TBI were analyzed.
They were monitored using (1) a MD catheter (CMA64-iView, n=7448 MD samples)
located in a CSF-pump connected to the ventricular drain and (2) an intraparenchymal MD
catheter (CMA70, n=8358 MD samples). CSF-lactate and CSF-glucose levels were mon-
itored and were compared to MD-CSF samples. MD-CSF and MD-Brain parameters were
correlated to favorable (Glasgow Outcome Score extended, GOSe 6–8) and unfavorable
(GOSe 1–5) outcome.

Results: Levels of glucose and lactate acquired with the CSF-MD technique could be cor-
related to conventional levels. The median MD recovery using the CMA64 catheter in CSF
was 0.98 and 0.97 for glucose and lactate, respectively. Median MD-CSF (CMA 64) lactate
(p=0.0057) and pyruvate (p=0.0011) levels were significantly lower in the favorable out-
come group compared to the unfavorable group. No significant difference in outcome was
found using the lactate:pyruvate ratio (LPR), or any of the regional MD-Brain monitoring in
our analyzed cohort.

Conclusion:This new technique of global MD-CSF monitoring correlates with conventional
CSF levels of glucose and lactate, and the MD recovery is higher than previously described.
Increase in lactate and pyruvate, without any effect on the LPR, correlates to unfavorable
outcome, perhaps related to the presence of erythrocytes in the CSF.

Keywords:TBI, microdialysis, cerebrospinal fluid, lactate, pyruvate, outcome

INTRODUCTION
Traumatic brain injury (TBI) is a common cause of death and dis-
ability, increasing globally, with subsequent rising costs for society
(1). The neuro-intensive care following TBI is focused on mon-
itoring and preventing harmful secondary insults that may lead
to irreversible brain damage (2, 3). The microdialysis (MD) tech-
nique is used to analyze focal brain biochemistry in patients suf-
fering from TBI, examining concentrations of pyruvate, glucose,
glycerol, and lactate in the extracellular fluid (ECF) (4). Glucose,
being the main substrate for brain energy metabolism,will through
glycolysis become pyruvate, which in normoxic conditions enters
the mitochondria and becomes part of the citrate cycle. During
hypoxic conditions, energy production will decrease while lactate
levels, and the lactate:pyruvate ratio (LPR), will increase as a sign
of tissue ischemia (5). In contrast, if pyruvate levels remain nor-
mal and lactate levels increase, ongoing mitochondrial dysfunction
has been suggested (6). Glycerol, abundant in cell membrane,

might be released and increase in the ECF as a sign of ongoing
cell death (7).

Despite a consensus report on the clinical use of MD for TBI
patients (8), the translation of the technique from research to bed-
side has been slow (9). An obstacle with the MD technique is the
catheter placement. In order to optimize the monitoring capa-
bilities, the catheter has been suggested to be best placed in the
border zone of injuries, monitoring focal tissue at risk (8, 10–12).
However, the results yielded by different catheter placements, and
their correlation to outcome, have been questioned (13), and a
pericontusional area is not readily detectable in diffuse TBI. Even
if pericontusional tissue is monitored with MD, monitoring has
been shown to present very heterogeneous metabolic results, prov-
ing accurate focal monitoring difficult (14). In contrast, a different
approach to monitor potential variations has also been advocated,
where the catheter is placed in non-pericontusional, non-affected
brain tissue in order to detect more global metabolic changes (15).
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The ECF and the cerebrospinal fluid (CSF) have been shown
to demonstrate comparable pharmacokinetics and concentrations
of administered drugs (16, 17). Also, data suggest that there is
a flow of proteins between the ECF and CSF (18). Hence, ana-
lyzing the CSF could reflect changes in the ECF. Studies on the
flow of metabolites, such as glucose, lactate, pyruvate, and glyc-
erol between ECF and CSF are however limited. In contrast to
proteins, their movements are often facilitated by their small size
yet regulated by transporter proteins commonly following the
concentration gradient between different compartments.

A MD-sampling of CSF is motivated to avoid infectious com-
plications. About 10% of neurosurgical cases suffer from some
kind of surgical-related infection, with about 4% risk of develop-
ing bacterial meningitis (BM) (19). Decreased CSF-glucose and
increased CSF-lactate levels are since long recognized changes in
BM (20), but also important predictors for developing a clinical
BM following neurosurgical procedures (21). This study presents
a CSF monitoring method using the MD technique. One of the
major benefits of the current monitoring setup is that it is in a
closed system, lowering the risks of infection and other mechanical
complications.

AIMS
The aim was to validate a method of global MD monitoring by
using a MD catheter placed in CSF. As a secondary aim, conven-
tional CSF samples were used to calculate the recovery of the MD
catheter and to correlate MD-CSF and MD-Brain parameters to
patient outcome.

MATERIALS AND METHODS
INCLUSION CRITERIA
Fourteen patients suffering from severe TBI were included between
January 1, 2010 and December 31, 2012. The slow inclusion rate
was due to the intermittent availability of the first author and did
not represent a patient-selection process. The patients were mon-
itored with an intracerebral 20 kDa MD catheter (MD-Brain). An
additional 20 kDa MD catheter (CMA 64 IView, CMA Micro-
dialysis AB, Solna, Sweden) was placed in the CSF through a
LiquoGuard® pump system (Möller-Medical, Fulda, Germany)
(MD-CSF). The study was approved by the local ethics committee
in Stockholm County (application #2009/1112-31).

