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Numerous neurological disorders including fragile X syndrome, Down syndrome, autism,
and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure
propensity in mouse models of these disorders dependent on diet. Specifically, soy-based
diets exacerbate audiogenic-induced seizures in juvenile mice.We have also found potential
associations between the consumption of soy-based infant formula and seizure incidence,
epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective
analyses of medical record data. In total, these data suggest that consumption of high lev-
els of soy protein during postnatal development may affect neuronal excitability. Herein, we
present our theory regarding the molecular mechanism underlying soy-induced effects on
seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic
glutamate receptor signaling through an estrogen receptor-dependent mechanism, which
results in elevated production of key synaptic proteins and decreased seizure threshold.
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INTRODUCTION
Soy was first grown in the United States in the 1760s. This legu-
minous plant is native to East Asia and related to peas, alfalfa,
and clover. Soybeans are the seeds of the soy plant and contain
high levels of protein with significant quantities of the essential
amino acids. Soybeans are the only plant source of complete pro-
tein containing all 20 amino acids. Soybeans are ground to produce
soybean oil and soybean meal. Soybean oil is used in food products
such cooking oil and in industrial products including plastics and
biodiesel fuel. Soybean meal, the protein-rich fraction, is used in
food, beverages, and condiments for human consumption as well
as in animal feed. According to the American Soybean Association,
soybeans were planted on over 75 million acres in the United States
in 2012 and were the second largest cash crop with over 3 billion
bushels produced. This vegetable protein is used extensively by the
food industry in the United States as an additive in nearly all types
of foods. Soy protein is also sold as a dietary supplement and is
the key ingredient in soy-based infant formulas.

Soy has been purported as a dietary therapy for cardiovas-
cular disease, type 2 diabetes, osteoporosis, hormone-dependent
cancers, and the symptoms of menopause, but medical research
has been inconclusive in substantiating many of these claims.
The FDA recommends that 25 g/day of soy protein, as part of a
diet low in saturated fat and cholesterol, may reduce the risk of
heart disease; however, the Nutrition Committee of the American
Heart Association reviewed 22 randomized clinical trials compar-
ing isolated soy protein containing isoflavones to milk and other
proteins on LDL-cholesterol levels and found the average effect
was only 3% (1). They found no benefit regarding HDL choles-
terol, triglycerides, or blood pressure. A subsequent meta-analysis
found a 4.2–5.5% reduction in LDL cholesterol, a 3.2% increase

in HDL cholesterol, and a 10.7% decrease in fasting triacylglycerol
levels suggesting that daily consumption of 15–30 g of soy signifi-
cantly improved serum risk factors for cardiovascular disease (2).
A meta-analysis of soy product consumption in patients with type
2 diabetes mellitus found that soy protein intake was beneficial
in diabetic patients in terms of serum lipids, but there were no
significant effects on fasting glucose, insulin, or glycated hemoglo-
bin levels (3). Osteoporosis studies indicate that soy isoflavones
stimulate bone formation, inhibit bone resorption, and increase
bone mineral density, resulting in attenuation of bone loss in
menopausal women (4–9), albeit there are reports of only slight
or no clinical effects (10). Cancer meta-analyses indicate that the
consumption of soy or soy isoflavones is associated with reduced
prostate cancer (11–14), gynecological cancers (15), and possi-
bly breast cancer (16–21). There is no conclusive evidence that
soy phytoestrogens reduce hot flashes associated with menopause
(22–24). Overall, the literature contains many conflicting reports
regarding the health benefits of consuming soy and phytoestro-
gen supplements. While the FDA has authorized a health claim
linking the consumption of soy protein with a reduced risk of coro-
nary heart disease, the agency also lists soy in its poisonous plant
database with warnings regarding goiter, growth problems, amino
acid deficiencies, mineral malabsorption, endocrine disruption,
and carcinogenesis (25).

Perhaps the most controversial use of soy is in soy-based infant
formulas. The current position of the American Academy of Pedi-
atrics is, “There is no conclusive evidence from animal, adult
human, or infant populations that dietary soy isoflavones may
adversely affect human development, reproduction, or endocrine
function (26).” And the national toxicology program (NTP) Cen-
ter for the Evaluation of Risks to Human Reproduction (CERHR)
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Westmark Soy and seizures

found that, “The overall evidence was considered insufficient to
reach a conclusion on whether the use of soy infant formula pro-
duces or does not produce developmental toxicity with infant
exposure in girls or boys at recommended intake levels” (27). In
other words, there is not conclusive evidence that soy-based infant
formulas are safe. Based on market sales, 12% of infant formulas
in the United States are soy-based (27). Approximately 20–25%
of infants receive some soy-based formula during their first year,
but there is no data regarding how many are exclusively fed soy-
based formula (28). While there may be health benefits for adults
associated with the consumption of soy, this natural product holds
potential danger for children. Soy products are rich in phytoestro-
gens, which are natural plant chemicals that have estrogenic and
anti-estrogenic properties. The effects of phytoestrogens on fetal
and early childhood development have not been extensively stud-
ied (29–31). Rodent studies indicate that the placenta acts as a sink
for phytoestrogens, and that while transport of phytoestrogens
across the placenta is inefficient, low levels are found in the fetus
and are sufficient for activation of estrogen receptor beta (ERβ)
(32). A 4-month-old infant fed soy formula would be exposed
to 4.5–8 mg/kg/day of soy phytoestrogens (33, 34), which is 6–11
times the dose necessary to exert hormone-like effects in adults
(33). In placental mammals, the fetus is continuously exposed to
high levels of estrogen from the placenta and the mother. Environ-
mental exposure to phytoestrogens during this period is expected
to disrupt the function of the natural steroid hormones.

In summary, the safety of long-term soy phytoestrogen con-
sumption remains a controversy. Our research, which is reviewed
below, suggests that soy-based diets are associated with increased
seizure susceptibility in both rodent and human models of neuro-
logical disease. In this Hypothesis and Theory paper for the Diet
and Brain Disorders Research Topic of Frontiers in Neurology,
we consider the potential molecular mechanism underlying soy-
associated effects on seizure propensity. We hypothesize that soy
phytoestrogens interfere with metabotropic glutamate receptor
(mGluR) signaling through an estrogen receptor (ER)-dependent
mechanism, which results in elevated production of key synaptic
proteins and decreased seizure threshold in genetically suscepti-
ble individuals. First, we summarize our recent research, which
implicates soy protein consumption with increased seizure sus-
ceptibility. Second, we discuss the potential implications of these
findings for infants fed soy-based infant formulas. Third,we review
published work in the areas of fragile X syndrome (FXS), mGluR5

signaling, and ER signaling that forms the foundation for our
hypothesis. Fourth, we present our working model regarding the
molecular mechanism underlying soy-induced seizure activity.
And finally, we discuss alternative hypotheses that could explain
soy-induced health effects.

SOY CONSUMPTION, SEIZURES, AND AUTISM
Our research has examined audiogenic-induced seizure (AGS)
incidence after chronic treatment with mGluR5 antagonists in sev-
eral transgenic mouse lines (35, 36). In pursuit of these objectives,
we incorporated the mGluR5 antagonist fenobam into a purified
ingredient, soy-free diet that was matched to our standard lab
chow (Purina 5015) for protein, fat, and carbohydrate content.
We chose to incorporate the drug into a soy-free diet because

FIGURE 1 | Soy-free diet reduces seizure propensity in several strains
of mice including Fmr1KO (FXS mouse model that lacks FMRP
expression),Tg2576 (Alzheimer’s disease mouse model that
over-expresses the human APP695 gene with the Swedish familial
mutation), andTs65Dn (Down syndrome mouse model that is trisomic
for chromosome 16 carrying the App gene) (38). These mouse models of
neurological disease and WT littermates were conceived and maintained on
soy-based Purina 5015 chow. At age P18, pups were left on the Purina 5015
(black bars) or transferred to a purified ingredient, soy-free diet (D07030301,
white bars) for 3 days prior to seizure testing. Statistical significance
between mice of the same genotype but fed different diets was determined
by Barnard’s exact test (two-tail) and is denoted by a star (P ≤0.05).

Purina lab chows are grain based and nutrients vary from lot
to lot (37). Surprisingly, chronic feeding with the soy-free diet
alone (no fenobam added) (D07030301) for 3 days prior to seizure
testing drastically attenuated AGS in multiple mouse lines includ-
ing Fmr1KO (FXS), Tg2576 (Alzheimer’s disease), and Ts65Dn
(Down syndrome) (38) (Figure 1). We hypothesized that a longer
treatment period might further reduce seizure susceptibility and
assessed seizures in Fmr1KO mice conceived and maintained on
D07030301 until AGS testing at postnatal day 21. We found a sim-
ilar AGS rate as the 3-day feeding regimen. Thus, a soy-based diet
drastically influences seizure susceptibility in mice.

