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Absence seizures (AS) are brief epileptic events characterized by loss of awareness with
subtle motor features. They may be very frequent, and impact on attention, learning, and
memory. A number of pathophysiological models have been developed to explain the mech-
anism of absence seizure generation, which relies heavily on observations from animal
studies. Studying the structural and functional relationships between large-scale brain net-
works in humans is only practical with non-invasive whole brain techniques. EEG with
functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore
the interactions between brain structures involved in AS generation. A number of fMRI tech-
niques including event-related analysis, time-course analysis, and functional connectivity
(FC) have identified a common network of structures involved in AS. This network com-
prises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)],
caudate nuclei, and the reticular structures of the pons. The main component displaying
an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in
group studies, is the thalamus while the most consistent cortical change is reduced BOLD
signal in the DMN. Time-course analysis shows that, rather than some structures being
activated or inactivated during AS, there appears to be increase in activity across compo-
nents of the network preceding or following the electro-clinical onset of the seizure. The
earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events.
This region also shows altered FC in patients with AS. Hence, it appears that engagement
of this network is central to AS. In this review, we will explore the insights of EEG-fMRI
studies into the mechanisms of AS and consider how the DMN is likely to be the major
large-scale brain network central to both seizure generation and seizure manifestations.

Keywords: epilepsy, absence seizures, functional MRI, default mode network, functional connectivity

CLINICAL
TYPICAL ABSENCE SEIZURES AND ABSENCE SEIZURE SYNDROMES
Genetic generalized epilepsy (GGE) is common and accounts for
approximately 20% of epilepsy diagnoses (1). Initially referred
to as idiopathic generalized epilepsy, this syndrome was defined
by the ILAE Commission on Classification in 1985 (2). This
referred to “forms of generalized epilepsies in which all seizures
are initially generalized, and their EEG expression is a generalized,
bilateral, synchronous, symmetrical discharge.” Furthermore, this
syndrome was seen in individuals “presenting a normal interic-
tal state without neurological or neuroradiolgical signs.” In the
most recent classification commission document (3), the term
genetic replaced idiopathic given the clear genetic origins of this
condition. Furthermore, in the current classification,“Generalized
epileptic seizures are conceptualized as originating at some point
within, and rapidly engaging, bilaterally distributed networks.
Such bilateral networks can include cortical and sub-cortical struc-
tures, but do not necessarily include the entire cortex” (3). This
reflects current views on seizure generation in generalized epilep-
sies highlighting that a seizure “focus” may initiate a generalized
seizure.

A number of generalized seizure types are seen in GGE (1981).
These included absence seizures (AS), myoclonic seizures (MS),
and generalized tonic–clonic seizures (GTCS). Using a combina-
tion of seizure type, seizure frequency, and the age at seizure onset,
GGE can be further sub-classified into sub-syndromes (1989). It
is uncertain to what extent sub-syndrome classification identi-
fies true physiological differences between the disorders in people
with“GGE”(4). The sub-classification is useful for defining groups
for study and provides information that assists in predicting out-
come and response to therapy, although there can be considerable
clinical heterogeneity within sub-groups.

Different types of AS have also been defined (3, 5, 6). The major
distinction exists between typical and atypical AS, which were first
defined by the ILAE in 1981 (6). Typical AS were defined according
to clinical features, and ictal and interictal features. Although not
stated in this classification, individuals with atypical AS usually
have a slow EEG background and the presence of this seizure type
is generally associated with intellectual disability, multiple other
seizure types, poorer response to medical therapy, and a poorer
outcome (7). Atypical absence is a feature of the Lennox–Gastaut
syndrome (LGS) (2). In the more recent classification, documents
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Carney and Jackson EEG-fMRI in absence epilepsy

include a third category: absence with special features. This group
includes myoclonic absence seizures (MAS) in which AS are com-
monly associated with persistent rhythmic axial myoclonus (8)
and eyelid myoclonia during which there is regular rhythmic eyelid
myoclonus with or without loss of awareness (9).

As outlined above, AS may be seen in a number of epilepsy syn-
dromes with the relative frequency and pattern of the AS helping
to define the syndrome classification. Table 1 shows the typical
syndromes and the common seizure types.

Childhood absence epilepsy (CAE) and juvenile absence
epilepsy (JAE) are the archetypal absence epilepsy syndromes with
typical AS being the defining seizure type in each of these syn-
dromes. The ILAE (2, 10) syndrome classification of CAE involved
the following criteria:

1. Occurring in children of school age (peak manifestation age
6–7 years).

2. Very frequent (several to many per day) absences.
3. The EEG reveals bilateral, synchronous symmetrical spike

waves, usually 3 Hz, on a normal background activity.
4. During adolescence, generalized tonic–clonic seizures often

develop. Otherwise, absences may remit or, more rarely, persist
as the only seizure type.

Juvenile absence epilepsy is defined by a later onset and lower
frequency of AS when compared to CAE.