TREATMENT
All patients suffered from severe TBI (GCS 3–8 at admission) and
were intubated, mechanically ventilated, and sedated with mor-
phine, midazolam, or propofol. If mass lesions were present, they
were evacuated as deemed appropriate. Intracranial pressure (ICP)
was measured using an extra ventricular drain (EVD) (Medtronic,
USA). The transducer for the EVD was placed at the level of the
foramen of Monroe. Patients’ heads were elevated to a 30° angle. If
traumatic subarachnoid hemorrhage was substantial, transcranial
doppler was performed and Nimodipine treatment given. Initially,
clear fluids were provided and within 24 h after trauma, naso-
gastric tubing was generally used to constantly feed the patient.

A LiquoGuard® (Möller-Medical, Fulda, Germany) system was
used (22, 23) to slowly evacuate CSF. The draining velocity of CSF
was set to 2 mL/h. The LiquoGuard® simultaneously measures ICP
by monitoring CSF pressure pulsation with the sensor placed at

the same height as the EVD transducer (23), making it possible to
measure ICP and drain CSF at the same time.

Conventional CSF sampling was performed twice a week as a
routine management in patients with EVD to screen for potential
infection, or more often if deemed clinically motivated, analyz-
ing CSF-cells (manually counted using microscopy techniques),
CSF-lactate, CSF-glucose, CSF-albumin (UniCel DxC 800, Beck-
man Coulter Inc., Brea, CA, USA), and performing CSF cultures
at the Department of Laboratory Medicine, Karolinska University
Hospital.

ADMISSION AND BIOMARKER PARAMETERS
Glasgow Coma Scale (24) and pupil responsiveness (0), unilat-
eral unresponsiveness (1), or bilateral unresponsiveness (2) were
acquired at the admission to the hospital. Injury severity score
(ISS) (25) and abbreviated injury score (AIS) were assessed (26).
Two biomarkers of brain injury, S100B (27) and neuron-specific
enolase (NSE) (28), were analyzed. Serum S100B was sampled
every 12 h and peak serum levels of S100B 12–36 h after trauma
were acquired as clinical routine (29), using an electrochemi-
luminescence assay (Elecsys System®, Roche Diagnostics, Basel,
Switzerland). Peak serum levels of NSE were analyzed using an
immunoradiometric assays (LIAISON®, DiaSorin, Italy) (30).

NEURORADIOLOGY
Intracranial lesions at admission were noted and graded accord-
ing to Marshall CT-score (31), Rotterdam CT-Score (32), and
Stockholm CT-Score (33). The patients were assessed regarding
catheter placement according to a previous definition (13, 34);
pericontusional location (within 2 cm of a mass lesion, contusion,
or hematoma border) or ipsilateral (further away than 2 cm of any
lesion, yet in the affected hemisphere), as seen on the postoperative
CT scan.

OUTCOME
A physician, board certified in neuro-rehabilitation, examined the
patients 6 months after trauma assessing extended Glasgow Out-
come Score (GOSe) (35). GOSe is graded in eight levels where
GOSe 1= death and GOSe 8= upper good recovery. GOSe have
been previously dichotomized into unfavorable (GOSe 1–4) vs
favorable (GOSe 5–8) outcome (36), and GOSe 1–6 vs GOSe 7–8
(15). In the current study, outcome was dichotomized as unfavor-
able (GOSe 1–5) and favorable (GOSe 6–8), as this also correlated
in our study with conventional Glasgow Outcome Score (GOS)
dichotomized into unfavorable (GOS 1–3) and favorable (GOS
4–5) outcome.

MICRODIALYSIS
A 20 kDa cutoff cerebral MD catheter (CMA 70, 10 mm mem-
brane, µ-dialysis AB, Stockholm, Sweden) was inserted into the
brain parenchyma, adjacent to the ventricular drain in the affected
hemisphere in a diffuse brain injury or when further craniotomy
was not performed, or next to the lesion in a focal brain injury,
during the initial neurosurgery at admission. Post-surgery at the
NICU, the MD catheter was connected to a MD pump (CMA
106, µ-dialysis AB, Stockholm, Sweden) where a commercially
available perfusion fluid (“Perfusion Fluid CNS”, µ-dialysis AB,
Stockholm, Sweden), pumped at 0.3 µL/min, was used as carrier
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for all MD metabolites. Another 20 kDa cut off catheter (CMA
64 iView, 10 mm membrane, µ-dialysis AB, Stockholm, Sweden),
with a CMA 106 MD pump, was placed inside a four-way stopcock
(Multiflo 3, BD Connecta, Franklin Lakes, NJ, USA) (Figure 1),
connected to the LiquoGuard® CSF-pump, located in the drain-
ing CSF at all times. Membrane length and dialysis perfusion flow
rate are factors known to affect recovery and were thus standard-
ized for all catheters used (37). The CMA64 catheter has, when
placed in a peripheral vein, shown an adequate congruence (80%
MD recovery) between CMA64 MD-glucose and plasma glucose
levels (38, 39).

The MD pumps acquired samples were stored in microvials
(holding 200 µL). The microvials were analyzed simultaneously
every hour with a CMA 600 enzyme photometric analyzer (µ-
dialysis AB, Stockholm, Sweden). The CMA 70 catheter has been
shown to have a 65–72% substance recovery from the ECF (40).
Withdrawal of MD monitoring was performed if the patient
became conscious or the catheter was accidentally removed or
malfunctioned in any other way.