Purina-type lab chows are grain based with their protein con-
tent derived from soybeans (37). Soybeans are rich in phytoe-
strogens, “plant estrogens,” which can be transferred to offspring
through the placenta as well as maternal milk. The protein source
for the soy-free diet was casein instead of soybean-based, and thus,
it did not contain any phytoestrogens. To determine if the AGS
phenotype resurfaced in mice conceived on soy-free diet and later
exposed to soy, Tg2576 mice born to parents maintained on the
soy-free diet were weaned onto Purina 5015 at P18 and tested
for seizures at P21. There was a statistically significant increase
in seizures (36%, P ≤ 0.05) in the Tg2576 fed Purina 5015 for
3 days. We hypothesized that soy phytoestrogens were the seizure-
promoting constituent in the Purina 5015. Soy protein is rich in
a type of phytoestrogen called isoflavones, which are bioactive
compounds structurally similar to the female hormone estro-
gen. Isoflavones can exert biological activity by mimicking the
effects of mammalian estrogens and thus disrupt the endocrine
cycle. The three most prevalent isoflavones in soy are genistein,
daidzein, and glycitein. Hence, we tested the effects of individual
isoflavones on seizures by supplementing the soy-free diet with the
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two most prevalent isoflavones, genistein, or daidzein, at 0.75 g/kg
feed, which is within the concentration range of isoflavones natu-
rally found in soy products (39, 40). Mice were bred on the soy-free
diet and at P18 weaned onto daidzein- or genistein-supplemented
diets for 3-days prior to AGS testing at P21. Daidzein signifi-
cantly increased wild running in wild-type mice (39%, P ≤ 0.01),
although 3 days feeding was not sufficient to induce a statistically
significant increase in AGS (21%, P ≤ 0.1). Chronic dosing studies
are currently underway. Genistein, or the combination of genis-
tein and daidzein, did not alter wild running, AGS, or death rates
suggesting that genistein may counteract the seizure-promoting
effect of daidzein and that the ratio of the isoflavones in soy may
determine seizure propensity (38).

In addition to our studies, the Hosseini laboratory in Iran
has studied the effect of soy extract on pentylenetetrazol (PTZ)-
induced seizures in rats (41, 42). First, they treated rats with
repeated low doses of PTZ (40 mg/kg body weight) over 14 days in
conjunction with low (20 mg/kg body weight) and high (60 mg/kg
body weight) doses of soy extract 30 min before each PTZ injec-
tion. Both the low and high doses of soy extract elicited higher
seizure scores in ovariectomized (OVX) rats as well as signifi-
cantly decreased latency times to minimal clonic seizures (MCS)
and generalized tonic-clonic seizures (GTCS) (42). Second, they
treated male, female, and OVX female rats with high and low doses
of soy extract for 14 days followed by injection of a single dose of
PTZ (90 mg/kg body weight). They found that the soy extract
decreased the latency times to MCS and GTCS in the male and
OVX female rats but not in the female rats (41).

A literature search of the terms “soy” and “seizure” produces
very few studies. In humans, there are several case reports involv-
ing infants with seizure phenotypes in response to consumption of
a defective soy formula (Israel study) or who developed micronu-
trient deficiencies due to soy formula (Canadian study). The Israel
study was a follow-up study of seven Israeli, female children, age
5–6 years, with severe epilepsy as a result of thiamine deficiency in
infancy caused by a defective soy-based formula (43). Their find-
ings indicated that severe infantile thiamine deficiency might result
in epilepsy. The seizures were refractory to most antiepileptic drugs
with four children having uncontrolled seizures and all children
exhibiting mental retardation and brainstem dysfunction. The
Canadian study reported on three case articles of infants present-
ing with hypocalcemic seizures during the winter months while
being fed soy formula (44). The study population included three
infants with different ethnic backgrounds and living in different
geographical regions of Eastern Canada. All of the subjects were
male and 6 week- to 2-months old and presented with hypocal-
cemic seizures attributable to vitamin D deficiency. Laboratory
results were consistent with vitamin D deficiency despite receiving
daily recommended intake levels.

There have been studies examining cognitive and reproduc-
tive development in infants fed soy-based infant formula. Malloy
and Berendes tested 9- to 10-year-old-children who had been
fed soy-based infant formula or human milk during their first
year of life and found no difference in IQ, behavioral problems,
learning impairment, or emotional problems (45). A study by
Strom and colleagues surveyed adults age 20–34 years old who
had participated as infants in controlled feeding studies between

1965 and 1978 (46). The study population included 811 sub-
jects including males (n= 120) and females (n= 128) who had
been fed soy-based infant formula. The outcomes were that no
correlation was found between infant formula use and educa-
tion level, but women in the soy cohort reported longer duration
of menstrual bleeding (about 8 h) and greater discomfort with
menstruation. The soy cohorts also had a higher reported use
of asthma or allergy drugs and greater tendency toward seden-
tary activities. The consumption of soy-based infant formula has
also been associated with breast development (47) and premature
thelarche (48).

There have been several rodent studies assessing the effect of
soy phytoestrogens on seizures, which are described above. The
problem with studying soy in rodents is that they metabolize soy
isoflavones differently from humans. Thus, the data may not be
generalizable between species. It should be noted that infants can
efficiently digest, absorb, and excrete genistein and daidzein from
soy-based infant formulas (49). Urine was collected from dispos-
able diapers (3–5 diapers worn during a 24-h period) of infants
(4 received soy-based formula and 25 received cow milk-based
formula). Isoflavones were extracted from the diapers every 1–
2 weeks from a starting age of 2–6 weeks and continuing until
16 weeks of age and detected by HPLC. Isoflavone (genistein plus
daidzein) levels remained constant at 3.2± 0.2 mg/kg body weight
regardless of age. Rodents conjugate isoflavones less efficiently and
thus have higher circulating concentrations of biologically active
forms (50). With this caveat noted, studies in rats and mice have
demonstrated that soy increases seizure propensity. In addition
to the aforementioned rodent studies, the effects of soy have been
studied in monkeys and in vitro. Dietary soy is associated with epi-
genetic changes in monkeys such that overall methylation in liver
and muscle tissue was increased when switching from a soy-based
to casein-based diet (51). At high doses, genistein and daidzein are
toxic to primary neuronal cultures (52).

Overall, a soy-based diet significantly increases seizure propen-
sity in genetically susceptible mice and daidzein is likely a con-
tributing factor. The amount of daidzein consumed per body
weight per day by juvenile mice is comparable to the daily
isoflavone intake of infants fed soy-based formula (34, 53) sug-
gesting that these findings could have important clinical relevance.

Hence, we conducted a retrospective analysis of seizure inci-
dence in autistic children fed soy- versus casein-based infant
formula. Seizures are a prevalent phenotype in autism (21–38%)
(54, 55). We utilized medical record data from the Simons Foun-
dation Autism Research Initiative – Simons Simplex collection
(SFARI-SSC) to assess seizure incidence in autistic children fed
soy-based versus other infant formula. There were data available
for 1949 subjects (87% males). We found a 2.6-fold increase in
the incidence of febrile seizures and a 4.8-fold increase in the inci-
dence of simple partial seizures in autistic children fed soy formula
(56) (Table 1). The soy-based formula was not associated with
statistically higher rates of infantile spasms, atonic (drop attack),
grand mal (generalized tonic clonic), petit mal (absence), or com-
plex partial seizures. There was a 2.1-fold increased incidence of
epilepsy. In aggregate, these data demonstrate that a soy-based
diet is associated with increased seizure incidence in both mouse
models of neurological disease and in autistic children. These data
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Table 1 | Prevalence of seizures in autism subjects dependent on soy

formula.

Phenotype Soy Non-soy

Febrile seizures (%) 4.2**††
1.6

Infantile spasms (%) 0.60 0.063

Atonic seizures (%) 0.30 0.13

Grand mal seizures (%) 1.2 1.9

Petit mal seizures (%) 3.3 2.0

Simple partial seizures (%) 1.2
†

0.25

Complex partial seizures (%) 0.60 0.38

Epilepsy diagnosis (%) 3.6*†
1.7

Minimum number of subjects per cohort=330 (soy) and 1563 (non-soy).

*P≤0.05 and **P≤0.01 as determined by the Pearson’s uncorrected chi-squared

test.
†P≤0.05 and ††P≤0.01 as determined by Fisher’s exact test (two-tail).

raise important questions regarding the neurological side effects
of a soy-based diet during postnatal development.

We also assessed developmental milestones and autism testing
scores in the SFARI autism population dependent on soy-based
infant formula. There were no statistically significant differences
in developmental milestones (age first walked, age of first sin-
gle word, or age of first phrase) dependent on soy or non-soy-
based infant formula use. We did find exploratory associations
between the consumption of soy-based infant formula and several
autistic behaviors as assessed by sub-score and line-item analy-
sis of the aberrant behavior checklist (ABC), autism diagnostic
interview-revised (ADI-R), and autism diagnostic observation
schedule (ADOS) (57). It is important to note that these find-
ings were exploratory in nature as the SFARI data collection
protocol was neither specifically designed to assess the effects
of infant formula on autistic behaviors nor powered to detect
multiple hypotheses based on line-item analyses of diagnostic
tests.

There are limitations to the retrospective human data described
above including declarative data regarding the epilepsy diagnoses,
lack of data regarding potentially confounding issues, and less
female subjects than male. A diagnosis of epilepsy was defined as
either a specific report of epilepsy on the ADI-R or at least two
seizures on the medical record history report, which are based on
parental recall. A neurologist did not verify the diagnoses; how-
ever, NINDS considers detailed medical history reports of seizure
history one of the best methods available to identify if a person has
epilepsy as well as the type of seizures. Recall bias regarding infant
formula usage is not an expected problem as parents typically
switch formulas for very specific reasons such as gastrointesti-
nal problems or allergies. There are confounding issues associated
with the consumption of soy-based infant formula that will need
to be addressed in future, prospective studies such as the reasons
the infants were fed soy-based formula and the duration of feeding
with the soy-based formula. It is possible that soy is a surrogate
marker for an underlying condition that lowers seizure threshold.
For example, infants that are fed soy-based infant formula due to
cow milk protein allergies could be more vulnerable to illnesses
associated with fever-induced convulsions. We can not make a

definitive conclusion regarding this scenario based on retrospec-
tive data; however, in the SFARI study population utilized for our
analysis, no subjects reported both allergies and febrile seizures. In
accordance with current autism prevalence rates, there were sig-
nificantly less female subjects than males in the study. Despite the
lower number of females, the use of soy-based infant formula was
associated with febrile seizures in females. A larger female cohort
is required to confirm whether the use of soy-based infant formula
is associated with epilepsy comorbidity in autistic girls.

