
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIGINAL RESEARCH ARTICLE
published: 21 November 2014
doi: 10.3389/fneur.2014.00238

MicroRNA dysregulation, gene networks, and risk for
schizophrenia in 22q11.2 deletion syndrome
Daniele Merico1, Gregory Costain2, Nancy J. Butcher 2,3,William Warnica2, Lucas Ogura2, Simon E. Alfred 2,
Linda M. Brzustowicz 4 and Anne S. Bassett 2,3,5,6,7*
1 The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
2 Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
3 Institute of Medical Science, University of Toronto, Toronto, ON, Canada
4 Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
5 The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, ON, Canada
6 Department of Psychiatry, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
7 Department of Psychiatry, University of Toronto, Toronto, ON, Canada

Edited by:
Owen Murray Rennert, National
Institutes of Health, USA

Reviewed by:
Kyo Yamasu, Saitama University,
Japan
Megan Kathleen Mulligan, University
of Tennessee Health Science Center,
USA

*Correspondence:
Anne S. Bassett , Centre for Addiction
and Mental Health, 33 Russell Street,
Room 1100, Toronto, ON M5S 2S1,
Canada
e-mail: anne.bassett@utoronto.ca

The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized.
Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high
risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The
22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA micro-
processor complex.We identified miRNAs overlapped by the 22q11.2 microdeletion and for
the first time investigated their predicted target genes, and those implicated by DGCR8,
to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region
encompasses seven validated or putative miRNA genes. Employing two standard predic-
tion tools, we generated sets of predicted target genes. Functional enrichment profiles
of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and
broader developmental pathways. We then constructed a protein interaction network of
schizophrenia candidate genes and interaction partners relevant to brain function, indepen-
dent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets
of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be
dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophre-
nia network. The findings provide new insights into the pathway from 22q11.2 deletion
to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may
have downstream effects implicating genes elsewhere in the genome that are relevant to
the general schizophrenia population.These data also provide further support for the notion
that robust genetic findings in schizophrenia may converge on a reasonable number of final
pathways.

Keywords: DiGeorge syndrome, 22q11.2, 22q11 deletion, schizophrenia, DGCR8, miRNA, protein interaction
network, synapse

INTRODUCTION
MicroRNAs (miRNAs) are small non-coding RNAs that regulate
gene expression at the level of translation of messenger RNA to
protein (1, 2). A recent review documents the ever increasing
number of miRNAs identified throughout the human genome
and the emerging knowledge about their target genes (2). Indi-
vidual miRNAs can target multiple messenger RNAs, effectively
controlling expression of a suite of genes. Thus, the alteration
of a single miRNA with respect to its genomic sequence, copy
number, and/or expression can have broad implications for both
normal development and cellular function throughout life. Also,
a single gene’s messenger RNA can be targeted for modula-
tion by several miRNAs. Mature miRNAs are processed from
double-stranded primary miRNA transcripts by a microproces-
sor complex comprised of two main cofactors: the RNA-binding
protein Pasha, encoded by the DGCR8 gene located within the

typical 22q11.2 deletion region, and Drosha, the endonuclease
responsible for cleaving RNA (1). The prominent role of DGCR8
in miRNA-processing implicates a miRNA mechanism in indi-
viduals with 22q11.2 deletion syndrome (22q11.2DS; OMIM
#188400/#192430). 22q11.2DS is the most common genomic dis-
order in humans (3–5). The highly variable expression of the
underlying 22q11.2 microdeletion has led in the past to various
names being applied to the same condition, including DiGeorge
and velocardiofacial syndromes (3). The penetrance for at least
one major feature is high, including cardiac and palatal anom-
alies, endocrine disorders, intellectual and learning disabilities, and
schizophrenia and other neuropsychiatric diseases (3). Notably,
the 22q11.2 microdeletion is the single greatest known molecu-
lar risk factor for schizophrenia (6, 7). Up to 1% of patients with
schizophrenia have a 22q11.2 deletion associated with 22q11.2DS
(8), and individuals with 22q11.2DS have a 20–25% lifetime
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risk of schizophrenia (i.e., a ~25-fold elevation over the general
population risk) (7).

Multiple lines of evidence implicate miRNAs in the etiol-
ogy of schizophrenia in the general population. These include
altered miRNA expression profiles compared with controls in
postmortem studies of brain tissue (9–16) and peripheral serum
samples (17, 18). Also, recent data suggest an enrichment of rare
copy number variations (CNVs) overlapping miRNAs in schizo-
phrenia compared to a control population, even after controlling
for CNV size and excluding 22q11.2 deletions (19).