“Manifestation occurs around puberty. Seizure frequency is
lower than in pyknolepsy (CAE), with absences occurring
less frequently than every day, mostly sporadically. Associa-
tion with GTCS is frequent, and GTCS precede the absence
manifestations more often than in CAE, often occurring on
awakening. Not infrequently, the patients also have myoclonic
seizures.” (10)

Table 1 | ILAE-defined syndromes in which absence seizures are

commonly observed.

Syndrome AS type Other seizure types

GGE SUB-SYNDROMES

Childhood absence epilepsy Typical AS GTCS

Juvenile absence epilepsy Typical AS GTCS, myoclonus,

absence status

Juvenile myoclonic epilepsy Typical AS Myoclonus, GTCS

Eyelid myoclonia with

absence (Jeavon’s syndrome)

Eyelid myoclonia

Typical AS

GTCS, myoclonus

Epilepsy with myoclonic

absence seizures

Myoclonic AS GTCS

OTHER SYNDROMES

Lennox–Gastaut syndrome Atypical AS Tonic seizures, GTCS,

myoclonus, focal seizures

Genetic epilepsy with febrile

seizures plus (GEFS+)

Typical AS GTCS, myoclonus, other

AS, absence seizure; GTCS, generalized tonic–clonic seizure.

COGNITIVE IMPACT OF ABSENCE SEIZURES
Absence seizures clearly have an impact on short-term cogni-
tive function. However, despite their brief and relatively benign
appearance, the presence of AS appears to have more significant
long-term cognitive consequences. AS themselves can have a vari-
able effect on consciousness both within and between seizures in
an individual (11, 12). Furthermore, variable aspects of a patient’s
cognition may be impaired suggesting that selective brain net-
works may be involved during AS (11, 13). Exactly what the
mechanism involved in the disruption of cognition is unclear;
however, it has been speculated that focal involvement of bilateral
frontal association cortex disrupts normal processing leading to
impairment of specific cognitive functions (11).

There is some discrepancy in the types of cognitive deficits seen
in GGE and children with AS; however, it is clear that the gener-
alized epilepsies have a significant and pervasive neuro-cognitive
impact, and that AS themselves may contribute unequally to this
morbidity. A number of studies have attempted to more clearly
elaborate the cognitive and psychiatric impacts of generalized
epilepsies and absence epilepsy in childhood (14–18). It appears
that children with CAE have significantly lower IQs, linguistic
deficits, and attentional inefficiencies, as well as social and thought
problems when compared to matched controls, and this appears to
be related to duration of illness, seizure frequency,and medications
(18). The commonalities between psychiatric and epilepsy diag-
noses may reflect a common involvement of the mesial, ventral,
and dorso-lateral pre-frontal cortex (18). Cognitive deficits may
be more marked in children when seizures begin before 4 years
of age (15). Furthermore, when comparing children with GGE,
with and without AS, it was found that children with AS had more
pronounced deficits in verbal performance measures when com-
pared to those with convulsions and controls (16). In JME, it has
been noted that there is impaired deactivation of the default mode
network (DMN) and abnormal coupling of cognitive and motor
systems, which is felt to explain the interaction between cognitive
effort and myoclonus (19). Similarly, in CAE, it may be that abnor-
mal network connectivity contributes to long-term learning risk
despite good seizure control and that these deficits are potentially
greater in children with AS as a result of the nature of the network
disturbance.

PATHOPHYSIOLOGICAL MODELS OF GSW IN AS
To understand the mechanisms of AS generation, one needs to
consider both the cellular networks involved in seizure generation,
as well as the large-scale functional networks involved. At a cellu-
lar level, thalamo-cortical networks appear to be the major seizure
generating apparatus (20, 21). The thalamo-cortical circuitry has
been studied extensively in the generation of sleep spindles, and
this circuitry informs our understanding of GSW (22). A central
role of the thalamus in the generation of seizures and epilepti-
form discharges seems intuitive. The thalamus displays rhythmic
firing and has extensive reciprocal connections to the cortex, with
excitatory neurons (glutamatergic) arising from the dorsal thala-
mus conveying information to the cortex and excitatory cortical
neurons projecting back to the thalamus (21, 23). Inhibition of
this circuit is provided by cortical and thalamic projections to
the reticular nucleus of the thalamus. Reticular neurons release
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gamma-aminobutyric acid (GABA), which in turn inhibits the
excitatory stimuli from cortex and thalamus (21). This cyclical
excitatory (spike) and inhibitory (wave) activity is mediated by
voltage-gated calcium channels (24).

The physiological role of thalamo-cortical networks is well
established in the maintenance of the sleep–wake cycle, aware-
ness, and cognition (20, 21, 25), and these pathways were felt to
be the underlying network substrate for generalized discharges
(20, 21). More recently, a number of authors have challenged this
assertion (25–27). Importantly, the clinical validation for a rela-
tionship between AS and spindles has been questioned. AS occur
in wakefulness or while drowsing and although fragmentary GSW
may be seen in NREM sleep, at times related to spindle activity, AS
otherwise are observed when physiological sleep oscillations are
inactivated (25). In rodent genetic absence models, oscillations of
thalamo-cortical circuits tend to involve the sensori-motor cortex
and do not resemble sleep spindles as closely (25). These observa-
tions inform newer ideas of network models of AS,which challenge
longstanding views of generalized discharges.