IMPLICATIONS OF SOY-BASED INFANT FORMULAS ON
CHILDHOOD NEUROLOGICAL DEVELOPMENT
The presented data suggest that the consumption of soy-based
diets is associated with reduced seizure threshold in several mouse
models of neurological disease as well as in a vulnerable popu-
lation of children diagnosed with autism. These results require
prospective evaluation regarding the effects of soy on childhood
development particularly in infants genetically predisposed to
seizure disorders. Many developmental disabilities are co-morbid
with seizures and epilepsy including FXS, autism, and attention
deficit/hyperactivity disorder (ADHD).

Fragile X syndrome is the most common form of inherited
mental retardation and the leading known genetic cause of autism.
This X chromosome-linked disorder is clinically characterized by
highly variable intellectual disability (overall IQ < 70), autistic-
like behavior, seizures, macrocephaly, and macroorchidism (58).
FXS results from a mutation in a single gene on the X chromo-
some, FMR1. In the majority of cases, a >200 copy trinucleotide
(CGG) repeat expansion in the 5′-UTR of the FMR1 gene (59) is
associated with transcriptional silencing of the FMR1 promoter
and loss of expression of fragile X mental retardation protein
(FMRP) (60). FMRP is a multi-functional mRNA binding protein
that is involved in the transport, localization, and translational
regulation of mRNA ligands and is required for normal dendrite
development. FMRP expression is absent or greatly reduced in FXS
and many FXS phenotypes are manifested in Fmr1KO mice, which
lack expression of FMRP. In the preceding section, we demon-
strated an increased incidence of AGS in a mouse model of FXS
in response to a soy-based diet. FXS is a family of disorders also
including the FMR1 premutation disorders fragile X-associated
primary ovarian insufficiency (FXPOI) and fragile X-associated
tremor/ataxia syndrome (FXTAS). There is an increased preva-
lence of seizures in boys with the FMR1 premutation co-morbid
with autism spectrum disorders (ASD) (61).

Autism is a cluster of complex neurobiological disorders that
normally present in the second or third years of life. The core
features include impairments in social interaction and communi-
cation and repetitive stereotyped behavior. Many autistic children
are mentally retarded and half exhibit marked delay in motor
milestones. ASD are estimated to occur in 1 in 88 children with
prevalence 4.7-fold higher in males (62). The etiology of autism is
not known but genetic as well as environmental factors likely affect
the severity of symptoms (63–65). For example, autism is highly
co-morbid with other developmental disorders such as FXS where
67% of males and 23% of females meet the diagnostic criteria for
ASD (66). Epilepsy is highly co-morbid in autism with a prevalence
of 21.4% in autistic subjects with intellectual disability and 8% in
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subjects without intellectual disability (67). EEG abnormalities
were found in 31% of children with ASD (68), and are associated
with language disorders (69). It has been proposed that epilepsy
drives autism in neurodevelopmental disorders (70, 71).

Attention deficit/hyperactivity disorder is the most common
neurobehavioral disorder diagnosed in children with a worldwide
prevalence of 5.3% (72) and a national prevalence of 9.0% (73).
ADHD is characterized by in attention, impulsivity, and hyperac-
tivity. The diagnostic and statistical manual of mental disorders-
fourth edition (DSM-IV) diagnosis requires the presence of six out
of nine specific behavioral and functional symptoms of inattention
or hyperactivity/impulsivity for a duration of at least 6 months,
with onset before age 7 years. ADHD is highly co-morbid with
ASD and epilepsy. Up to 70% of ASD cases (74) and 38% of chil-
dren with epilepsy exhibit ADHD (75–77). ADHD is significantly
more common among children with newly diagnosed epilepsy
than among controls suggesting that there is a common antecedent
for both conditions (78, 79).

Several factors could contribute to the comorbidity of epilepsy
with these developmental disorders, such as underlying brain
pathology, genetic susceptibility genes, and/or environmental and
dietary factors that exacerbate epileptiform activity. It is estimated
that there are over 350 autism susceptibility genes (80). Dietary
factors remain less well characterized. The prevalence of epilepsy
in patients with celiac disease is 5.5% (81). Elevated levels of man-
ganese are associated with neurocognitive deficits (82, 83), and
it has been proposed that soy-based infant formula may cause
ADHD due elevated manganese content (84). We hypothesize that
soy phytoestrogens are a dietary factor that increases epileptiform
activity, which leads to the development of ADHD and autism. In
Israel where there is widespread use of soy-based formula without
clinical indications (70% of children receive soy for >6 months)
(85), there is a high rate of ADHD (12.6%) (86). In the SFARI
autism population described in the previous section, we observe
a statistically significant increase in ADHD with the consumption
of soy-based infant formula (6.7% soy, 3.9% non-soy, 1.7-fold
increase, P = 0.04). Thus, the consumption of soy-based infant
formulas may be altering neuronal excitability and contributing to
the increased incidence and/or severity of neurological disorders.

FXS AND mGluR SIGNALING
Seminal work by Drs. Kim Huber and Mark Bear has shown that
excessive signaling through mGluR5 contributes to many of the
psychiatric and neurological aspects of FXS (87). Genetic reduc-
tion of mGluR5 in an Fmr1KO background (88) or pharmacologi-
cal treatment with an mGluR5 inhibitor (89–91) rescues many FXS
and autistic phenotypes. mGluRs belong to the G-protein-coupled
receptor superfamily. There are eight identified subtypes of mGluR
that have been classified into groups based on sequence homol-
ogy and signaling properties. Group 1 (mGluR1 and mGluR5) are
generally postsynaptic in location, couple to Gq, and activate phos-
pholipase C. mGluR5, which signals through FMRP, has been the
major target of drug discovery for FXS over the past decade (87).
The“mGluR theory of FXS”proposes that FMRP binds to synaptic
mRNAs and represses their translation. Upon mGluR5 activation,
FMRP is dislodged or inactivated, and translation proceeds. This
accounts for “regulated translation” at the synapse. In the absence

of FMRP, as in FXS, mGluR5-mediated translation is constitutive
and unregulated. Over the past two decades, there have been piv-
otal advances regarding the identification of downstream signaling
molecules and translational targets in the mGluR5/FMRP path-
way by academia as well as the development of numerous robust
mGluR5 inhibitors by pharmaceutical companies. However, there
is a paucity of knowledge regarding the upstream activators and
environmental factors that stimulate mGluR5 signaling. Based on
our preliminary data presented above, we hypothesize that estro-
genic compounds in soy stimulate mGluR5 signaling and thus
contribute to FXS pathogenesis.

ER SIGNALING AT THE SYNAPSE
The major “female” and “male” steroid hormones are classified
as estrogens and androgens, respectively. Both classes of hor-
mones are found in both genders but in different quantities.
The most predominant and potent estrogen is estradiol. Estra-
diol can be synthesized by the endocrine glands and secreted
into the bloodstream and thereby enter and stimulate target tis-
sues including the brain. Estradiol can also be synthesized locally
within the brain (92) de novo from cholesterol or derived from
testosterone by P-450 aromatase, also known as estradiol syn-
thase, through an aromatization reaction. Hippocampal neurons
produce P-450 aromatase and generate estradiol (93). Estradiol
acts on both the alpha and beta forms of ER, ERα and ERβ,
which are primarily localized in the cell nucleus where they act
as ligand-regulated transcription factors by binding to specific
estrogen response elements (ERE) on DNA, i.e., “classical ER sig-
naling.” However, accumulating evidence demonstrates that ERα

and ERβ are also found at cell membranes where they interact
with mGluRs to initiate cell signaling, i.e., “non-classical ER sig-
naling.”The Mermelstein laboratory has proposed the“ER/mGluR
hypothesis” to explain the rapid membrane actions of estrogen in
the nervous system. Their theory purports that direct protein–
protein interactions between ER and mGluRs allow estradiol to
signal through mGluRs. Upon estradiol binding to the ER, the
ER alters the conformation of mGluR, resulting in activation of
the downstream G-proteins and second messenger signaling with-
out the requirement for glutamate (94). Both ERα and ERβ are
detected on dendritic spines and axon terminals; however, ERβ

has more widespread localization to extranuclear sites suggest-
ing that this isoform may be more important in mediating rapid
estrogen signaling at membranes (95).

Soy phytoestrogens can act as endocrine disrupting chemicals
(EDC) (96), and the developing fetus and neonate are partic-
ularly vulnerable to their effects. EDC bind to ER and induce
ER-mediated gene expression and altered cell signaling. Peri-
and postnatal exposure to EDC are expected to disrupt the
hypothalamic–pituitary–gonadal axis (HPG axis), which is criti-
cal for the development of the reproductive and immune systems.
It has been hypothesized that premature activation of the HPG
axis is the cause of growth impairment in FXS (97). Thus, dietary
exposure to high levels of soy phytoestrogens during infancy could
negatively impact growth and development.

There is a paucity of studies regarding the effects of phytoe-
strogens on neuronal excitability. It is known that genistein is a
broad-spectrum tyrosine kinase inhibitor, and tyrosine kinases
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modulate synaptic plasticity and ion channel function. Genistein
has been shown to decrease neuron excitability in Aplysia sensory
neurons (98), 3,5-DHPG-induced membrane potential oscilla-
tions in striatal cholinergic interneurons (99), and excitability of
capsaicin-sensitive neurons from cultured rat trigeminal ganglion
neurons (100). Daidzein, which is a structural analog of genistein,
that does not possess protein tyrosine kinase inhibitor activity, also
decreases excitability but to a lesser extent than genistein (100).
Much remains to be learned regarding the effects of daidzein and
other phytoestrogens on neuronal excitability.