Median data, and interquartile range, of all MD parameters
(glycerol data not normally distributed) were used in the analysis,
as in previous studies (11, 15).

The latest MD-CSF sample acquired was compared to the con-
ventional CSF sample that was drawn, as not to affect the local
concentrations in the flowing CSF measured by MD-CSF. Recov-
ery was assessed by calculating the MD/CSF ratio for glucose, as
well as lactate, for each CSF sample obtained and compared to the
closest acquired MD-sample.

STATISTICAL ANALYSIS
The statistical program R (R Foundation for Statistical Com-
puting, Vienna, Austria; http://www.R-project.org) was used. The
“rms”-package in R was used to perform univariate logistic regres-
sion analyses, analyzing the correlations between differences of
CSF and MD-CSF glucose and MD-CSF lactate, as well as for out-
come predictions. As a consequence of the limited sample size,
a Bonferroni correction (×9) was used to decrease the rate of a
potential false positive result (41). Bland–Altman plots were used
to visualize congruence between conventional CSF samples and
MD-CSF samples (42), adjusted for repeated measures (43). A
Mann–Whitney U Test was used to assess association between
median MD parameters and favorable and unfavorable outcome.
Trend curves displaying the different MD metabolites were illus-
trated with linear plots built in Graph Pad Prism 6.0 (GraphPad
Software Inc., 2014).

RESULTS
EPIDEMIOLOGICAL DATA
The admission characteristics of the 14 patients included are
described in Table 1. A total of six patients had a favorable out-
come (GOSe 6–8), while eight had an unfavorable outcome (GOSe
1–5), among them, two patients died. Catheter placement was
predominantly non-pericontusional (n= 9).

Table 2 shows all the acquired MD data as median levels (and
1st–3rd quartiles). The number of MD samples acquired for each
patient varied between n= 30 and n= 265 per patient, depending
on NICU stay and sample type. Thus, Table 2 also provides the

FIGURE 1 |The monitoring setup, illustrating the CMA 64 MD catheter
in a closed system of flowing CSF.

duration of MD monitoring in hours from admission, 1 day up
to about 11 days. Table 3 illustrates the conventional CSF samples
and the different parameters analyzed.

CORRELATION BETWEEN CSF AND MD-CSF SAMPLES
The concordance of the two methods is illustrated using a Bland–
Altman plot (Figures 2A,B), adapted for repeated measures, where
the variance for glucose and lactate are 0.51 and 0.13, respectively.

As is illustrated in Table 3, the median MD recovery (the pair-
wise CSF-MD sample divided by CSF sample) of glucose and lac-
tate was 0.98 (interquartile range: 0.90–1.03) and 0.97 (0.84–1.08)
(if averaged per patient, 0.96 and 0.98), respectively. The difference
between MD-CSF samples and CSF samples were not significantly
related to by CSF-erythrocytes, CSF-leukocytes, CSF-albumin, or
the time from insertion of the catheter to sampling (Table 4).
CSF-lactate levels correlated significantly to CSF-erythrocyte levels
(p= 0.0035, r2

= 0.255). None of the patients developed positive
CSF cultures during their NICU stay.

CORRELATION BETWEEN MD PARAMETERS AND OUTCOME
Both MD-CSF lactate (p= 0.0167) and pyruvate (p= 0.0293)
levels were significantly lower in the favorable outcome (GOSe
6–8) group compared to the unfavorable group (GOSe 1–5)
(Figures 3A,B). The regional MD-Brain did not show any
significant difference in outcome (Table 5).

MD-CSF AND MD-BRAIN MONITORING OF PATIENTS
The levels of MD-CSF and MD-Brain in the first 150 h after
insertion are displayed in Figures 4A–E. Glucose is higher in the
MD-CSF compared to MD-Brain, while the opposite applies for
lactate, pyruvate, LPR, and glycerol that are generally higher in
MD-Brain compared to MD-CSF. Figures 5A,B illustrates, what
is also seen in Figures 3A,B, that patients with favorable outcome
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Table 1 | Demographics.

Patient Admission parameters Biomarkers CT-classification Outcome MD catheter

Gender Age GCS ISS AISS Pupils S100B NSE Marshall Rotterdam Stockholm NICU stay GOSe Localization

1 M 54 7 29 4 1 0.26 15 VI 5 3.9 6 7 Pericontusional

2 F 53 5 25 5 2 0.7 73 VI 6 3.8 24 4 Ipsilateral

3 M 23 7 29 4 1 0.33 62 VI 5 2.7 18 5 Pericontusional

4 M 20 8 17 3 0 0.2 27 II 3 1.9 21 8 Ipsilateral

5 M 38 5 38 5 0 0.19 55 II 3 3.0 19 5 Ipsilateral

6 M 25 7 25 5 0 0.26 27 VI 4 2.0 8 8 Ipsilateral

7 M 42 3 38 5 0 0.37 20 II 3 2.5 23 4 Pericontusional

8 F 52 3 29 4 1 0.41 39 II 2 4.0 22 3 Ipsilateral

9 M 59 5 25 5 1 0.62 64 VI 5 2.7 15 2 Pericontusional

10 M 62 7 25 5 0 0.61 31 VI 3 2.0 23 1 Pericontusional

11 M 49 3 16 4 0 0.23 21 II 3 1.7 21 7 Ipsilateral

12 M 20 5 29 4 0 0.12 20 VI 2 2.0 7 8 Ipsilateral

13 F 61 3 26 5 0 0.29 24 VI 5 2.5 4 6 Ipsilateral

14 M 47 4 26 5 0 7.0 149 VI 6 3.5 7 1 Ipsilateral

Table illustrating patient demographic data. The patients with pericontusional microdialysis catheters are in white rows, while the rows of patients with ipsilateral

microdialysis catheters are gray.