In individuals with typical 22q11.2 deletions, there is pre-
liminary evidence of a unique miRNA expression profile (20),
and there are data from mouse models implicating an effect of
reduced Dgcr8 copy number on global miRNA expression (21–
26). We have previously proposed a theory that mechanistically
explains the link between 22q11.2DS, miRNAs, and schizophre-
nia risk, with evidence from an adult 22q11.2DS sample that the
22q11.2 deletion may unmask effects of variants in genes across
the genome (27). In the current study, we hypothesized that the
effect of a 22q11.2 deletion on phenotypic expression of schizo-
phrenia could involve not only the hemizygosity of DGCR8 but
also reduced dosage of all of the miRNAs within the 22q11.2 dele-
tion region. We identified all putative miRNAs in the 22q11.2
deletion region and investigated functional enrichment profiles
of their predicted target genes. We then explored the role of these
targets, also considering those of miRNAs outside of the 22q11.2
region reported to be dysregulated by hemizygosity of DGCR8, in
a newly created protein interaction network composed of schizo-
phrenia candidate genes and interaction partners relevant to brain
function.

MATERIALS AND METHODS
GENOME BUILD
We relied on the latest genome build (GRCh38/hg20), used in the
June/July 2014 release of the miRBase resource (28, 29), to gener-
ate a comprehensive list of 22q11.2 deletion region miRNAs and
to analyze miRNA density in the rest of the genome. Because many
gene information resources have not yet been updated to the latest
assembly, we used genome build GRCh37/hg19 for all gene-related
methods, including miRNA target gene prediction and derivation
of the schizophrenia gene interaction network.

22q11.2 DELETION REGION miRNA ANNOTATION AND GENOME-WIDE
DENSITY CALCULATIONS
We annotated the typical 2.6 Mb 22q11.2 deletion region
(chr22:18,876,416–21,465,674 [hg19]; Affymetrix Human SNP
Array 6.0 breakpoint) for miRNA-related genomic content, using
miRBase 21 (accessed in August 2014) to identify all putative
miRNAs in the region (28, 29) and RefSeq (30) to map DGCR8
and these miRNAs to the region of interest (Figure 1). To assess
miRNA density within this 22q11.2 deletion region and compare
to miRNA density in the rest of the genome, for each miRNA
in miRBase 21, we counted how many miRNA primary tran-
scripts were contained in a symmetric 2.6 Mb region around
the miRNA transcript start (i.e., within 1.3 Mb on either side).
Note that there is a one-to-one correspondence between miRBase
21 miRNA genes and miRNA primary transcripts, even in the

presence of a duplicate miRNA gene at different genomic loci;
primary transcripts are precursors of mature miRNAs.

PREDICTION OF miRNA TARGET GENES
We employed a conservative strategy to examine the predicted
target genes of 22q11.2 deletion region miRNAs (22). We first
selected two well-established target prediction tools: TargetScan
6.2 (32) and DIANA microT-CDS (33). For each miRNA of inter-
est, we separately retrieved targets for the -3p and -5p miRNA
mature forms, if available (Table 1). For each prediction method,
gene prediction scores were transformed into percentiles consid-
ering predictions for all putative targets and all miRNAs (e.g., if
a gene has score x for miRNA m, and x corresponds to the top
10% of all scores for that prediction method, the correspond-
ing percentile-transformed score x ’ is 0.10). Then, for each of the
six 22q11.2 miRNAs with available targets from both tools (i.e.,
all but miR-6816; Table 1), we generated a final ranking based
on the average percentile-transformed score from the two pre-
diction tools. Whenever a gene was a target of both the -5p and
-3p forms, its percentile-transformed scores for the two forms were
also averaged (applicable to miR-4761 TargetScan and microT pre-
dictions, and miR-185 TargetScan predictions). Based on this final
ranking, for each miRNA we compiled three lists of the highest-
ranked predicted gene targets: the top 200, the top 400, and the
top 800. For miR-1306, only 149 targets were retrieved and used
in all subsequent analyses.