MELDING THE BEAR “mGluR THEORY OF FXS” WITH THE
MERMELSTEIN “ER/mGluR HYPOTHESIS”
An important, unanswered question regards how soy and/or soy
isoflavones affect neuron function. Both genistein and daidzein
inhibit GABAAR (101), which is the major inhibitory receptor in
the brain with roles in seizures, hyperactivity, learning and mem-
ory, and sleep/wake cycles. Alternatively, or perhaps concurrently,
soy isoflavones could affect neuronal function through mGluR5

signaling. We are exploring the hypothesis that soy phytoestrogens
such as daidzein promote altered mGluR5/ER/scaffolding protein
interactions, resulting in activated mGluR5 signaling, which leads
to increased epileptiform activity. This hypothesis developed from
our data described above demonstrating that dietary soy con-
sumption is associated with increased seizure incidence in Fmr1KO

mice (38) and in autistic children (56). These data in conjunction
with published reports demonstrating the interaction between ER
and mGluRs (102–105) suggest that soy phytoestrogens could
exacerbate mGluR5 signaling through an ER-dependent mech-
anism. Excessive levels of estrogenic compounds are predicted
to increase mGluR5 activation and downstream signaling, par-
ticularly in FXS where the FMRP translational brake is absent.
Thus, we propose that coupling the Bear “mGluR theory of FXS”
with the Mermelstein “ER/mGluR hypothesis” provides a plausi-
ble mechanism through which estrogenic compounds such as soy
phytoestrogens lower seizure threshold (Figure 2).

ALTERNATIVE HYPOTHESES
There are alternative hypotheses,which could explain how soy low-
ers seizure threshold including non-neuronal targets. For example,
understanding how the bacteria in the gut can affect the brain and
disease development is an emerging area of important research.
Bacteria in the gut have the potential to communicate with the
brain through the vagus nerve, by modulating the immune system
and/or by synthesizing novel neurotransmitters. It is known that
soy isoflavones affect the development of the intestines as well as
the make-up of the intestinal microbiota (106). There have been
two studies investigating the influence of soy-based infant formula
on the gut microflora in infants and/or children. The first study
found increased equol excretion in the soy group (19%) com-
pared to controls (5%) with elevated Bifidobacteria, Bacteroides,
and Clostridia bacteria in fecal samples from the soy group (107).
The second study found elevated Bifidobacteria species (B. adoles-
centis and B. infantis), which were not detected before commenc-
ing the soy-based formula (108). Bifidobaterium, Bacteriodes, and
Clostridium are among the human intestinal bacteria that can pro-
duce S-equol (109, 110), which is the biologically active metabolite

FIGURE 2 | Model of the hypothetical estrogen-induced signaling
pathway in neurons. (1) mGluR5 is a primary target for drug development
in FXS. (2) Cell stimulation causes clustering of mGluR5 receptors and
altered interactions with scaffolding proteins such as ER, caveolin and
Homer, which likely alter downstream signaling events. Daidzein or other
estrogenic compounds act as ER agonists. (3) mGluR5 is known to signal
through FMRP, a translational repressor. The absence of FMRP in Fmr1KO

cells results in constitutive, unregulated protein synthesis in response to
mGluR5 stimulation. (4) Altered mGluR5/FMRP signaling modulates the
synthesis of numerous synaptic proteins including APP,
microtubule-associated protein 1B (Map1B), and postsynaptic density
protein 95 (PSD95). Excessive production and accumulation of these
synaptic proteins contributes to elevated epileptiform activity and FXS
pathology.

of daidzein. Intestinal bacteria transform daidzein to equol in
humans that are equol producers. In Japan, Korea, and China,
up to 80% of people are equol producers, but as few as 25% of
people in North America and Europe can biotransform daidzein
into equol (110). Equol modulates expression of the BRCA1 and
BRCA2 breast cancer genes through an epigenetic mechanism,
resulting in decreased methylation (111). The effect of equol on
the methylation of neuronal genes has not been studied.

DNA and protein constituents of soy may also affect brain func-
tion. It was long thought that large macromolecules do not pass
directly from the digestive tract to the circulatory system. Emerg-
ing evidence is proving this paradigm false. Meal-derived DNA
fragments that are large enough to carry intact genes can avoid
degradation by the stomach acid, enter the human circulatory
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system, and be detected in blood plasma (112). In addition to
plant DNA, >90% of soybeans are genetically modified (GM) and
carry bacterial genes that can code for toxic proteins. It has been
estimated that if there were a 1 in a billion event of bacterial trans-
formation of GM DNA into gut bacterium and that with 1E15
bacteria in the human gut, one would potentially have 1 million
transformed bacteria in the intestines (113). These transformed
bacteria could constitutively express toxic proteins that could dam-
age the intestinal lining and cause disorders like celiac disease in
which peptides enter the circulatory system, stimulate antibody
production, and lead to autoimmune reactions that can affect
neurological function. The second most common GM trait codes
for a built-in pesticide produced by the soil bacterium Bacillus
thuringiensis (Bt).

Besides the macromolecular content of food (DNA and pro-
tein), chemical contaminants associated with soy have strong
potential to affect neurological and gut function. There is a strong
correlation between glyphosate usage and modern disease inci-
dence (114). Moms Across America and Sustainable Pulse con-
ducted a small study of lactating mothers across the United States.
They found high levels of glyphosate (76–166 mg/L) in 3 out of
10 breast milk samples. Glyphosate is sprayed on GM crops where
it acts as both a pesticide and herbicide, as well as on other crops
where it serves as a drying agent. This chemical that accumu-
lates in the soil is not easily degraded and is a known antibiotic
and endocrine disruptor. The Moms Across America was a small,
grassroots study to encourage future, controlled, scientific investi-
gation in this area. They could not afford to do a sensitive HPLC
analysis; thus, the prevalence of lactating mothers with glyphosate
in their breast milk could be higher than reported. There is one
anecdotal report of the negative detection of glyphosate coincid-
ing with the disappearance of inflammation and autism symp-
toms in an 8-year-old boy after 6 weeks on an organic diet and
2 weeks of reverse osmosis filtered water that tested negative for
glyphosate.

Finally, substantial evidence suggests that activation of the
immune system is associated with epilepsy (115, 116), and con-
sumption of soy and soy phytoestrogens is associated with acti-
vation of the immune system. Specifically, soy-based diets alter
cytokine production through an ERα-dependent pathway (117).
Mice fed high doses of daidzein (20 and 40 mg/kg/day) for 7 con-
secutive days exhibit enhanced non-specific immunity, humoral
immunity, and cell-mediated immunity (118). In addition, expo-
sure to environmental estrogenic compounds is implicated in the
increased prevalence of autoimmune disorders (119). Thus, soy
phytoestrogens and/or estrogenic pesticides associated with soy
may indirectly affect seizure propensity through modulation of the
immune system. This alternative hypothesis may occur through
disruption of the blood–brain barrier (BBB). Recent work from
Bargerstock and colleagues has shown that peripheral immu-
nity may regulate changes in the BBB through a BBB integrity
biomarker, S100B, which is detected in blood when the BBB is
compromised. Pilocarpine-induced status epilepticus is also asso-
ciated with increased circulating levels of S100B, which is thought
to trigger an autoimmune reaction (120). The original finding
that prompted the development of this hypothesis paper was an
association between febrile seizure incidence and the consumption

of soy-based infant formula (56). Fevers increase brain tempera-
ture in part through the release of inflammatory cytokines, which
are likely involved in the generation of febrile seizures (121). Thus,
interactions between the immune and nervous systems via a com-
promised BBB may affect seizure propensity with dietary factors
such as soy acting as an immune system trigger.

CONCLUDING REMARKS
In summary, soy infant formula has been used in the United
States since 1909 as an alternative for infants allergic to cow’s
milk. Published estimates of formula intolerance range from 2
to 7.5%; yet, about a quarter of infants are fed soy-based for-
mulas suggesting that non-standard, soy-based formulas are used
excessively (122). Understanding the health consequences of soy
phytoestrogens and modulating intake of these compounds during
pregnancy and infancy could potentially decrease the development
and/or exacerbation of childhood neurological disorders. There
have been no clinical trials examining the effects of soy-based for-
mulas on seizures or neurological development in infants with
developmental disabilities. These vulnerable groups may be more
susceptible to seizure-promoting ingredients in the diet. Prospec-
tive studies are required to validate the rodent and human analyses
described herein. There are numerous potentially confounding
factors that need to be addressed, most notably, the lack of data
regarding the age of initiation and the duration of feeding with
soy-based infant formula. Studies examining the health effects of
soy and soy phytoestrogens are further complicated by the fact
that Monsanto marketed GM soy in 1995. Glyphosate-tolerant
soybeans were genetically engineered to express the 5-enolpyruvyl
shikimic acid-3-phosphate (EPSP) synthase gene from Agrobac-
terium sp. (strain CP4), which infers resistance to Roundup®
herbicide. Currently, 93% of the soybean crops in the United
States are GM. Glyphosate, the active ingredient in Roundup®, is a
major environmental toxin implicated in the increased incidence
of autism, Alzheimer’s disease, cancer, and many other diseases
(114). Thus, considering the lack of existing data regarding the
long-term neurological consequences of consuming a soy-based
diet during infancy, particularly in children with developmen-
tal disabilities, alternative formulas should be considered when
clinically indicated.