Early experimental models of spike-and-wave activity gave rise
to the centrencephalic theory of epilepsy, which implicated the thal-
amus as the likely central driver of epileptiform activity (28). An
opposing view held that the role of seizure generation lay diffusely
in the cortex and directly contradicted the need for a central driver
(29). These contrasting theories were united by research carried
out by Gloor, which lead to the proposal of the generalized cortico-
reticular theory in which spike-and-wave arose from interactions
between ascending inputs from the thalamus and a diffusely hyper-
excitable cortex (30). More recently, it has been suggested that a
cortical focus is required to initiate generalized activity (26). The
cortical focus theory is strongly influenced by data derived from
newer rodent models of epilepsy, particularly absence epilepsy (25,
31–33). An apparent cortical focus at the onset of a seizure was then
followed by oscillation within the thalamo-cortical network with-
out a specific driver. This view is encompassed in the most recent
classification commission document, which refers to generalized
seizures originating “at some point within, and rapidly engaging,
bilaterally distributed networks” (3).

In vitro and in vivo animal studies of thalamo-cortical circuitry
have clearly established the underlying cellular mechanisms of
spike-and-wave generation. Furthermore, animal models have led
to important observations as to the potential networks involved.
What is lacking is the translation of these models to the human
condition. Non-invasive functional imaging studies provide this
opportunity.

FUNCTIONAL IMAGING IN ABSENCE EPILEPSY
A number of imaging techniques have been employed, which pro-
vide the ability to explore structures involved in the generation of
AS. Although EEG with functional MRI (EEG-fMRI) has become
a dominant means of studying the functional consequences of
AS on the human brain, a number of other techniques have also
been used to study blood flow (34–36) and metabolic changes
(37–39) associated with AS. Doppler ultrasonography of the mid-
dle cerebral artery (MCA) has demonstrated a reduction in blood
flow as a result of AS (34, 40), whereas single photon emission
tomography (SPECT) identified decreases in cerebral blood flow

(CBF) in the frontal and parieto-occipital areas during the ictal
phase and generalized blood flow increases during the postictal
phase without an increase metabolic demand (35). The use of
positron emission tomography (PET) with fluorinated glucose
(FDG) provides information about changes in metabolic activ-
ity but over a much longer time scale. In children with AS, there
was a diffuse increase in cerebral glucose metabolism compared to
baseline during seizures (37); however, the same finding has not
been observed in adults with IGE during GSW (38, 39). The use
of H2

15O with PET provides a functional marker for blood flow
rather than glucose metabolism and has demonstrated that during
AS, there is a global increase in CBF, seen greatest in the thalamus
(41). Although these studies provide somewhat conflicting evi-
dence as to the metabolic changes, we may expect to see during AS
and GSW, the overall impression is that AS require greater energy
use and thus promotes increased blood flow.

FUNCTIONAL MRI
Functional MRI relies on a series of assumptions about the rela-
tionship between neuronal activity, neuronal metabolic demand,
CBF, and oxygen delivery and utilization [for review see Ref. (42)].
fMRI utilizes the blood oxygen level dependent (BOLD) response
as a surrogate for neuronal metabolic activity to enable visual-
ization of brain regions in response to both physiological and
pathological paradigms.

The physiological parameters that influence BOLD signal are
cerebral metabolic rate of oxygen consumption (CMRO2), the
CBF, and the cerebral blood volume (CBV). Following a physio-
logical stimulus, there is an increase in CMRO2, which leads to
an increase in CBF. As a result, CBV also increases. A number
of experiments have been performed to define what the normal
BOLD response to a brief physiological stimulus is likely to be
(43–45) (Figure 1). Although there is general agreement about the
normal physiological BOLD response, it is not clear whether the
canonical hemodynamic response function (HRF) is also observed
during pathological activation of neuronal regions. An assumption
is made that the BOLD response is canonical during statistical
analysis using the general linear model. However, a number of
studies have highlighted that BOLD change in the pathological
state, particularly in epilepsy, may not be canonical (46–48). As a
result, more robust statistical results may be achieved with HRFs
tailored to suit the patient population being studied (48).

FMRI studies of patients with AS have been used with great
success to understand the functional and structural mechanisms
of seizure generation. EEG with fMRI enables the identification of
BOLD change associated with AS by either acquiring fMRI data
with the onset of an epileptiform discharge (early spike-triggered
EEG-fMRI studies) or continuously recording EEG whilst acquir-
ing fMRI data (continuous EEG-fMRI). Continuous EEG-fMRI,
now commercially available, has many advantages, including the
ability to mark up events offline facilitating careful identification
of events for analysis. Both methods demonstrate regions of both
increased BOLD and decreased BOLD. It is important to note that
negative BOLD is most likely a reflection of a relative reduction
in neuronal activity compared to the resting state rather than an
aberration of neuronal coupling or a vascular steal phenomenon
(49–51).
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FIGURE 1 |Typical BOLD impulse response model generated using SPM8.