miRNA FUNCTIONAL ENRICHMENT ANALYSIS
Functional enrichment of the miRNAs from the 22q11.2 deletion
region was ascertained by testing if a given functional gene-set (see
below) had more genes targeted by the 22q11.2 deletion region
miRNAs than collectively for all other miRNAs in the genome,
using the same target prediction methods as for the 22q11.2 dele-
tion miRNAs. The background set of all miRNA targets consisted
of 14,192 genes. This approach is robust to functional biases,
such as miRNA targets being collectively enriched in specific
functions. Of note, we tested the background set of all miRNA
targets and indeed found enrichment in functions such as develop-
ment, cell cycle, and transcriptional regulation. We tested miRNA
target functional enrichment using the one-tailed Fisher’s Exact
Test. Specifically, we constructed a contingency table for each
miRNA and gene-set pair (miRNA_i, GS_j), with the following
gene counts: (i) target genes of miRNA_i also found in functional
gene-set GS_j, (ii) target genes of miRNA_i found in other func-
tional gene-sets but not in GS_j, (iii) target genes of other miRNAs
but not of miRNA_i found in functional gene-set GS_j, and (iv)
target genes of other miRNAs but not of miRNA_i found in other
functional gene-sets but not in GS_j. Official gene symbols from
miRNA target prediction tools were converted to Entrez Gene
ID for the enrichment analysis using the Bioconductor package
org.Hs.eg.db version 2.14.01.

The functional gene-sets used for enrichment analyses were
derived from: (a) Gene Ontology annotations (GO) (35), (b) Kyoto
Encyclopedia of Genes and Genomes (KEGG) (36), Reactome

1http://www.bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.
db.html
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Merico et al. MicroRNAs at chromosome 22q11.2 and schizophrenia

FIGURE 1 | Schematic of miRNAs and the miRNA-processing gene
DGCR8 in the 22q11.2 deletion region (genome build GRCh37/hg19).
Affymetrix Human SNP Array 6.0 22q11.2 deletion breakpoints are shown

(31). Gene and miRNA sizes are enlarged for illustrative purposes and are
not to scale. FISH, fluorescence in situ hybridization; LCR, low copy
repeats.

Table 1 | Characteristics of microRNAs (miRNAs) encoded within the 22q11.2 microdeletion region (current to August 2014).

miRNA primary coding sequence Supporting miRNA evidence and quality Target genese

miRNA Coordinates [hg19] Pub

Med

No.

miRBase

NGS

Other

evidence

(miRBase)

GeneCards

quality

scoreb

Brain

expressionc

Conservationd Predicted

target

genes

Mean

target

gene score

Exp.

No.

Read

No.

miR-185a chr22:20020662-20020743 27 76 48635 Cloned 3 Yes Primate, murine Yes 0.042062

miR-649 chr22:21388465-21388561 1 3 3 RT-PCR,

SAGE

8 No Primate Yes 0.099593

miR-1286 chr22:20236657-20236734 1 19 328 None 8 Yes Primate Yes 0.058791

miR-1306a chr22:20073581-20073665 1 61 1329 None 3 Yes Primate, murine Yes 0.404076

miR-3618 chr22:20073269-20073356 1 8 9 None 3 No Murine Yes 0.068121

miR-4761a chr22:19951276-19951357 1 12 26 None 3 – None Yes 0.080270

miR-6816a chr22:20102209-20102274 1 4 5 None 2 – None No N/A

miRNA, miRNAs encoded within the 22q11.2 region (chr22:18876416-21465674 [hg19]); coordinates [hg19], miRNA primary transcript coordinates retrieved from

miRBase (release 21) (29); PubMed No., number of PubMed articles retrieved from miRBase (29); Exp No., number of next-generation sequencing (NGS) experiments

retrieved from miRBase (29); Read No., read counts from NGS experiments retrieved from miRBase (29); RT-PCR, reverse transcription-polymerase chain reaction;

SAGE, serial analysis of gene expression.
a3p and 5p mature miRNA species identified.
bIndicates how many RNA databases have information about this miRNA, and whether the miRNA is expressed or is known to be functional (score ≥5 indicates

miRNA is known to be expressed, score ≥10 indicates gene is known to be functional; www.genecards.org).
cHuman prefrontal cortex and/or cerebellar expression (34); mir-4761 and mir-6816 were unavailable for this publication.
dLimited to non-human primate and murine homologs; data collated from miRBase, Ensembl, and NCBI Entrez Gene.
eAvailability of predicted target genes for mature miRNAs with data available using two standard prediction tools (TargetScan and microT-CDS), and average

percentile-transformed scores for the 200 top-ranked predicted target genes per miRNA; 149 genes for mir-1306. See text for further details.
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(37), National Cancer Institute (NCI) (38), and BioCarta2 path-
way databases (downloaded 17 October 2013). Only gene-sets with
sizes between 15 and 900 genes were used; in our experience, larger
gene-sets are less informative and smaller gene-sets are detrimen-
tal for multiple test correction. This resulted in 5,794 gene-sets.
To control for multiple testing, we used the Benjamini–Hochberg
False Discovery Rate (FDR) method. All statistical analyses were
performed using R 3.1.1 software.