GCS, Glasgow Coma Scale at admission (3–15). ISS, Injury severity score at admission to the neuro-intensive care unit (1–75). AISS, Abbreviated injury score (1–6).

Pupils: 0, Normal responsiveness. 1, unilateral pupil unresponsiveness. 2, bilateral pupil unresponsiveness. S100B, Peak serum levels (µg/L) 12–36 h after reported

trauma. NSE, Peak serum levels of NSE (µg/L) during the first 48 h after reported trauma.

CT-classification: Admission CT scan according to:

Marshall, According to Marshall CT-classification;

Diffuse injury I – No visible intracranial pathology seen on CT scan.

Diffuse injury II – Cisterns are present with midline shift of 0–5 mm and/or lesions densities present; no high or mixed density lesion >25 cm3. May include bone

fragments and foreign bodies.

Diffuse injury III – Cisterns compressed or absent with midline shift of 0–5 mm; no high or mixed density lesion >25 cm3.

Diffuse injury IV – Midline shift >5 mm; no high or mixed density lesion >25 cm3.

Evacuated mass lesion (Grade V) – Any lesion surgically evacuated

Non-evacuated mass lesion (Grade VI) – High or mixed density lesion >25 cm3; not surgically evacuated.

Rotterdam=According to Rotterdam CT-classification score (1–6).

Stockholm=According to Stockholm CT-score (tally).

NICU stay, Days spent in the NICU. GOSe, Extended Glasgow Outcome Score 6 months after trauma (1–8). MD-catheter localization: pericontusional ≤2 cm to the

injury; Ipsilateral >2 cm from the injury, but in the affected hemisphere.

have lower levels of lactate and pyruvate in MD-CSF compared to
patients with unfavorable outcome (Figures 5A,B).

DISCUSSION
The comparison of “global,” CSF microdialysis, conventional CSF
samples, and intracerebral microdialysis has, to the best of our
knowledge, never been studied before in a clinical setting. This
study of 14 patients indicates that the samples acquired using the
current “global” CSF-MD method is highly correlated to conven-
tionally drawn CSF samples concerning glucose and lactate and
that the median MD recovery of the 20 kD CMA64 MD catheter
with a 0.3 µL/min dialysis flow rate in CSF is near 100%, higher
than previously described for 20 kD MD catheters in ECF (40). In
addition, MD-CSF pyruvate and lactate levels were, despite this
small cohort, significantly correlated to outcome.

CSF PARAMETERS AND MD-CSF PARAMETERS
The difference between CSF and MD-CSF parameters is illus-
trated by the Bland–Altman plots (Figures 2A,B). Lactate levels

are deemed to be within an acceptable range for clinical use, with
only one sample outside the confidence limits. The variance for
glucose was higher (0.51) than for lactate (0.13). For glucose, sev-
eral samples were inside the confidence bounds, yet 32% of the
samples were outside 1 SD (±0.84 mmol/L), which could repre-
sent a problem if the method was to be clinically implemented. As
can be seen for glucose and lactate, one patient (gray dots) signif-
icantly lowered the confidence bounds. Also, for glucose, another
patient (black) had higher pair-wise difference. These patients
could represent that the catheter is in some way malfunctioning
and subsequently affect the sampling and the Bland–Altman plot.

Leukocyte, albumin, and erythrocyte concentrations in CSF,
as well as the time from MD catheter insertion and sampling,
are parameters that could affect the function and recovery of
the MD catheter. However, no significant relation was found
between these parameters and the differences between MD-CSF
and conventional CSF levels of glucose and lactate (Table 4).

Glucose levels exhibited a higher variance than lactate, per-
haps because of a higher fluctuation of the metabolite in CSF.
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Table 2 | Microdialysis parameters.

Patient Brain-MD CSF-MD

Glucose

(mmol/L)

Lactate

(mmol/L)

Pyruvate

(µmol/L)

LPR Glycerol

(µmol/L)

Glucose

(mmol/L)

Lactate

(mmol/L)

Pyruvate

(µmol/L)

LPR Glycerol

(µmol/L)

1 1.9 (0.9–3.2)

n=45

5.9 (3.1–8.5)

n=45

141 (93–224)

n=44

49 (34–54)

n=45

106 (89–125)

n=45

4.7 (2.4–5.0)

n=31

2.0 (1.9–2.2)

n=32

73 (62–83)

n=30

27 (24–33)

n=31

57 (27–62)

n=31

2 1.4 (0.6–1.8)

n=157

4.9 (4.1–6.2)

n=154

148 (135–168)

n=156

33 (30–35)

n=154

181 (143–310)

n=157

5.0 (4.8–5.4)

n=113

2.9 (2.5–3.4)

n=112

85 (75–100)

n=105

34 (28–42)

n=105

73 (44–103)

n=114
3 0.6 (0.5–0.8)

n=163

3.5 (2.8–4.2)

n=160

100 (72–144)

n=149

35 (29–43)

n=148

361 (242–874)