Event-related fMRI, with acquisition of continuous BOLD data,
also allows the study of functional connectivity (FC), the other
major technique applied to the study of AS. Continuous BOLD
data can be gathered without concurrent EEG; however, the advan-
tage of performing a BOLD free run with EEG is the ability to
insure that there is no epileptiform activity during the period
of recording. FC can be estimated non-invasively with fMRI by
measuring the correlation between spontaneous low-frequency
hemodynamic fluctuations in different brain regions (52), which
have been linked to the synchronization of slow fluctuations in
underlying neuronal networks (53). FC demonstrates a temporal
correlation in BOLD change across remote regions of the brain,
suggesting that these regions may exist as a network of structures
performing a complimentary function. The combination of EEG-
fMRI and FC has provided an important bridge between animal
models and the human condition.

EEG-fMRI AND ABSENCE NETWORKS
The “core” absence network
A number of studies have identified consistent cortical and sub-
cortical structures involved in the generation of AS and GSW in
both group analyses of patients with CAE (54–57), JAE (58), and in
patients with mixed, often refractory, GGE syndromes, and pheno-
types (59–65). In our study of a tightly defined group of untreated
patients with CAE, we dubbed this the “core” network to suggest
that it is crucial to the generation spike-and-wave. This network
may be insufficient in itself to generate seizures, and it is likely that
the influence of other structures on the network may influence
the seizure manifestations (57). It would appear that this network
reflects structures, which are consistently involved in, or influenced
by the generation of generalized epileptiform activity regardless of
phenotype. Furthermore, this supports the notion that a consistent
network of regions is likely to exist within GGE despite differ-
ent syndrome diagnosis, duration of disease, medication use, and
genetic heterogeneity.

The core network comprises the thalamus, midline, and lateral
parietal cortex (the DMN) and the striatum (predominantly the

caudate nuclei) (Figure 2). Other sub-cortical structures have been
identified in different studies including the reticular structures of
the pons (57) and cerebellum (56, 65). Cortical BOLD change
outside of the DMN has also been observed including increased
BOLD in the occipital lobe (56), anterior cingulate (65), anterior
and lateral temporal lobes, and insula cortex (56, 62). Decreased
cortical BOLD has also been seen in the medial pre-frontal cortex
(56, 65, 66), the temporal poles (66), and sub-group differences in
BOLD change in the dorso-lateral pre-frontal cortex (66). Using
canonical HRF analysis, the main component consistently display-
ing an increase in BOLD signal relative to the resting state is the
thalamus. The other structures show relative decreases in BOLD
signal compared to the resting state.

The thalamus
As stated above, the thalamus has retained a central role in models
of absence generation given its role as a relay station for infor-
mation transfer in the brain with strong reciprocal connection
to the cortex. A robust positive thalamic BOLD response has
been consistently observed associated with AS (54–58, 66) and
interictal GSW (59–63, 65). It has been suggested that the spatial
extent of thalamic involvement extends beyond the thalamus into
the nearby striatal structures (67). Using event-related indepen-
dent components analysis (eICA), it has been possible to identify
two thalamic components, one located in the midline, which
may reflect the local venous drainage into thalamostriate veins,
while the other component involves the lateral thalamic nuclei
and lentiform nuclei bilaterally (Figure 3). The spatial extent of
thalamic involvement as identified using EEG-fMRI, however, is
uncertain. Given requirements for spatial smoothing in the analy-
sis, functional imaging may simplify more complex BOLD change
within discrete thalamic nuclei.

Although EEG-fMRI lacks the temporal information of EEG
alone, nonetheless important information about the timing of
BOLD signal change can be gathered. The time course of the
thalamic BOLD change associated with AS has been studied in
a number of papers using varied techniques including shifting
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 2 |Thalamic increases and “default mode” cortical
decreases are the most prominent changes seen with conventional
HRF modeling in SPM. fMRI increases (warm colors) and decreases
(cool colors) are shown resulting from group analysis with second-level
random-effects analysis, FDR-corrected height threshold p_0.05, and
extent threshold k_3 voxels (voxel dimensions_ 2 _ 2 _ 2 mm). Functional
data are superimposed on the Montreal Neurological Institute brain
template “colin27” (single_subj_T1 in SPM2) displayed in radiological
right–left convention. In total, 54 seizures in nine patients (40 in 8

patients during CPT or RTT; 14 in 4 patients during VFT, 3 patients with
both CPT/RTT and VFT runs) were analyzed using GLM with canonical
HRF in SPM2. The dataset in this analysis was the same as Figure 1.
fMRI increases were seen in bilateral thalamus, occipital (calcarine)
cortex, and to a lesser extent in the midline cerebellum, anterior and
lateral temporal lobes, insula, and adjacent to the lateral ventricles. fMRI
decreases were seen in the bilateral lateral parietal, medial parietal, and
cingulate cortex and basal ganglia (46) (published with permission from
the Journal of Neuroscience, copyright 2010, SFN).