HUMAN SUBJECTS
All studies conducted by the author in rodents or by retrospective
analyses of human medical record data were performed in accor-
dance with institutional and national guidelines and regulations.
The mouse studies were conducted under an approved University
of Wisconsin-Madison animal care protocol administered through
their Animal Resource Center. The institutional review protocol
governing the Simons Simplex collection was approved by the
Institutional Review Board at Columbia University Medical Cen-
ter. Written informed consent was provided by all guardians or
research subjects. The privacy of participants was protected by
using global unique identifiers. The research protocol for using
the Simons Simplex collection in the studies described herein was
approved by the Human Research Protection Program at the Uni-
versity of Wisconsin-Madison, which determined that the study
qualified for exemption.

www.frontiersin.org September 2014 | Volume 5 | Article 169 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Westmark Soy and seizures

ACKNOWLEDGMENTS
The described studies were supported by funding from NICHD
(HD075881), NCATS (9U54TR000021), and FRAXA Research
Foundation. The author thanks Dr. Pamela Westmark for critical
review of the manuscript.

REFERENCES
1. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston

M. Soy protein, isoflavones, and cardiovascular health: a summary of a state-
ment for professionals from the American heart association nutrition commit-
tee. Arterioscler Thromb Vasc Biol (2006) 26(8):1689–92. doi:10.1161/01.ATV.
0000227471.00284.ef

2. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a qual-
ity assessment and meta-analysis of randomized, controlled studies. J Am Coll
Nutr (2011) 30(2):79–91. doi:10.1080/07315724.2011.10719947

3. Yang B, Chen Y, Xu T, Yu Y, Huang T, Hu X, et al. Systematic review and meta-
analysis of soy products consumption in patients with type 2 diabetes mellitus.
Asia Pac J Clin Nutr (2011) 20(4):593–602.

4. Ma D, Qin L, Liu B, Wang P. Inhibition of soy isoflavone intake on bone loss
in menopausal women: evaluated by meta-analysis of randomized controlled
trials. Wei Sheng Yan Jiu (2009) 38(5):546–51.

5. Ma DF, Qin LQ, Wang PY, Katoh R. Soy isoflavone intake increases bone min-
eral density in the spine of menopausal women: meta-analysis of randomized
controlled trials. Clin Nutr (2008) 27(1):57–64. doi:10.1016/j.clnu.2007.10.012

6. Ma DF, Qin LQ, Wang PY, Katoh R. Soy isoflavone intake inhibits bone
resorption and stimulates bone formation in menopausal women: meta-
analysis of randomized controlled trials. Eur J Clin Nutr (2008) 62(2):155–61.
doi:10.1038/sj.ejcn.1602748

7. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS. Soy isoflavones for
osteoporosis: an evidence-based approach. Maturitas (2011) 70(4):333–8.
doi:10.1016/j.maturitas.2011.09.001

8. Taku K, Melby MK, Takebayashi J, Mizuno S, Ishimi Y, Omori T, et al. Effect
of soy isoflavone extract supplements on bone mineral density in menopausal
women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr
(2010) 19(1):33–42.

9. Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supple-
ments on osteoporosis in women. Asian Pac J Trop Med (2012) 5(3):243–8.
doi:10.1016/S1995-7645(12)60033-9

10. Speroff L. Alternative therapies for postmenopausal women. Int J Fertil Womens
Med (2005) 50(3):101–14.

11. van Die MD, Bone KM, Williams SG, Pirotta MV. Soy and soy isoflavones in
prostate cancer: a systematic review and meta-analysis of randomised con-
trolled trials. BJU Int (2014) 113(5b):e119–30. doi:10.1111/bju.12435

12. Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM. Soy food consumption and
risk of prostate cancer: a meta-analysis of observational studies. Nutr Cancer
(2009) 61(5):598–606. doi:10.1080/01635580902825639

13. Yan L, Spitznagel EL. Soy consumption and prostate cancer risk in men: a
revisit of a meta-analysis. Am J Clin Nutr (2009) 89(4):1155–63. doi:10.3945/
ajcn.2008.27029

14. Yan L, Spitznagel EL. Meta-analysis of soy food and risk of prostate cancer in
men. Int J Cancer (2005) 117(4):667–9. doi:10.1002/ijc.21266

15. Myung SK, Ju W, Choi HJ, Kim SC. Korean Meta-Analysis (KORMA) Study
Group. Soy intake and risk of endocrine-related gynaecological cancer: a
meta-analysis. BJOG (2009) 116(13):1697–705. doi:10.1111/j.1471-0528.2009.
02322.x

16. Zhong X, Zhang C. Soy food intake and breast cancer risk: a meta-analysis. Wei
Sheng Yan Jiu (2012) 41(4):670–6.

17. Dong JY, Qin LQ. Soy isoflavones consumption and risk of breast cancer inci-
dence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res
Treat (2011) 125(2):315–23. doi:10.1007/s10549-010-1270-8

18. Enderlin CA, Coleman EA, Stewart CB, Hakkak R. Dietary soy intake and breast
cancer risk. Oncol Nurs Forum (2009) 36(5):531–9. doi:10.1188/09.ONF.531-
539

19. Wu AH,Yu MC, Tseng CC, Pike MC. Epidemiology of soy exposures and breast
cancer risk. Br J Cancer (2008) 98(1):9–14. doi:10.1038/sj.bjc.6604145

20. Qin LQ, Xu JY, Wang PY, Hoshi K. Soyfood intake in the prevention of breast
cancer risk in women: a meta-analysis of observational epidemiological studies.
J Nutr Sci Vitaminol (Tokyo) (2006) 52(6):428–36. doi:10.3177/jnsv.52.428

21. Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast
cancer risk. J Natl Cancer Inst (2006) 98(7):459–71. doi:10.1093/jnci/djj102

22. Lethaby AE, Brown J, Marjoribanks J, Kronenberg F, Roberts H, Eden J. Phy-
toestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev
(2007) (4):CD001395. doi:10.1002/14651858.CD001395.pub3

23. Tempfer CB, Bentz EK, Leodolter S, Tscherne G, Reuss F, Cross HS, et al. Phy-
toestrogens in clinical practice: a review of the literature. Fertil Steril (2007)
87(6):1243–9. doi:10.1016/j.fertnstert.2007.01.120

24. Bolanos R, Del Castillo A, Francia J. Soy isoflavones versus placebo in the
treatment of climacteric vasomotor symptoms: systematic review and meta-
analysis. Menopause (2010) 17(3):660–6.

25. Daniel KT. The Whole Soy Story: The Dark Side of America’s Favorite Health
Food. Washington DC: New Trends Publishing, Inc. (2005).

26. Bhatia J, Greer F. American Academy of Pediatrics committee on nutri-
tion. Use of soy protein-based formulas in infant feeding. Pediatrics (2008)
121(5):1062–8. doi:10.1542/peds.2008-0564

27. McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, et al. NTP-
CERHR expert panel report on the developmental toxicity of soy infant for-
mula. Birth Defects Res B Dev Reprod Toxicol (2011) 92(5):421–68. doi:10.1002/
bdrb.20314

28. Barrett JR. The science of soy: what do we really know? Environ Health Perspect
(2006) 114(6):A352–8. doi:10.1289/ehp.114-a352

29. Adgent MA, Daniels JL, Edwards LJ, Siega-Riz AM, Rogan WJ. Early-life soy
exposure and gender-role play behavior in children. Environ Health Perspect
(2011) 119(12):1811–6. doi:10.1289/ehp.1103579

30. Jing H, Gilchrist JM, Badger TM, Pivik RT. A longitudinal study of differences
in electroencephalographic activity among breastfed, milk formula-fed, and
soy formula-fed infants during the first year of life. Early Hum Dev (2010)
86(2):119–25. doi:10.1016/j.earlhumdev.2010.02.001

31. Li J, Dykman RA, Jing H, Gilchrist JM, Badger TM, Pivik RT. Cortical responses
to speech sounds in 3- and 6-month-old infants fed breast milk, milk formula,
or soy formula. Dev Neuropsychol (2010) 35(6):762–84. doi:10.1080/87565641.
2010.508547

32. Soucy NV, Parkinson HD, Sochaski MA, Borghoff SJ. Kinetics of genistein
and its conjugated metabolites in pregnant Sprague-Dawley rats following sin-
gle and repeated genistein administration. Toxicol Sci (2006) 90(1):230–40.
doi:10.1093/toxsci/kfj077

33. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of
infants to phyto-oestrogens from soy-based infant formula. Lancet (1997)
350(9070):23–7. doi:10.1016/S0140-6736(96)09480-9

34. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Isoflavone content of infant
formulas and the metabolic fate of these phytoestrogens in early life. Am J Clin
Nutr (1998) 68(6 Suppl):1453S–61S.

35. Westmark CJ, Westmark PR, Malter JS. Alzheimer’s disease and Down syn-
drome rodent models exhibit audiogenic seizures. J Alzheimers Dis (2010)
20(4):1009–13. doi:10.3233/JAD-2010-100087

36. Westmark CJ, Westmark PR, O’Riordan KJ, Ray BC, Hervey CM, Salamat MS,
et al. Reversal of fragile X phenotypes by manipulation of AbetaPP/Abeta lev-
els in Fmr1 mice. PLoS One (2011) 6(10):e26549. doi:10.1371/journal.pone.
0026549

37. Ricci MR, Ulman EA. Laboratory animal diets: a critical part of your research.
Anim Lab News (2005) 4(6):1.

38. Westmark CJ, Westmark PR, Malter JS. Soy-based diet exacerbates seizures in
mouse models of neurological disease. J Alzheimers Dis (2013) 33(3):797–805.
doi:10.3233/JAD-2012-121426

39. Thigpen JE, Li LA, Richter CB, Lebetkin EH, Jameson CW. The mouse bioas-
say for the detection of estrogenic activity in rodent diets: II. Comparative
estrogenic activity of purified, certified and standard open and closed formula
rodent diets. Lab Anim Sci (1987) 37(5):602–5.

40. Santell RC, Kieu N, Helferich WG. Genistein inhibits growth of estrogen-
independent human breast cancer cells in culture but not in athymic mice.
J Nutr (2000) 130(7):1665–9.