VISUALIZATION OF miRNA FUNCTIONAL ENRICHMENT RESULTS
For each of the six 22q11.2 deletion region miRNAs with tar-
get genes, we retained only the gene-sets that were significant at
a nominal p-value threshold of 0.01 in at least two of the three
target gene thresholds used (top 200, top 400, and top 800). For
miR-1306, where only 149 targets could be retrieved, we used a
more stringent significance threshold (nominal p-value≤ 0.005).
Functional gene-sets passing these significance filters were visu-
alized using the Cytoscape plugin Enrichment Map (version 1.2)
(39), setting the Jaccard and overlap combined coefficient thresh-
old to 0.225. Circles were colored based on the miRNA that had
gene targets enriched in the corresponding gene-set. Functional
clusters were manually identified and labeled.

PLACING 22q11.2 DELETION REGION miRNA-RELATED GENE TARGETS
IN THE CONTEXT OF A SCHIZOPHRENIA GENE NETWORK
We then attempted to identify which genes predicted to be impli-
cated by a 22q11.2 deletion region miRNA-related mechanism may
contribute to schizophrenia etiology. To this end, we considered
both the potential effects on gene targets related to the reduced
dosage of 22q11.2 region miRNAs, and the potential effects related
to reduced dosage of DGCR8 and the associated changes in
miRNA-processing genome-wide. Although many studies have
investigated the rare and common variants contributing to schiz-
ophrenia etiology, it is reasonable to assume that many genes and
genetic mechanisms remain undiscovered (40). To address this
issue, we first constructed a protein interaction network of schizo-
phrenia candidate genes and interaction partners relevant to brain
function (details below). We then mapped the target genes derived
from 22q11.2 deletion region miRNA-related mechanisms onto
this schizophrenia network.

DEVELOPMENT OF A GENE LIST RELEVANT TO SCHIZOPHRENIA
Schizophrenia candidate genes were curated from sources that
employed two different approaches. First, from the recent genome-
wide case-control association study (GWAS) of schizophrenia by
the Psychiatric Genomics Consortium (PGC), a type of study able
to detect common sequence-based variants with low effect sizes
in very large samples, we selected the 35 genes the authors high-
lighted in their supplementary information as those of particular
interest for schizophrenia (40). Second, we considered the 107
genes of interest highlighted in our previous case-control study of
rare CNV in a community schizophrenia sample, in which 22q11.2
deletions were a priori excluded (41). Each gene was overlapped
by one or more very rare CNVs (i.e., gene dosage effects with

2http://www.biocarta.com

potential high effect sizes) and was of potential relevance to brain
function based on results of systematic searches of human (e.g.,
Online Mendelian Inheritance in Man)3 and model organism (e.g.,
Mouse Genome Informatics)4 databases (41). As annotated else-
where (41), many of these 107 genes had also been implicated
in other studies of rare copy number or sequence variation (42–
54). Combining these two lists resulted in 141 genes, of which 139
were successfully mapped to Entrez Gene identifiers. One gene was
present in both lists (GRIN2A).

We then defined three criteria to establish if a gene is rele-
vant to brain function: (i) human brain expression level, (ii) gene
function, and (iii) mouse neurological or neurodevelopmental
phenotype. For human brain expression, we selected 9,199 genes
displaying higher than average gene expression in any brain region
and developmental time point present in the BrainSpan data-set
(downloaded September 2012) (55). For gene function,we selected
3,192 genes found in any of the following gene-sets: (i) human
GO central nervous system development, (ii) human GO neuron
development, (iii) human GO synapse, (iv) human GO neuron
projection, (v) human GO neuron cell body, (vi) human post-
synaptic density components detected by proteomics (56), and
(vii) human orthologs of mouse FMR1 targets detected exper-
imentally in neurons (57). For mouse phenotypes, we selected
3,479 human orthologs of mouse genes with a reported neurobe-
havioral or abnormal nervous system phenotype (Mouse Genome
Informatics; downloaded August 2013)4. It was previously shown
that these gene-sets display significantly higher rare variant bur-
den in neuropsychiatric disorders (41, 44, 58–61). By requiring at
least one of the three criteria to be met, we retained 118 candidate
genes. All the 21 initial candidate genes that were excluded came
from the CNV study. In addition, by requiring at least two of the
three criteria to be met, we labeled 3,813 other genes as relevant to
brain function.