the event-related time course relative to event onset (64, 68),
brain-wide analysis of mean percentage BOLD change without
a priori presumption of the HRF (56) and region of interest analy-
sis of relative BOLD signal change (55, 57, 66). To summarize
these different approaches, it has generally been observed that
an increase in thalamic BOLD signal is closely associated with

the onset of the epileptiform event (AS or GSW), although ini-
tial BOLD change may precede event onset (64), occur congruent
with event onset (55, 57, 65, 66), or follow event onset (56). There
is some debate whether the time course is canonical or that it
deviates significantly from the canonical response. Our observa-
tion has been that the BOLD response is canonical, in contrast to
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Carney and Jackson EEG-fMRI in absence epilepsy

FIGURE 3 | GSW-related networks identified using event-related ICA.
Each row represents a different network, labeled from (A–F). The plots on the
right show the mean time course of fMRI signal change within each network

with error bars indicating the standard error, over the time period from −32
to +32 s relative to the GSW onset. The vertical dotted line in each plot

(Continued)
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FIGURE 3 | Continued
represents the time of GSW onset, and the horizontal dotted line
represents the baseline fMRI signal level. Asterisks indicate where the
BOLD signal is significantly different to baseline (p < 0.05, uncorrected).
The images on the left are z -statistic maps, thresholded to show significant
(p < 0.05) clusters of voxels, overlaid upon a reference anatomical image.

The hot and cool colors in the images indicate whether the brain region
shows a positive or negative modulation with respect to the network time
course, i.e., they are analogous to activations and deactivations except with
respect to the network-specific time course instead of a canonical HRF (67)
(published with permission from Epilepsia, copyright 2013, ILAE/Willey
Blackwell).

the other elements of the “core” network, and we have speculated
that the thalamus therefore appears to behave physiologically and
reactively to the onset of epileptiform activity, although it may be
critical to sustaining the seizure (66).

Cortical BOLD changes in EEG-fMRI
Cortical BOLD change can be seen in a number of locations in
individual studies of AS and GSW; however, the most consistent
and reproducible cortical BOLD change in group event-related
analysis of AS is in the mesial parietal cortex (precuneus and pos-
terior cingulate) and lateral parietal cortex (angular gyrus and
supramarginal gyrus). These cortical regions are the major com-
ponents of the DMN, which is an important cognitive attentional
network involved in non-task directed, internal processing (69,
70). There is much speculation as to the functional implications
of parietal/DMN change, and this will be discussed in detail in
“The Role of Default Mode Network in the Occurrence of Absence
Seizures” section.

The fact that BOLD change is only seen consistently in the pari-
etal lobe at a group level, and that there is an apparent reduction
in metabolic activity sits in contrast to the published literature.
Observations from other functional imaging techniques described
in “Functional Imaging in Absence Epilepsy” section lead us to
expect generalized increases in BOLD signal in the cortex. There
is also ample evidence to suggest that we might see focal BOLD
increase in cortical regions. A number of animal studies have
suggested that focal cortical regions, particularly in the sensori-
motor area, may be involved in the onset of GSW. Multi-site EEG
recordings in WAG/Rij rats (26, 31) and in GAERS rats (25) have
demonstrated onset of AS focally in the peri-oral region. Similar
observations have been made using fMRI in these animal models
of AS (71–73). A number of human electrophysiology studies of
GGE have also identified the possibility of a focal driver of AS,
particularly involving the mesial and orbitofrontal cortex (74–
77). Taken together, this animal and human electrophysiology
data suggest that although the electrographic and clinical man-
ifestations of GGE are generalized, a focal trigger may exist and
this would be expected to be the cause of an increase in corti-
cal BOLD activity. This trigger is likely to vary cross individuals
and GGE syndromes and is likely to be highly connected to the
DMN.

Changes in the mesial and lateral parietal cortex associated with
AS was first identified by Archer et al. (59) using spike-triggered
fMRI. In this paper, the authors speculated that the parietal cor-
tex may be involved in the initiation of epileptiform discharges
although providing alternative views that this may reflect the
disruptive effect of GSW on cortical function or is merely “a
marker of the epilepsy syndrome’s intermittent neurophysiological
abnormality.” Negative BOLD change in the parietal cortex has

been detected reproducibly both in AS (54, 56–58, 66) and during
interictal discharges in a range of GGE syndromes (55, 59–65, 78).
The time-course analysis of BOLD change in parietal cortex had
a more complex (non-canonical) hemodynamic response than is
reflected in the statistical maps. A number of studies have shown
BOLD change in the parietal cortex occurs prior to the onset of the
epileptiform event, and certainly before changes in the thalamus,
with sustained increases in BOLD starting several seconds prior
to the electrographic onset and the subsequent negative BOLD
change (56, 57, 63–65). These responses were identified only as a
decrease in BOLD signal in the statistical maps and hence simplify
important temporal fluctuations in regional metabolic activity,
particularly at event onset. The multimodal parietal association
cortices are the major structure in the DMN, which has been
demonstrated to play a role in a number of physiological and
pathophysiological processes. To better understand the implica-
tions of the fluctuations of BOLD in the parietal cortex for the
occurrence of AS and GSW, we must first consider the normal
function of the DMN.