41. Mohammadpour T, Hosseini M, Karami R, Sadeghnia HR, Ebrahimzadeh
Bideskan AR, Enayatfard L. Estrogen-dependent effect of soy extract on
pentylenetetrazole-induced seizures in rats. Zhong Xi Yi Jie He Xue Bao (2012)
10(12):1470–6. doi:10.3736/jcim20121221

42. Ebrahimzadeh Bideskan AR, Hosseini M, Mohammadpour T, Karami R,
Khodamoradi M, Nemati Karimooy H, et al. Effects of soy extract on
pentylenetetrazol-induced seizures in ovariectomized rats. Zhong Xi Yi Jie He
Xue Bao (2011) 9(6):611–8. doi:10.3736/jcim20110606

Frontiers in Neurology | Epilepsy September 2014 | Volume 5 | Article 169 | 8

http://dx.doi.org/10.1161/01.ATV.0000227471.00284.ef
http://dx.doi.org/10.1161/01.ATV.0000227471.00284.ef
http://dx.doi.org/10.1080/07315724.2011.10719947
http://dx.doi.org/10.1016/j.clnu.2007.10.012
http://dx.doi.org/10.1038/sj.ejcn.1602748
http://dx.doi.org/10.1016/j.maturitas.2011.09.001
http://dx.doi.org/10.1016/S1995-7645(12)60033-9
http://dx.doi.org/10.1111/bju.12435
http://dx.doi.org/10.1080/01635580902825639
http://dx.doi.org/10.3945/ajcn.2008.27029
http://dx.doi.org/10.3945/ajcn.2008.27029
http://dx.doi.org/10.1002/ijc.21266
http://dx.doi.org/10.1111/j.1471-0528.2009.02322.x
http://dx.doi.org/10.1111/j.1471-0528.2009.02322.x
http://dx.doi.org/10.1007/s10549-010-1270-8
http://dx.doi.org/10.1188/09.ONF.531-539
http://dx.doi.org/10.1188/09.ONF.531-539
http://dx.doi.org/10.1038/sj.bjc.6604145
http://dx.doi.org/10.3177/jnsv.52.428
http://dx.doi.org/10.1093/jnci/djj102
http://dx.doi.org/10.1002/14651858.CD001395.pub3
http://dx.doi.org/10.1016/j.fertnstert.2007.01.120
http://dx.doi.org/10.1542/peds.2008-0564
http://dx.doi.org/10.1002/bdrb.20314
http://dx.doi.org/10.1002/bdrb.20314
http://dx.doi.org/10.1289/ehp.114-a352
http://dx.doi.org/10.1289/ehp.1103579
http://dx.doi.org/10.1016/j.earlhumdev.2010.02.001
http://dx.doi.org/10.1080/87565641.2010.508547
http://dx.doi.org/10.1080/87565641.2010.508547
http://dx.doi.org/10.1093/toxsci/kfj077
http://dx.doi.org/10.1016/S0140-6736(96)09480-9
http://dx.doi.org/10.3233/JAD-2010-100087
http://dx.doi.org/10.1371/journal.pone.0026549
http://dx.doi.org/10.1371/journal.pone.0026549
http://dx.doi.org/10.3233/JAD-2012-121426
http://dx.doi.org/10.3736/jcim20121221
http://dx.doi.org/10.3736/jcim20110606
http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Westmark Soy and seizures

43. Fattal-Valevski A, Bloch-Mimouni A, Kivity S, Heyman E, Brezner A, Straus-
berg R, et al. Epilepsy in children with infantile thiamine deficiency. Neurology
(2009) 73(11):828–33. doi:10.1212/WNL.0b013e3181b121f5

44. Rodd C, Mushcab SA. Hypocalcemic seizures secondary to nutritional vita-
min D deficiency in 3 infants fed soy formula. Clin Pediatr (Phila) (2005)
44(5):455–7. doi:10.1177/000992280504400512

45. Malloy MH, Berendes H. Does breast-feeding influence intelligence quo-
tients at 9 and 10 years of age? Early Hum Dev (1998) 50(2):209–17.
doi:10.1016/S0378-3732(97)00044-1

46. Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA,
et al. Exposure to soy-based formula in infancy and endocrinological and
reproductive outcomes in young adulthood. JAMA (2001) 286(7):807–14.
doi:10.1001/jama.286.7.807

47. Zung A, Glaser T, Kerem Z, Zadik Z. Breast development in the first 2 years of
life: an association with soy-based infant formulas. J Pediatr Gastroenterol Nutr
(2008) 46(2):191–5. doi:10.1097/MPG.0b013e318159e6ae

48. Freni-Titulaer LW, Cordero JF, Haddock L, Lebrón G, Martínez R, Mills JL.
Premature thelarche in Puerto Rico. A search for environmental fac-
tors. Am J Dis Child (1986) 140(12):1263–7. doi:10.1001/archpedi.1986.
02140260065028

49. Irvine CH, Shand N, Fitzpatrick MG, Alexander SL. Daily intake and urinary
excretion of genistein and daidzein by infants fed soy- or dairy-based infant
formulas. Am J Clin Nutr (1998) 68(6 Suppl):1462S–5S.

50. Setchell KD, Brown NM, Zhao X, Lindley SL, Heubi JE, King EC, et al. Soy
isoflavone phase II metabolism differs between rodents and humans: implica-
tions for the effect on breast cancer risk. Am J Clin Nutr (2011) 94(5):1284–94.
doi:10.3945/ajcn.111.019638

51. Howard TD, Ho SM, Zhang L, Chen J, Cui W, Slager R, et al. Epigenetic changes
with dietary soy in cynomolgus monkeys. PLoS One (2011) 6(10):e26791.
doi:10.1371/journal.pone.0026791

52. Jin Y, Wu H, Cohen EM, Wei J, Jin H, Prentice H, et al. Genistein and daidzein
induce neurotoxicity at high concentrations in primary rat neuronal cultures.
J Biomed Sci (2007) 14(2):275–84. doi:10.1007/s11373-006-9142-2

53. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in com-
mercial chow: implications for pathways influenced by hormones. Lab Invest
(2001) 81(5):735–47. doi:10.1038/labinvest.3780282

54. Volkmar FR, Nelson DS. Seizure disorders in autism. J Am Acad Child Adolesc
Psychiatry (1990) 29(1):127–9. doi:10.1097/00004583-199001000-00020

55. Giovanardi Rossi P, Posar A, Parmeggiani A. Epilepsy in adolescents and
young adults with autistic disorder. Brain Dev (2000) 22(2):102–6. doi:10.
1016/S0387-7604(99)00124-2

56. Westmark CJ. Soy infant formula and seizures in children with autism: a
retrospective study. PLoS One (2014) 9(3):e80488. doi:10.1371/journal.pone.
0080488

57. Westmark CJ. Soy infant formula may be associated with autistic behav-
iors. Autism Open Access (2013) 3(3):e1000120. doi:10.1111/j.1469-8749.2008.
03161.x

58. Hagerman RJ, Hagerman PJ. Physical and Behavioral Phenotype. Baltimore:
John Hopkins University Press (2002).

59. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, et al. Identifica-
tion of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint
cluster region exhibiting length variation in fragile X syndrome. Cell (1991)
65(5):905–14. doi:10.1016/0092-8674(91)90397-H

60. Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, et al. Instabil-
ity of a 550-base pair DNA segment and abnormal methylation in fragile X
syndrome. Science (1991) 252(5010):1097–102. doi:10.1126/science.252.5009.
1097

61. Chonchaiya W, Au J, Schneider A, Hessl D, Harris SW, Laird M, et al. Increased
prevalence of seizures in boys who were probands with the FMR1 premutation
and co-morbid autism spectrum disorder. Hum Genet (2012) 131(4):581–9.
doi:10.1007/s00439-011-1106-6

62. Autism and Developmental Disabilities Monitoring Network Surveillance Year
2008 Principal Investigators and Centers for Disease Control and Prevention.
Prevalence of autism spectrum disorders – autism and developmental disabil-
ities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ
(2012) 61(3):1–19.

63. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The
epidemiology of autism spectrum disorders. Annu Rev Public Health (2007)
28:235–58. doi:10.1146/annurev.publhealth.28.021406.144007

64. Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A, et al.
The influence of environmental and genetic factors on behavior problems and
autistic symptoms in boys and girls with fragile X syndrome. Pediatrics (2001)
108(5):E88. doi:10.1542/peds.108.5.e88

65. Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E,
Yuva-Paylor LA, et al. Modifying behavioral phenotypes in Fmr1KO mice:
genetic background differences reveal autistic-like responses. Autism Res (2011)
4(1):40–56. doi:10.1002/aur.168

66. Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism
spectrum phenotype in males and females with fragile X full mutation and
premutation. J Autism Dev Disord (2007) 37(4):738–47. doi:10.1007/s10803-
006-0205-z

67. Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat
P, et al. Epilepsy in autism is associated with intellectual disability and gen-
der: evidence from a meta-analysis. Biol Psychiatry (2008) 64(7):577–82.
doi:10.1016/j.biopsych.2008.04.030

68. Hartley-McAndrew M, Weinstock A. Autism spectrum disorder: correlation
between aberrant behaviors, EEG abnormalities and seizures. Neurol Int (2010)
2(1):e10. doi:10.4081/ni.2010.e10

69. Wheless JW, Simos PG, Butler IJ. Language dysfunction in epileptic conditions.
Semin Pediatr Neurol (2002) 9(3):218–28. doi:10.1053/spen.2002.35504

70. van Eeghen AM, Pulsifer MB, Merker VL, Neumeyer AM, van Eeghen EE,
Thibert RL, et al. Understanding relationships between autism, intelligence,
and epilepsy: a cross-disorder approach. Dev Med Child Neurol (2013)
55(2):146–53. doi:10.1111/dmcn.12044

71. Hagerman RJ. Epilepsy drives autism in neurodevelopmental disorders. Dev
Med Child Neurol (2013) 55(2):101–2. doi:10.1111/dmcn.12071

72. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide
prevalence of ADHD: a systematic review and metaregression analysis. Am J
Psychiatry (2007) 164(6):942–8. doi:10.1176/appi.ajp.164.6.942

73. Akinbami LJ, Liu X, Pastor PN, Reuben CA. Attention deficit hyperactivity dis-
order among children aged 5-17 years in the United States, 1998-2009. NCHS
Data Brief (2011) (70):1–8.