n=158

4.9 (4.3–5.5)

n=110

2.4 (2.2–2.7)

n=108

113 (105–123)

n=94

22 (19–25)

n=93

32 (22–40)

n=111

4 1.6 (1.1–2.1)

n=241

2.6 (2.3–3.1)

n=263

112 (88–126)

n=265

24 (22–29)

n=262

987 (706–1420)

n=259

5.5 (4.4–6.9)

n=125

1.8 (1.6–2.1)

n=124

82 (67–99)

n=124

22 (20–25)

n=124

38 (32–51)

n=125
5 4.0 (3.2–4.5)

n=129

2.5 (2.0–3.2)

n=124

130 (112–147)

n=122

19 (16–25)

n=118

483 (243–877)

n=127

4.8 (4.5–5.1)

n=125

2.3 (1.9–2.5)

n=123

94 (80–111)

n=122

23 (18–29)

n=116

99 (86–112)

n=125
6 5.9 (5.5–6.3)

n=55

2.1 (1.9–2.4)

n=58

130 (122–149)

n=50

15 (15–18)

n=46

87 (77–107)

n=58

4.8 (4.6–5.1)

n=97

1.7 (1.6–1.9)

n=96

63 (60–69)

n=96

27 (24–29)

n=92

29 (25–34)

n=96
7 1.6 (1.1–2.2)

n=112

7.4 (6.2–8.6)

n=119

269 (255–284)

n=118

27 (23–32)

n=125

120 (66–238)

n=118

5.1 (4.6–5.5)

n=110

3.2 (2.9–3.4)

n=116

124 (108–158)

n=114

25 (20–31)

n=119

44 (39–57)

n=115

8 0.5 (0.3–1.1)

n=75

7.2 (4.9–7.8)

n=67

157 (128–185)

n=68

45 (40–49)

n=64

184 (91–359)

n=70

4.3 (3.9–4.8)

n=147

2.7 (2.5–2.9)

n=149

112 (101–124)

n=146

24 (23–27)

n=146

64 (55–76)

n=148
9 1.2 (0.8–1.5)

n=213

5.0 (3.6–6.3)

n=230

137 (92–173)

n=216

35 (31–40)

n=215

87 (58–115)

n=215

5.2 (4.6–6.0)

n=150

3.6 (3.2–4.1)

n=151

151 (138–172)

n=148

24 (22–26)

n=145

58 (38–72)

n=149

10 1.0 (0.8–1.3)

n=89

2.6 (2.2–3.0)

n=93

102 (94–117)

n=89

24 (22–26)

n=89

2273 (1817–2529)

n=94

5.6 (4.7–7.0)

n=123

4.7 (4.1–5.1)

n=128

199 (179–228)

n=125

23 (20–26)

n=125

82 (66–113)

n=127

11 0.9 (0.8–1.2)

n=151

3.4 (2.9–3.9)

n=152

112 (92–125)

n=148

32 (29–34)

n=145

451 (269–1133)

n=153

5.4 (4.9–5.9)

n=150

2.8 (2.6–3.1)

n=145

100 (94–114)

n=142

28 (25–30)

n=139

66 (58–75)

n=147
12 1.0 (0.7–1.2)

n=100

5.2 (4.5–5.8)

n=99

166 (154–183)

n=99

31 (28–34)

n=99

114 (71–149)

n=102

4.7 (4.2–5.1)

n=106

2.3 (2.0–2.7)

n=106

77 (72–89)

n=104

29 (26–34)

n=104

40 (37–46)

n=107
13 0.2 (0.1–1.1)

n=42

17.1 (15.3–18.8)

n=62

133 (114–270)

n=58

129 (49–143)

n=62

133 (118–153)

n=55

5.6 (5.3–5.8

n=50

2.4 (2.2–2.6)

n=50

126 (99–149)

n=50

20 (17–23)

n=50

53 (46–62)

n=49
14 1.8 (1.5–2.4)

n=54

14.9 (13.8–16.2)

n=54

447 (365–528)

n=54

33 (31–37)

n=58

605 (495–892)

n=54

4.3 (3.3–5.2)

n=51

4.8 (3.3–5.8)

n=51

239 (194–267)

n=49

19 (18–23)

n=53

49 (38–71)

n=50

Brain-MD and CSF-MD parameters in median values, with 1st–3rd quartile in parenthesis. Sample size is the amount of MD samples acquired of the specific metabolite for each patient. The patients with

pericontusional microdialysis catheters are in white rows, while the rows of patients with ipsilateral microdialysis catheters are gray. The amount of samples represents total monitored time (h).
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Table 3 | CSF samples.

Median (±1st–3rd quartile)

Samples per patient 2.0 (1.25–2.75)

Day(s) from MD surgery

to CSF sampling

3 (2–5) (days)

CSF-Glucose 5.1 (4.8–5.8) (mmol/L)

CSF-Lactate 2.6 (2.1–3.2) (mmol/L)

CSF-Erythrocytes 5200 (1000–38,400) (mm3)

CSF-Leukocytes 25 (8–89) (mm3)

CSF-Albumin 140 (36–283) (mg/L)

Time between MD

sample and CSF sample

25 (16–44) (min)

MD recovery – glucose 0.98 (0.90–1.03), if median

per patient 0.96 (0.86–1.00)

MD recovery – lactate 0.97 (0.84–1.08), if median

per patient 0.98 (0.83–1.08)

Table of the 29 cerebrospinal fluid (CSF) samples acquired. Presented as average

and standard deviation (SD), or median ±1st–3rd quartile, depending on sample

distribution. Samples per patient, days from microdialysis (MD) surgery sam-

pling, CSF-glucose (mmol/L), CSF-lactate (mmol/L), CSF-erythrocytes (red blood

cell count, RBC, per mm3), CSF-leukocytes (white blood cell count, WBC, per

mm3), CSF-albumin (mg/L), time between MD sample and CSF sample (min,

MD always prior to CSF sample), MD recovery – glucose (MD-CSF glucose/CSF-

glucose), and MD recovery – lactate (MD-CSF lactate/CSF-lactate) all presented

as continuous variables. The MD recovery is presented as both per pair sample

and as averaged (median) pair samples per patient.