The importance of frontal cortical BOLD change
As discussed above, it would be expected that BOLD signal change
would be seen in the frontal cortex as a consistent finding, given
the observations made in animal models, as well as observations
from electrophysiology. Negative BOLD change has been identi-
fied in the mesial frontal and anterior cingulate cortex in several
studies (55, 56, 65, 66), which is not surprising given this region
is a component of the DMN. Focal cortical BOLD change may
be seen in individual cases (55, 65, 68), and it has been suggested
that there may be subject specific changes in BOLD signal, which
are consistent within individuals but vary from subject to sub-
ject (68). Another possibility is that frontal cortical BOLD change
may reflect differences in sub-groups of patients with absence
epilepsy (66). What is clear is that BOLD signal in the frontal
lobe is influenced by AS (see Figure 4 for individual case results).
When using a standardized event-related analysis of a group or
individual, this may appear as increases, decreases, or no change.
However, in group and individual analyses of BOLD time course,
there are clear increases in BOLD signal in frontal cortical net-
works occurring prior to, co-incident with, or following the event
onset. This is highlighted in our paper on sub-group differences in
frontal cortical BOLD in which the division into frontal negative
or frontal positive was dependent on the timing of the BOLD sig-
nal increase relative to the event onset, not whether BOLD signal
increased or decreased (66). Given the wealth of clinical, electro-
physiological, and functional data highlighting the importance of
frontal lobe activity in seizure generation, it is important for fMRI
techniques to better explore the contribution of frontal lobes to
seizure generation.
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FIGURE 4 | Continued

FIGURE 4 | Continued
BOLD signal change for three subjects showing variability of cortical
BOLD change (figure previously unpublished). Color maps of positive
BOLD (red to white: 0 to +10) and negative BOLD (blue to green: 0 to −10)
change superimposed on subjects mean EPI image are displayed in three
plains (p < 0.001). A single surface rendered image is also displayed
demonstrating the cortical surface involved. Subject 1: 16 years female with
onset of AS at age 5 who developed refractory AS and GTCS. EEG-fMRI of
6 (14 s) bursts of interictal activity. Subject 2: 13 years male with onset of
AS at age 8 who achieved seizure control on mono-therapy. EEG-fMRI of 11
AS (105 s). Subject 3: 5 years female with AS since 4 who achieved seizure
control on mono-therapy. EEG-fMRI of 6 AS (83 s).

Is there a difference between an absence and an interictal
discharge?
It is clear that not all burst of spike-and-wave, even when pro-
longed, will cause a clinically evident absence seizure (11). Patients
with AS may demonstrate fragmentary interictal discharges or
even prolonged bursts of spike-and-wave without clear impair-
ment of consciousness or impairment of task performance. It
appears that there may be differences in the spatial distribution of
BOLD change depending on discharge type, as well as the timing
of the BOLD signal change.

A number of elegant studies performed in the Blumenfeld lab
have specifically looked at this issue by performing simultaneous
EEG-fMRI whilst performing cognitive and motor tasks (56, 79,
80). In one study, they observed that if there was no impairment of
performance during a cognitive task, despite typical EEG changes
of an AS, there was no significant cortical BOLD change during
these events (79). Similar observations about the spatial extent of
cortical BOLD change have been made when GSW are compared
directly to AS within a patient group with the extent and magni-
tude of BOLD change being higher in the parietal cortex during
AS (81). Given these observations, it may be that the basis for
cognitive impairment does relate directly to the extent of cortical
involvement and not the appearance of the epileptiform activity,
which may not arise due to cortical BOLD change itself. In con-
trast, a single case report of a patient with prolonged bursts of
spike-and-wave (up to 5 s during fMRI) who did not demonstrate
cognitive impairment showed a typical bilateral deactivation of the
default mode (82). These authors concluded that BOLD change in
this region is not sufficient to explain cognitive impairment.

We have also studied this issue of the timing of BOLD change.
We defined interictal discharges and AS according to the cognitive
effect observed during the subjects routine EEG (66, 83). We were
able to study the time course of BOLD change within subjects
according to whether the discharge was interictal or ictal (83). We
found the overall pattern of the BOLD signal change to be similar
between event categories, although there was a trend suggesting
that the BOLD signal change was more prolonged and of greater
magnitude in AS compared to GSW. Interestingly, we observed a
delay in onset of BOLD signal change in the thalamus in AS when
compared to asymptomatic GSW. Previous studies have suggested
a difference in BOLD time course between different events (AS
and polyspike-and-wave) (55, 63, 65) but these differences have
not been directly compared within a single cohort. A potential
difference in the timing of BOLD signal change dependent on
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event type is interesting in that it may reflect differences in the
underlying pathophysiology of brief interictal events that self-
terminate without clinical symptoms, compared to AS. Our data
suggest that an early thalamic response correlates with asympto-
matic termination of the spike-wave event. Whether this reflects a
true physiological difference has not been established.