SCHIZOPHRENIA NETWORK CONSTRUCTION AND VISUALIZATION
To construct a schizophrenia gene network, we first imported
protein–protein interactions from the GeneMANIA website
(August 2014) (62), derived from BioGRID (63), Intact (64), Bind
(65), Dip (66), and HPRD databases (67). We retained only those
interactions with GeneMANIA weight ≥0.02 to minimize false
positives; this threshold was chosen based on manual inspection
of the data and overall interaction count. This resulted in 90,188
unique interactions among 14,091 genes.

Genes relevant to brain function were additively scored based
on their first-degree interaction as follows: (i) −1 for every inter-
action with a gene not labeled as relevant to brain function or as
a schizophrenia candidate; (ii) +0.5 for every interaction with a
gene labeled as relevant to brain function (excluding schizophrenia
candidates; 3,813 genes); and, (iii)+2.5 for every interaction with
a schizophrenia candidate gene (118 genes). We evaluated slightly
different scoring schemes and found very similar gene rankings
(data not shown). We retained genes relevant to brain function
with interaction score ≥1.5. We constructed the final network by
including all interactions with interaction partners corresponding

3http://www.omim.org/
4http://www.informatics.jax.org/
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to genes relevant to brain function and schizophrenia candi-
dates but not other genes, following the principle of “guilt-by-
association” (68). The network was visualized in Cytoscape 2.8.2
using the spring-embedded layout.

MAPPING OF GENES INFLUENCED BY 22q11.2 DELETION REGION
miRNA-RELATED MECHANISMS ON A SCHIZOPHRENIA NETWORK
In order to map the target genes influenced by 22q11.2 deletion
region miRNA-related mechanisms onto the schizophrenia net-
work, we first studied the total 1,081 predicted target genes of
the six 22q.11.2 miRNAs. For the DGCR8-related mechanism, we
used the 3,022 genes that were amongst the top 200 targets of at
least two miRNAs differentially expressed in the mouse model of
DGCR8 haploinsufficiency (21), and not targeted by any of the
six 22q11.2 miRNAs. We compared each of these target sets with
the 449 genes in the schizophrenia network, using the one-sided
Fisher’s Exact Test to assess the significance of the overlap.

RESULTS
miRNAs IN THE 22q11.2 DELETION REGION
There were seven putative miRNAs encoded within the typical
22q11.2 deletion region (Table 1; Figure 1), corresponding to 11
mature (processed) miRNAs. All but one (miR-649) are in the
nested proximal deletion region (Figure 1). The 22q11.2 deletion
region is characterized by high miRNA density: the number of
miRNA primary transcripts within this 2.6 Mb window is greater
than the number found in 73.3% of same-sized regions surround-
ing other miRNA loci genome-wide. If one considered the six
miRNAs in the 1.4 Mb proximal 22q11.2 deletion region, this
miRNA density would be even more striking. Notably, miR-1306
and miR-3618 are just 309 bp apart and are encoded in the genomic
sequence of DGCR8.

Considering the totality of experimental evidence support-
ing the existence of these putative miRNAs in the chromosome
22q11.2 region, miR-185 and miR-649 are the most established
(Table 1). miR-1286 and miR-1306 have very good evidence based
on next-generation sequencing (NGS) experiments but lack inde-
pendent validation, while miR-3618 and miR-4761 have weaker
NGS-based evidence (Table 1). The existence of miR-6816 is sup-
ported by limited evidence and there are no predicted genes targets
at present (Table 1). Therefore, this miRNA was excluded from
the analyses that follow. We note that, in general, supporting evi-
dence is strongest for the lower numbered miRNAs, as these were
discovered first, and far less for higher numbered miRNAs.

PREDICTED GENE TARGETS OF 22q11.2 REGION miRNAs ARE ENRICHED
FOR NEURODEVELOPMENTAL FUNCTIONS
Overall, the average percentile-transformation prediction scores
for the top 200 target genes per miRNA were similar for each of
the miRNAs in the 22q11.2 deletion region, with the exception of
miR-1306 where there were just 149 target genes (Table 1). Because
the percentile transformation is based on prediction scores for all
miRNAs (see Materials and Methods), this indicates similarly well
predicted (i.e., top 10%) targets for five of the six miRNAs in this
region for their top 200 target genes.