Further studies would be needed to elucidate if this is a recurrent
observation.

MD RECOVERY
The amount of substance extracted from a known concentration
using MD technique has previously been described as a “recovery”
or a “relative recovery” (40, 44).

The median MD recoveries of glucose and lactate were 0.98
and 0.97, respectively. Previous data have shown (n= 3) that the
mean “relative recovery,” using a CMA70 MD-Brain catheter in
brain parenchyma, perfused with 0.3 µL/min ringer solution, in
an extrapolation-to-zero-flow model, was 0.65 for glucose and
0.67 for lactate (40). In our model, the correct concentration in
CSF was known, hence no extrapolation was necessary. However,
it could be difficult to compare these MD recoveries due to the dif-
ferent models used, different MD catheters (CMA64 vs CMA70)
used and conditions between CSF and ECF.

The catheters both have the same diameter, membrane size, and
other membrane specific properties, and differ only in the material
that was used to make the plastic shaft (polyamid for the CMA70
and polyamid ether sulfone for the CMA64) (personal communi-
cation, µ-Dialysis AB, Stockholm, Sweden), making the choice of
catheter an unlikely reason for the discrepancy.

Jacobson et al. suggested that the concentration of the metabo-
lites just outside the MD catheter is lower in ECF due to local
depletion (45), which may not be applicable in CSF, as the CSF has

a higher circulation and is continuously being renewed. Dahlin
et al. were able to increase the MD recovery by using human CSF
as perfusion fluid in an in vitro model (46). The MD recovery for
the CMA64 catheter in peripheral blood is about 80% for glucose
(39), lower than what is seen in our study.

In our system, metabolites from a flow of CSF were mea-
sured using a CMA64 MD catheter, which might be the cause
of the higher observed MD recovery if compared to the studies
by Hutchinson et al. (65–67%) (40) and Rooyackers et al. (80%)
(39). This finding was in coherence with the manufacturer, who
routinely checks the calibration of MD catheters and measures
levels of metabolites in known concentrations, in vitro. They have
found that the MD recovery is close to 100% if the catheter is
placed in a water-like fluid (personal communication, µ-Dialysis
AB, Stockholm, Sweden). Their findings were similar to our own;
in order to improve the recovery for the MD catheter, it is probable
that the analyzed media, in themselves, are more important than
the perfusion velocity and MD catheter membrane characteristics.

In conclusion, the MD recovery of glucose and lactate were
higher than previously described, perhaps explained by the dif-
ferent conditions between ECF and CSF or dissimilarity with
previously described methods.

GLUCOSE
The levels of glucose in MD-CSF remained higher than MD-
Brain throughout the first 150 h of monitoring (Figure 4A). There
was no significant correlation to outcome for neither MD-CSF
glucose nor MD-Brain glucose. The levels of MD-Brain glu-
cose were similar to other studies analyzing glucose in ECF (47),
while ECF levels from uninjured patients have been shown to be
0.6–2.6 mmol/L (48).

Glucose is transported directly from the blood to the ECF
through the blood–brain barrier using transporter proteins (pri-
marily GLUT1), and ECF levels are considered more stable than
plasma levels due to the transporter proteins ability to adapt to
hyper/hypoglycemic conditions (49). The level of glucose in the
ECF is lower than the CSF due to the increased metabolism in
the brain parenchyma. While the levels of glucose between ECF
and serum have been studied in both healthy patients (50) and TBI
patients (51), and shown to be around 40% of the serum level (52),
little is studied about the movement of glucose between the ECF
and CSF. Hochwald et al. postulated that glucose enters the CSF
from the blood using facilitated transport (53) and that the trans-
port follows saturable kinetics as the extraction rate from serum is
independent of the CSF-glucose concentration (54). Second, the
flow of glucose between CSF and ECF has been shown to occur
via oubain-sensitive (and oubain-insensitive) fluxes and diffusion,
with imminent changes between the two compartments (55).

The flow of labeled glucose between CSF and ECF could be eas-
ily analyzed using the current setup, making it suitable for further
research utilizing the MD technique.

LACTATE AND PYRUVATE
The levels of lactate were generally lower in MD-CSF compared to
the brain ECF (MD-brain) (Table 2; Figure 4B). Normal CSF
levels of lactate and pyruvate have been shown to be around
1.01–2.09 mmol/L and 30–150 µmol/L, respectively, not being
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Thelin et al. MD monitoring of CSF in severe TBI

FIGURE 2 | Bland–Altman plots of the CSF-glucose and CSF-lactate
samples (n=29) corresponding with MD-CSF glucose (A) and
MD-CSF lactate (B). The points are plotted with the difference
between two observations (pair-wise difference) on the y -axis, and the
mean of the two observations (mean-wise difference) on the x -axis.