Is there a difference between typical and atypical absence?
The possibility that typical and atypical AS may be different has
never been directly addressed using functional MRI. Although
considered separately in the ILAE classification, there is evidence
that these two event types may form a continuum (84). Slow spike-
and-wave (SSW) and paroxysmal fast activity (PFA) have been
studied in LGS, and there are important differences when com-
pared to GGE (85–87). Epileptiform activity (SSW and PFA) in
LGS gives significant positive activation in the brainstem and thal-
amus (86). More recently, in a study of patients with LGS, SSW led
to a more variable pattern of BOLD change with less consistent
thalamic activation and deactivation in primary cortical regions
when compared to the reported literature on GSW (87). Impor-
tantly, this SSW pattern was in stark contrast to the pattern of
activation seen in PFA. Although it is not possible to say whether
the BOLD response to typical AS is likely to differ to atypical AS,
the evidence relating to SSW and GSW certainly suggests major
differences in the behavior of the networks involved.

Connectivity
A number of studies have employed resting-state connectivity
measures to identify whether disturbance of connectivity relation-
ships are present, independent of epileptiform events, in CAE, as
well as other GGE syndromes (88). There has been some inconsis-
tency in these findings, which may be explained by differing GGE
sub-syndromes, influences of age and medications, and physiolog-
ical changes, as well as errors introduced by certain pre-processing
steps (88–90). Decreases in resting-state functional connectivity
(rFC) have been demonstrated bilaterally in the medial pre-frontal
cortex, angular gyrus, and inferior parietal lobule in patients
with CAE compared to controls, without evidence of areas of
increased connectivity (91). Furthermore, these changes appear
to be increased with increased duration of epilepsy. Attentional
processing is also disrupted in CAE (92). This study used an atten-
tion task to define a frontal lobe network and assessed its FC to
other brain regions. They demonstrated that children with AS
had impaired rFC compared to controls. This provides an alter-
native anatomical and functional basis for cognitive dysfunction
in CAE (92). In a related study (80), an abnormal increase in rFC
was identified between orbitofrontal cortex in CAE also indicating
altered network performance, which may contribute to cognitive
inefficiencies. Using whole brain rFC, reduction in whole brain
connectivity between the thalamus and cortex has also been shown
(93). Although patients with CAE showed a similar pattern of
thalamic FC to controls, this was diminished in both the spatial
extent and the magnitude of the correlation. Taken together, these
studies suggest a fundamental change in the interaction between
thalamus and cortex in CAE in the “baseline” or resting state
with alterations in the normal relationships with connected brain
networks.

THE ROLE OF DEFAULT MODE NETWORK IN THE
OCCURRENCE OF ABSENCE SEIZURES
THE DEFAULT MODE NETWORK
The observation of task-induced activity decreases in parietal and
frontal cortical regions was first made during a meta-analysis of
PET studies of visual processing (94). This network of regions was
later termed the DMN (95) and was confirmed by several other
studies (70, 96). The DMN is involved in internalized cognitive
activity including random thoughts and free associations of ideas
and memories (69, 70). Functions in the DMN are likely to be inte-
grated with physiological information such as body position and
sensation. The term REST network, meaning “random episodic
silent thinking,” to reflect the importance of increase in activity in
this network at times when goal-directed tasks are not being per-
formed (70). The contrasting network is the attentional network,
which during goal-directed attentional tasks, demonstrates activa-
tion in the dorsal fronto-parietal regions (97). The brain appears
to switch between states of DMN activation and deactivation
associated with task attention and concentration. This switching
between cognitive states reflects an important phenomenon of
presumed functional coherence throughout the brain (98).

The DMN includes the midline and lateral parietal structures
and the midline and lateral frontal cortex superiorly. Studies of the
DMN over differing developmental ages show important changes
within the network (99). Local or regional correlations weaken
and more distant correlations strengthen, due to a range of devel-
opmental processes including synaptic pruning and myelination
(100, 101). These changes occur between portions of the brain
that are functionally related in adults (102). However, pediatric
networks have a fundamentally different structure and are not
just simple precursors to the adult form (99). The complex devel-
opment of DMN interactions reflects its intrinsic importance to
a range of brain functions and possible varying role through-
out neural development. The DMN is also known to function
in sleep and even in the anesthetized state, and much of the
brains resting-state energy demands are consumed by activity in
the DMN (98, 103).