74. Matson JL, Rieske RD, Williams LW. The relationship between autism spec-
trum disorders and attention-deficit/hyperactivity disorder: an overview. Res
Dev Disabil (2013) 34(9):2475–84. doi:10.1016/j.ridd.2013.05.021

75. Dunn DW, Austin JK, Harezlak J, Ambrosius WT. ADHD and epilepsy in child-
hood. Dev Med Child Neurol (2003) 45(1):50–4. doi:10.1111/j.1469-8749.2003.
tb00859.x

76. Parisi P, Moavero R, Verrotti A, Curatolo P. Attention deficit hyperactivity dis-
order in children with epilepsy. Brain Dev (2010) 32(1):10–6. doi:10.1016/j.
braindev.2009.03.005

77. Cohen R, Senecky Y, Shuper A, Inbar D, Chodick G, Shalev V, et al. Preva-
lence of epilepsy and attention-deficit hyperactivity (ADHD) disorder: a
population-based study. J Child Neurol (2012) 28(1):120–3. doi:10.1177/
0883073812440327

78. Hesdorffer DC, Ludvigsson P, Olafsson E, Gudmundsson G, Kjartansson O,
Hauser WA. ADHD as a risk factor for incident unprovoked seizures and
epilepsy in children. Arch Gen Psychiatry (2004) 61(7):731–6. doi:10.1001/
archpsyc.61.7.731

79. Hermann B, Jones J, Dabbs K, Allen CA, Sheth R, Fine J, et al. The frequency,
complications and aetiology of ADHD in new onset paediatric epilepsy. Brain
(2007) 130(Pt 12):3135–48. doi:10.1093/brain/awm227

80. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De
novo gene disruptions in children on the autistic spectrum. Neuron (2012)
74(2):285–99. doi:10.1016/j.neuron.2012.04.009

81. Chapman RW, Laidlow JM, Colin-Jones D, Eade OE, Smith CL. Increased
prevalence of epilepsy in coeliac disease. Br Med J (1978) 2(6132):250–1.
doi:10.1136/bmj.2.6132.250

82. Schneider JS, Decamp E, Clark K, Bouquio C, Syversen T, Guilarte TR. Effects
of chronic manganese exposure on working memory in non-human primates.
Brain Res (2009) 1258:86–95. doi:10.1016/j.brainres.2008.12.035

83. Schneider JS, Decamp E, Koser AJ, Fritz S, Gonczi H, Syversen T, et al. Effects
of chronic manganese exposure on cognitive and motor functioning in non-
human primates. Brain Res (2006) 1118(1):222–31. doi:10.1016/j.brainres.
2006.08.054

84. Crinella FM. Does soy-based infant formula cause ADHD? Update and
public policy considerations. Expert Rev Neurother (2012) 12(4):395–407.
doi:10.1586/ern.12.2

www.frontiersin.org September 2014 | Volume 5 | Article 169 | 9

http://dx.doi.org/10.1212/WNL.0b013e3181b121f5
http://dx.doi.org/10.1177/000992280504400512
http://dx.doi.org/10.1016/S0378-3732(97)00044-1
http://dx.doi.org/10.1001/jama.286.7.807
http://dx.doi.org/10.1097/MPG.0b013e318159e6ae
http://dx.doi.org/10.1001/archpedi.1986.02140260065028
http://dx.doi.org/10.1001/archpedi.1986.02140260065028
http://dx.doi.org/10.3945/ajcn.111.019638
http://dx.doi.org/10.1371/journal.pone.0026791
http://dx.doi.org/10.1007/s11373-006-9142-2
http://dx.doi.org/10.1038/labinvest.3780282
http://dx.doi.org/10.1097/00004583-199001000-00020
http://dx.doi.org/10.1016/S0387-7604(99)00124-2
http://dx.doi.org/10.1016/S0387-7604(99)00124-2
http://dx.doi.org/10.1371/journal.pone.0080488
http://dx.doi.org/10.1371/journal.pone.0080488
http://dx.doi.org/10.1111/j.1469-8749.2008.03161.x
http://dx.doi.org/10.1111/j.1469-8749.2008.03161.x
http://dx.doi.org/10.1016/0092-8674(91)90397-H
http://dx.doi.org/10.1126/science.252.5009.1097
http://dx.doi.org/10.1126/science.252.5009.1097
http://dx.doi.org/10.1007/s00439-011-1106-6
http://dx.doi.org/10.1146/annurev.publhealth.28.021406.144007
http://dx.doi.org/10.1542/peds.108.5.e88
http://dx.doi.org/10.1002/aur.168
http://dx.doi.org/10.1007/s10803-006-0205-z
http://dx.doi.org/10.1007/s10803-006-0205-z
http://dx.doi.org/10.1016/j.biopsych.2008.04.030
http://dx.doi.org/10.4081/ni.2010.e10
http://dx.doi.org/10.1053/spen.2002.35504
http://dx.doi.org/10.1111/dmcn.12044
http://dx.doi.org/10.1111/dmcn.12071
http://dx.doi.org/10.1176/appi.ajp.164.6.942
http://dx.doi.org/10.1016/j.ridd.2013.05.021
http://dx.doi.org/10.1111/j.1469-8749.2003.tb00859.x
http://dx.doi.org/10.1111/j.1469-8749.2003.tb00859.x
http://dx.doi.org/10.1016/j.braindev.2009.03.005
http://dx.doi.org/10.1016/j.braindev.2009.03.005
http://dx.doi.org/10.1177/0883073812440327
http://dx.doi.org/10.1177/0883073812440327
http://dx.doi.org/10.1001/archpsyc.61.7.731
http://dx.doi.org/10.1001/archpsyc.61.7.731
http://dx.doi.org/10.1093/brain/awm227
http://dx.doi.org/10.1016/j.neuron.2012.04.009
http://dx.doi.org/10.1136/bmj.2.6132.250
http://dx.doi.org/10.1016/j.brainres.2008.12.035
http://dx.doi.org/10.1016/j.brainres.2006.08.054
http://dx.doi.org/10.1016/j.brainres.2006.08.054
http://dx.doi.org/10.1586/ern.12.2
http://www.frontiersin.org
http://www.frontiersin.org/Epilepsy/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Westmark Soy and seizures

85. Berger-Achituv S, Shohat T, Romano-Zelekha O, Ophir E, Rachmani S, Mal-
ovizky D, et al. Widespread use of soy-based formula without clinical indica-
tions. J Pediatr Gastroenterol Nutr (2005) 41(5):660–6. doi:10.1097/01.mpg.
0000181855.77488.bf

86. Cohen R, Senecky Y, Shuper A, Inbar D, Chodick G, Shalev V, et al. Preva-
lence of epilepsy and attention-deficit hyperactivity (ADHD) disorder: a
population-based study. J Child Neurol (2013) 28(1):120–3. doi:10.1177/
0883073812440327

87. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental
retardation. Trends Neurosci (2004) 27(7):370–7. doi:10.1016/j.tins.2004.04.
009

88. Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, et al.
Correction of fragile X syndrome in mice. Neuron (2007) 56(6):955–62.
doi:10.1016/j.neuron.2007.12.001

89. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major
fragile X syndrome mouse model phenotypes by the mGluR5 antagonist
MPEP. Neuropharmacology (2005) 49(7):1053–66. doi:10.1016/j.neuropharm.
2005.06.004

90. de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI,
Nelson DL, et al. Rescue of behavioral phenotype and neuronal protru-
sion morphology in Fmr1 KO mice. Neurobiol Dis (2008) 31(1):127–32.
doi:10.1016/j.nbd.2008.04.002

91. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, et al.
Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice.
Neuron (2012) 74(1):49–56. doi:10.1016/j.neuron.2012.03.009

92. Woolley CS. Acute effects of estrogen on neuronal physiology. Annu Rev Phar-
macol Toxicol (2007) 47:657–80. doi:10.1146/annurev.pharmtox.47.120505.
105219

93. Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, et al. Adult male
rat hippocampus synthesizes estradiol from pregnenolone by cytochromes
P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S
A (2004) 101(3):865–70. doi:10.1073/pnas.2630225100

94. Mermelstein PG, Micevych PE. Nervous system physiology regulated by mem-
brane estrogen receptors. Rev Neurosci (2008) 19(6):413–24.

95. Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, et al.
Ultrastructural localization of estrogen receptor beta immunoreactivity in the
rat hippocampal formation. J Comp Neurol (2005) 491(2):81–95. doi:10.1002/
cne.20724

96. Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact
on reproductive health. Mol Cell Endocrinol (2012) 355(2):192–200. doi:10.
1016/j.mce.2011.05.049

97. Loesch DZ, Huggins RM, Hoang NH. Growth in stature in fragile X fam-
ilies: a mixed longitudinal study. Am J Med Genet (1995) 58(3):249–56.
doi:10.1002/ajmg.1320580311

98. Purcell AL, Carew TJ. Modulation of excitability in Aplysia tail sensory neurons
by tyrosine kinases. J Neurophysiol (2001) 85(6):2398–411.

99. Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P,
et al. Modulatory action of metabotropic glutamate receptor (mGluR) 5 on
mGluR1 function in striatal cholinergic interneurons. Neuropharmacology
(2005) 49(Suppl 1):104–13. doi:10.1016/j.neuropharm.2005.05.012

100. Liu L, Yang T, Simon SA. The protein tyrosine kinase inhibitor, genistein,
decreases excitability of nociceptive neurons. Pain (2004) 112(1–2):131–41.
doi:10.1016/j.pain.2004.08.005

101. Dunne EL, Moss SJ, Smart TG. Inhibition of GABAA receptor function by tyro-
sine kinase inhibitors and their inactive analogues. Mol Cell Neurosci (1998)
12(4–5):300–10. doi:10.1006/mcne.1998.0717

102. Boulware MI, Mermelstein PG. Membrane estrogen receptors activate
metabotropic glutamate receptors to influence nervous system physiology.
Steroids (2009) 74(7):608–13. doi:10.1016/j.steroids.2008.11.013

103. Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen recep-
tors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to
bidirectionally regulate CREB phosphorylation in female rat striatal neu-
rons. Neuroscience (2010) 170(4):1045–55. doi:10.1016/j.neuroscience.2010.
08.012

104. Meitzen J, Mermelstein PG. Estrogen receptors stimulate brain region specific
metabotropic glutamate receptors to rapidly initiate signal transduction path-
ways. J Chem Neuroanat (2011) 42(4):236–41. doi:10.1016/j.jchemneu.2011.
02.002

105. Mermelstein PG. Membrane-localised oestrogen receptor alpha and beta
influence neuronal activity through activation of metabotropic glutamate

receptors. J Neuroendocrinol (2009) 21(4):257–62. doi:10.1111/j.1365-2826.
2009.01838.x

106. Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS.
Soy formula and isoflavones and the developing intestine. Nutr Rev (2009)
67(Suppl 2):S192–200. doi:10.1111/j.1753-4887.2009.00240.x

107. Hoey L, Rowland IR, Lloyd AS, Clarke DB, Wiseman H. Influence of soya-
based infant formula consumption on isoflavone and gut microflora metabolite
concentrations in urine and on faecal microflora composition and metabolic
activity in infants and children. Br J Nutr (2004) 91(4):607–16. doi:10.1079/
BJN20031083

108. Piacentini G, Peroni D, Bessi E, Morelli L. Molecular characterization of intesti-
nal microbiota in infants fed with soymilk. J Pediatr Gastroenterol Nutr (2010)
51(1):71–6. doi:10.1097/MPG.0b013e3181dc8b02

109. Setchell KD, Clerici C. Equol: history, chemistry, and formation. J Nutr (2010)
140(7):1355S–62S. doi:10.3945/jn.109.119776

110. Jackson RL, Greiwe JS, Schwen RJ. Emerging evidence of the health benefits
of S-equol, an estrogen receptor beta agonist. Nutr Rev (2011) 69(8):432–48.
doi:10.1111/j.1753-4887.2011.00400.x

111. Bosviel R, Durif J, Dechelotte P, Bignon YJ, Bernard-Gallon D. Epigenetic mod-
ulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell
lines. Br J Nutr (2012) 108(7):1187–93. doi:10.1017/S000711451100657X

112. Spisák S, Solymosi N, Ittzés P, Bodor A, Kondor D, Vattay G, et al. Complete
genes may pass from food to human blood. PLoS One (2013) 8(7):e69805.
doi:10.1371/journal.pone.0069805

113. Smith JM. Genetic Roulette: The Documented Health Risks of Genetically Engi-
neered Foods. White River Junction, VT: Chelsea Green (2007).

114. Samsel A, Seneff S. Glyphosate’s suppression of cytochrome P450 enzymes and
amino acid biosynthesis by the gut microbiome: pathways to modern diseases.
Entropy (2013) 15:1–48. doi:10.3390/e15041416

115. Ravizza T, Kostoula C,Vezzani A. Immunity activation in brain cells in epilepsy:
mechanistic insights and pathological consequences. Neuropediatrics (2013)
44(6):330–5. doi:10.1055/s-0033-1358601

116. Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders.
Trends Neurosci (2014) 37(2):55–65. doi:10.1016/j.tins.2013.11.002

117. Curran EM, Judy BM, Newton LG, Lubahn DB, Rottinghaus GE, Macdonald
RS, et al. Dietary soy phytoestrogens and ERalpha signalling modulate inter-
feron gamma production in response to bacterial infection. Clin Exp Immunol
(2004) 135(2):219–25. doi:10.1111/j.1365-2249.2003.02368.x

118. Zhang R, Li Y, Wang W. Enhancement of immune function in mice fed
high doses of soy daidzein. Nutr Cancer (1997) 29(1):24–8. doi:10.1080/
01635589709514597

119. Chighizola C, Meroni PL. The role of environmental estrogens and autoimmu-
nity. Autoimmun Rev (2012) 11(6–7):A493–501. doi:10.1016/j.autrev.2011.11.
027

120. Bargerstock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S, et al. Is
peripheral immunity regulated by blood-brain barrier permeability changes?
PLoS One (2014) 9(7):e101477. doi:10.1371/journal.pone.0101477

121. Choy M, Dube CM, Ehrengruber M, Baram TZ. Inflammatory pro-
cesses, febrile seizures, and subsequent epileptogenesis. Epilepsy Curr (2014)
14(1 Suppl):15–22. doi:10.5698/1535-7511-14.s2.15

122. Polack FP, Khan N, Maisels MJ. Changing partners: the dance of infant
formula changes. Clin Pediatr (Phila) (1999) 38(12):703–8. doi:10.1177/
000992289903801202

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 15 April 2014; accepted: 21 August 2014; published online: 03 September
2014.
Citation: Westmark CJ (2014) A hypothesis regarding the molecular mechanism under-
lying dietary soy-induced effects on seizure propensity. Front. Neurol. 5:169. doi:
10.3389/fneur.2014.00169
This article was submitted to Epilepsy, a section of the journal Frontiers in Neurology.
Copyright © 2014 Westmark. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Neurology | Epilepsy September 2014 | Volume 5 | Article 169 | 10

http://dx.doi.org/10.1097/01.mpg.0000181855.77488.bf
http://dx.doi.org/10.1097/01.mpg.0000181855.77488.bf
http://dx.doi.org/10.1177/0883073812440327
http://dx.doi.org/10.1177/0883073812440327
http://dx.doi.org/10.1016/j.tins.2004.04.009
http://dx.doi.org/10.1016/j.tins.2004.04.009
http://dx.doi.org/10.1016/j.neuron.2007.12.001
http://dx.doi.org/10.1016/j.neuropharm.2005.06.004
http://dx.doi.org/10.1016/j.neuropharm.2005.06.004
http://dx.doi.org/10.1016/j.nbd.2008.04.002
http://dx.doi.org/10.1016/j.neuron.2012.03.009
http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105219
http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105219
http://dx.doi.org/10.1073/pnas.2630225100
http://dx.doi.org/10.1002/cne.20724
http://dx.doi.org/10.1002/cne.20724
http://dx.doi.org/10.1016/j.mce.2011.05.049
http://dx.doi.org/10.1016/j.mce.2011.05.049
http://dx.doi.org/10.1002/ajmg.1320580311
http://dx.doi.org/10.1016/j.neuropharm.2005.05.012
http://dx.doi.org/10.1016/j.pain.2004.08.005
http://dx.doi.org/10.1006/mcne.1998.0717
http://dx.doi.org/10.1016/j.steroids.2008.11.013
http://dx.doi.org/10.1016/j.neuroscience.2010.08.012
http://dx.doi.org/10.1016/j.neuroscience.2010.08.012
http://dx.doi.org/10.1016/j.jchemneu.2011.02.002
http://dx.doi.org/10.1016/j.jchemneu.2011.02.002
http://dx.doi.org/10.1111/j.1365-2826.2009.01838.x
http://dx.doi.org/10.1111/j.1365-2826.2009.01838.x
http://dx.doi.org/10.1111/j.1753-4887.2009.00240.x
http://dx.doi.org/10.1079/BJN20031083
http://dx.doi.org/10.1079/BJN20031083
http://dx.doi.org/10.1097/MPG.0b013e3181dc8b02
http://dx.doi.org/10.3945/jn.109.119776
http://dx.doi.org/10.1111/j.1753-4887.2011.00400.x
http://dx.doi.org/10.1017/S000711451100657X
http://dx.doi.org/10.1371/journal.pone.0069805
http://dx.doi.org/10.3390/e15041416
http://dx.doi.org/10.1055/s-0033-1358601
http://dx.doi.org/10.1016/j.tins.2013.11.002
http://dx.doi.org/10.1111/j.1365-2249.2003.02368.x
http://dx.doi.org/10.1080/01635589709514597
http://dx.doi.org/10.1080/01635589709514597
http://dx.doi.org/10.1016/j.autrev.2011.11.027
http://dx.doi.org/10.1016/j.autrev.2011.11.027
http://dx.doi.org/10.1371/journal.pone.0101477
http://dx.doi.org/10.5698/1535-7511-14.s2.15
http://dx.doi.org/10.1177/000992289903801202
http://dx.doi.org/10.1177/000992289903801202
http://dx.doi.org/10.3389/fneur.2014.00169
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Epilepsy
http://www.frontiersin.org/Epilepsy/archive

	A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity
	Introduction
	Soy consumption, seizures, and autism
	Implications of soy-based infant formulas on childhood neurological development
	FXS and mGluR signaling
	ER signaling at the synapse
	Melding the bear "mGluR theory of FXS" with the mermelstein "ER/mGluR Hypothesis"
	Alternative Hypotheses
	Concluding Remarks
	Human Subjects
	Acknowledgments
	References