The confidence limits and the mean are plotted as black lines. The
variance for glucose and lactate are 0.51 and 0.13, respectively. Every
patient (n=14) is represented by a unique color. Two points lay outside
the confidence limits in (A) (glucose) while one point is outside the
confidence limits in (B) (lactate).

Table 4 | Influence of different parameters on the difference (∆, delta)

between glucose and lactate in CSF-MD and CSF, respectively.

Parameters Delta glucose

(CSF-MD –

CSF-glucose)

Delta lactate

(CSF-MD–

CSF-lactate)

p-Value p-Value

Time from insertion of MD catheter 0.0941 0.8446

CSF-Erytrocyte 0.5244 0.0780

CSF-Leukocytes 0.6837 0.2037

CSF-Albumin 0.8902 0.2691

Time from MD and CSF sample 0.6857 0.2547

Influence of different parameters on the delta level between CSF-MD and conven-

tional CSF samples using a univariate regression analysis. None of the analyzed

parameters yielded statistical significant results.

significantly affected by gender (56), while ECF levels in unin-
jured patients are 2.0–2.9 mmol/L and 120–166 µmol/L (lactate
and pyruvate, respectively) (48).

Isolated lactate increase in CSF after TBI has been shown in
several studies (57, 58), where it has been correlated to patient
outcome and a subsequent increase of ICP (58). Guerra-Romero
et al. intrathecally injected rabbits (n= 3) with sodium lactate.
The animals were monitored with MD in the ECF, and showed
(59) a subsequent increase of CSF-lactate, while no significant
changes could be detected in the brain ECF, hence probably indi-
cating a regulated metabolic control of lactate between the two

compartments. Increased metabolism leads to higher levels of
lactate in the brain parenchyma, which may subsequently be mea-
sured in the MD-Brain catheter. The range of lactate levels detected
were higher in MD-Brain compared to MD-CSF, and as seen in
the study by Guerra-Romero, an increase of lactate in one of the
cerebral compartments may not lead to an increase in the other.

Increased MD-CSF lactate and pyruvate levels were correlated
to an unfavorable outcome (Table 5; Figures 5A,B). No other
MD parameters were significantly correlated to outcome. Also, a
post hoc analysis revealed that the significance for MD-CSF lac-
tate and pyruvate remained when different dichotomizations of
GOSe were used (15, 36). However, the LPR, commonly used as a
marker for ischemia when monitoring with brain-MD, and previ-
ously shown to correlate to unfavorable outcome (11, 60), was not
elevated. Increased lactate and pyruvate levels in the CSF, follow-
ing TBI (61, 62) and subarachnoid hemorrhage (63), without any
effect on the LPR, have been seen in previous studies (61, 63). This
has been suggested to be an effect of red blood cell glycolysis in
the CSF and brain parenchyma (63). This is supported by a study
from 1969 where blood was injected into the CSF of cats (n= 6),
with a subsequent increase of both lactate and pyruvate levels. The
authors suggested that an increased glycolysis of the CSF/blood cell
mixture was the reason to this metabolic pattern (64). Using MD-
Brain, a similar pattern has been shown where lactate and pyruvate
levels increase following secondary brain hypoxia in human TBI
patients (65). In this study, several patients with increased ischemia
(PbtO2 below 10 mmHg) had an increase of pyruvate levels, con-
current with increased lactate levels, leaving the LPR unchanged.
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Thelin et al. MD monitoring of CSF in severe TBI

FIGURE 3 | Box plot of median MD-CSF lactate (A) and MD-CSF pyruvate (B) levels presented in relation to outcome (GOSe 1–5 vs 6–8). MD-CSF lactate
levels and MD-CSF pyruvate levels are significantly higher in patients with unfavorable outcome (p=0.0167 and p=0.0293, respectively, Mann–Whitney U Test.

Table 5 | Parameters and univariate correlation to patient outcome.

Parameters p-Value Pseudo-r2 p-Value after

Bonferroni correction

BRAIN-MD

Glucose 0.2799 NS NA

Lactate 0.1041 NS NA

Pyruvate 0.2512 NS NA

Glycerol 0.6364 NS NA

Lactate:pyruvate ratio 0.3555 NS NA

CSF-MD

Glucose 0.8234 NS NA

Lactate 0.0057 0.578 0.0513

Pyruvate 0.0011 0.732 0.0099

Glycerol 0.1167 NS NA

Lactate:pyruvate ratio 0.1783 NS NA

CSF-parameter

Erytrocytes 0.0003 0.821 0.0027

MD parameters from each patient (n=14) in Brain-MD and CSF-MD (median

levels) correlated to patient outcome (GOSe 1–5 vs GOSe 6–8) using univariate

regression analysis. A Bonferroni correction was used to improve accuracy of

the model. Higher levels of lactate, pyruvate and erythrocytes in the CSF corre-

late to worse outcome. NS, not significant. NA, not applicable. Bold indicates a

significant p-value.

The authors postulate that this increase of pyruvate represents gly-
colysis exceeding the ability of the ischemic-affected brain tissue
to adequately metabolize pyruvate (65).

In the present study, the erythrocyte concentration in CSF cor-
related significantly to the lactate levels in CSF, and to patient

outcome (Table 5), which we believe to be the most probable
cause of this metabolic pattern of increased lactate and pyruvate
levels in CSF. The severity of subarachnoid, and intraventricular
hemorrhage after TBI has been extensively correlated to patient
outcome (66), which could explain why these patients had a worse
outcome.