The observation that much of the low-frequency “noise” in
BOLD signal displays striking patterns of coherence lead to the
concept of FC (52). Perhaps not surprisingly, when this technique
was applied to the DMN, the presence of resting-state coher-
ence of these functional regions was confirmed (104). In a recent
review, Raichle (103) has argued for a new way to consider task-
related BOLD signal change, particularly in the DMN. He has
suggested that the evidence does not support BOLD signal change
as reflecting immediate response to task, particularly as BOLD
change tends to be sluggish, but rather that BOLD changes in
regions like the DMN are a “reflection of changes in the slow
components of the brain’s intrinsic activity in response to chang-
ing environmental contingencies.” Although it is clear that there
is relative inactivation of the DMN during epileptiform events
and AS, precisely why we consistently see this pattern is not well
understood.

THE DMN AT REST IN ABSENCE EPILEPSY
There appears to be a fundamental change in network connectivity
in the resting-state functional networks in the brains of children
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with AS, and most likely in all forms of GGE (88, 91–93). It does
appear that the relationships within normal attentional networks
are likely to be abnormal in the resting state in absence epilepsy.
There is ample evidence of cognitive inefficiencies seen in CAE and
other GGE syndromes (14–18). Although these observations may
be influenced by the effects of seizures and medications, it is likely
that there is fundamental abnormality in the function of these net-
works beyond these effects as demonstrated in JME (19). It would
seem intuitive that, given the likely brain-wide effects of genetic
abnormalities that cause GGE, this would predispose to alterations
in normal connectivity relationships in the resting state. Given we
know that development of the DMN is dynamic throughout child-
hood (99), we can hypothesize that it is the very dynamic nature
of these changes that can contribute to the onset and offset of
AS at differing developmental ages with the expression of differ-
ent genes during development. Studying the development of FC
changes over time in patients compared to controls may help to
answer this question.

THE PARIETAL CORTEX “PERMITS” EPILEPTIFORM EVENTS
Two views have been taken as to the role of the DMN in AS. One
view argues that the DMN is“switched off”during spike-and-wave
discharges leading to the clinical features of reduced awareness
associated with GSW and AS (62), while the other view suggests
that a causal relationship exists between this region and epilep-
tiform activity (59, 105). The first view holds that the switching
from “active” resting brain activity in the DMN to a reduction
in DMN activity reflects inactivation of internal self-reflective
processes and therefore loss of awareness. Blumenfeld and Tay-
lor (106) proposed a network inhibition hypothesis for loss of
awareness during seizures. They suggested that seizure inhibition
of sub-cortical activating systems lead to impairment of aware-
ness by disrupting their interaction with the DMN. Certainly this
hypothesis fits nicely with event-related analysis during AS show-
ing negative BOLD in both the pons and DMN. However, there is
evidence that DMN change is not secondary and is more directly
involved in genesis of the absence events:

1. Default mode network negative BOLD change is seen indepen-
dent of event type. We have observed that negative BOLD in
the DMN occurs regardless of whether the event is an interictal
discharge or an AS. Hence, DMN negative BOLD is seen even
when awareness is maintained.

2. The DMN time course shows that BOLD changes occur before
an absence occurs and awareness becomes impaired.

3. Evidence of DMN change associated with a huge range of tasks
and the observations of functional coherence, suggesting this is
not reactive but pro-active neural network.

The evidence of early change in the BOLD signal in the DMN
suggests that either activity in the DMN initiates the generation of
GSW and AS, or the DMN must be in a certain state to “permit”
or facilitate the occurrence of epileptiform events (105). One can
speculate that the level of activity in the DMN has a permissive
effect on the occurrence of AS, which is to say that fluctuating
states of awareness contribute to an environment conducive to the
generation of epileptiform activity. Within that “conducive” envi-
ronment, a further “trigger” is required to initiate an epileptiform

event. Following this, there is engagement of thalamo-cortical sys-
tems, and dependent on the timing of this engagement (perhaps
relating to the onset of thalamic activity as discussed above), an
interictal or ictal event may occur. The observation that AS often
occur at times of fatigue or rest, when the DMN is engaged, would
support the notion of a permissive environment.

CONCLUSION
The use of functional MRI to study AS has provided invalu-
able insights into the mechanism of this common seizure type.
fMRI techniques have enabled the translation of animal models
of seizure generation to the human condition, provided a map of
the neural networks needed for seizure generation, and demon-
strated ictal and interictal disturbance of normal physiological
networks. What is clear from the temporal information regarding
BOLD change is that there are important increases in neuronal
activity, which occur prior to, co-incident with, and following the
onset of AS in a range of important cortical and sub-cortical net-
works. Time and again, the DMN has been identified as a core
network with changed activity central to AS and interictal epilep-
tiform discharges. What cannot be established is to what extent
BOLD change in this region is a consequence of an absence, or,
perhaps more likely, facilitating its occurrence. Furthermore, fMRI
has provided important observations regarding the potential cog-
nitive and phenotypic importance of the frontal lobe in absence
epilepsy syndromes, consistent with the clinical and animal data.
As fMRI techniques continue to develop enabling more sophisti-
cated techniques of acquisition and analysis in individual patients,
this valuable research and clinical tool is likely to further facil-
itate our understanding of the mechanisms of absence seizure
generation.
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