Other possible mechanisms for the increased lactate and pyru-
vate could be hypermetabolism, a common problem following TBI
(67). Regional seizure activity in the brain might be another reason
(68), even though clinical representation of epileptic seizure were
treated at our NICU with antiepileptic medication and intermit-
tently monitored with EEG, some non-convulsive seizure activity
could be missed.

As is seen in Table 1, the MD-Brain catheters were inserted in
pericontusional tissue in 36% of the cases (n= 5), while the other
(n= 9) where placed further from the affected brain parenchyma.
These catheters would be expected to show higher levels of glyc-
erol and LPR, as well as lower glucose, but no difference was found
(Table 2). A recent study proposes that a more global approach to
MD monitoring is beneficial (15), with catheters placed in healthy
tissue in order to determine the presence of cerebral metabolic cri-
sis (increased lactate and LPR levels, and decreased glucose levels).

In aggregate, the metabolic pattern of increased lactate and
pyruvate levels in CSF found in our study is believed to be the
result of high levels of erythrocytes in the CSF, yet other metabolic
causes in the affected brain cannot be excluded.

GLYCEROL
Levels of MD-Brain glycerol were higher than MD-CSF (Table 2;
Figure 4E). Normal ECF levels of glycerol have been reported to be
around 20–80 µmol/L (48) and 8.6–25 µmol/L in CSF (69). The
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Thelin et al. MD monitoring of CSF in severe TBI

FIGURE 4 | Median (± 1st–3rd quartile) CSF-MD and Brain-MD glucose (A), lactate (B), pyruvate (C), LPR (D), and glycerol (E) levels for all patients
(n=14).

glycerol levels in our study were higher in both ECF and CSF. ECF
and CSF levels of glycerol in the intact brain are both related to
serum levels of glycerol (70). Increased levels probably correlate
to ongoing cell death, due to its abundance in cell membranes (7).
It has been postulated by Nau et al. that prolonged persistence of
glycerol in the CSF may reflect similar conditions in the ECF (69).

Perhaps due to the relatively short half-life of glycerol in CSF
(1.03–3.68 h) and the high flow rate of the CSF, there is a con-
centration difference between ECF and CSF (69), with an ongoing
release in the injured brain, hence increased levels of glycerol in
the ECF compared to the CSF.

THE CURRENT SETUP FOR MONITORING PATIENTS WITH MENINGITIS
The current MD-CSF technique enhances the temporal resolution
when monitoring CSF parameters in NICU patients, sampling

lactate, and glucose levels every hour. An ICP-guided therapy for
patients suffering from acute BM has been shown to improve
outcome, compared to traditional therapy (71), and the current
monitoring setup, where levels of CSF metabolites may be readily
accessible, would definitely assist in this type of neuro-intensive
care treatment.

LIMITATIONS
The limited sample size provides several obvious limitations to this
study. However, the method has analyzed a total of n= 7448 MD-
CSF samples and n= 8358 MD-Brain samples generating accurate
data for the median levels for the n= 14 patients that could be
included. To avoid intra-patient data (dependent and indepen-
dent data) to affect the analysis, the Bland–Altman plots were
adjusted for repeated measures causing wider confidence intervals
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Thelin et al. MD monitoring of CSF in severe TBI

FIGURE 5 | Median (± 1st–3rd quartile) CSF-MD lactate (A) and pyruvate (B) levels in patients with favorable (n=6) (GOSe 6–8) and unfavorable
(GOSe 1–5) outcome (n=8). One bar represents two samples.

(Figures 2A,B). The analyses in Table 4 would in theory require
a mixed models approach due to repeated measures, this is not
possible as several patients only have one data point and all data
have been treated as independent data points.

Only 5 of the 14 Brain-MD catheters ended up in the pericon-
tusional locale, an area that has been suggested to better represent
tissue at risk after TBI (8). This heterogeneity could explain why
Brain-MD samples did not correlate to outcome as well as CSF-
MD samples did, even if MD monitoring of “uninjured” brain
tissue also has been shown to be a good marker for global metabolic
crisis and to be correlated to outcome (15).

The timing of samples when comparing MD-CSF and conven-
tional CSF lagged up to about one hour, since the conventional
CSF sampling was not performed at any regular time during the
day. However, Table 4 reveals that there was no significant differ-
ence between the MD-CSF and conventional CSF levels of glucose
and lactate, in regard of the timing when they were acquired.

In fact, all the pumps used in this study cause a sampling delay
from the actual monitored metabolic event that could be signifi-
cant. This is, however, also a limitation using the MD technique,
but it is amplified when also using pumped CSF, as it is hard to
determine exactly when the potential harmful biochemical event
occurred when MD-CSF samples are to be temporally compared
to MD-Brain samples.

CONCLUSION
This new technique of global MD-CSF monitoring correlates with
conventional CSF levels of glucose and lactate. The MD recovery,
using the current MD set up in CSF, is close to 100% for both
lactate and glucose. Increase in lactate and pyruvate, without any
effect on the LPR, significantly correlates to unfavorable outcome,
though perhaps indicating an effect of the presence of erythrocytes
in the CSF, or possibly a hypermetabolic state in the injured brain.
Additional studies, including increased sample sizes, are necessary
to further validate the method and the current findings.
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