The target genes of these miRNAs were tested for enrichment
in functional gene-sets. We retained only the gene-sets that were

significant at a nominal p-value threshold of 0.01 in at least two
of the three target gene thresholds used (top 200, top 400, and top
800). We identified several functional clusters of interest (Figure 2,
more details are provided in Table S1 in Supplementary Material).
In particular, the synapse and neuron projection cluster displayed
enrichment that involved targets of more than one miRNA from
the 22q11.2 deletion region (miR-649 and either miR-1286 or
miR-185). All miRNAs, except miR-4761, displayed enrichment
in at least one gene-set related to brain function or development,
with specific clusters related to: (i) synapse and neuron projection
components; (ii) nervous system development; and (iii) neuron
development and axon guidance (Figure 2). In addition, targets
of four miRNAs (miR-185, miR-1286, miR-3618, and miR-4761)
displayed enrichment in other developmental processes and path-
ways, including embryonic development, the mitogen-activated
protein kinase (MAPK) cascade, the bone morphogenetic pro-
tein (BMP) group of growth factors, and SMAD and transform-
ing growth factor-beta (TGF-beta) signaling. Notably, miR-3618
targets displayed particular enrichment in cardiovascular develop-
ment. These latter findings may be of interest with regards to other
features of the typical 22q11.2DS phenotype, such as congenital
cardiac defects (3).

SCHIZOPHRENIA CANDIDATE GENE NETWORK AND OVERLAP OF
22q11.2 DELETION REGION miRNA TARGETS
To investigate the potential role of 22q11.2 deletion region miRNA
mechanisms in the high risk for schizophrenia associated with
22q11.2DS, we derived a schizophrenia gene network using meth-
ods unrelated to either miRNA mechanisms or the 22q11.2
deletion. The network was constructed on the basis of physi-
cal protein–protein interactions between schizophrenia candidates
and genes deemed relevant to brain function; in particular, genes
from the latter group were also required to have specific con-
nectivity to schizophrenia candidates or other genes relevant for
brain function (see Materials and Methods for details). The final
network comprised 449 genes (78 of the 118 initial schizophrenia
candidates and 371 of the initial 3,813 genes relevant to brain func-
tion) (Table S2 in Supplementary Material), with 773 interactions
(Figure 3). The network is characterized by a densely connected
core corresponding to glutamatergic ionotropic receptors (GRIAs,
GRIK s, and GRIN s) and post-synaptic density organizers (DLGs,
DLGAPs, SHANK s, and HOMERs). The network also includes key
neuronal adhesion molecules (such as neurexins and neuroligins),
components of the dopaminergic synapse (such as DRD2 and
DRD3), axon guidance molecules and receptors (such as ephrins,
plexins, and netrins), and signaling hubs (such as PRKCA). While
the candidate genes used to construct this network were selected
using evidence for disease implication derived from two differ-
ent approaches (40, 41), the network includes many additional
genes of potential relevance to schizophrenia (e.g., GRIA2, GRIN1,
GRIN2B, HOMER1, PICK1, and SNAP25).

We then used this network to investigate the two 22q11.2 dele-
tion region miRNA-related mechanisms under study. We success-
fully mapped onto the schizophrenia network 40 of the total 1,081
predicted target genes of the six 22q11.2 miRNAs. We also mapped
100 of 3,022 genes implicated in a mouse model of DGCR8 hap-
loinsufficiency (21) and that were not targeted by the six 22q11.2
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FIGURE 2 |Top functional gene-sets enriched in predicted targets of
miRNAs from the 22q11.2 deletion region. Enriched gene-sets are
visualized as a network, where circles represent gene-sets and
connections (lines) depict gene-set overlap; in this way, gene-sets that
have a similar gene composition cluster into functional groups, which were
manually identified and labeled (light yellow shades if neurobiologically
related, and gray shades otherwise; more details can be found in Table S1

in Supplementary Material). Circle colors represent gene-set enrichment
of results for six different miRNAs, with yellow representing enrichment in
more than one miRNA; black circle border denotes enrichment
Benjamini–Hochberg FDR≤25% or enrichment in more than one miRNA.
Circle size relates to the total number of genes in the gene-set. This
visualization was created using the Cytoscape plugin Enrichment Map
(version 1.2).

miRNAs. Both of these target sets exhibited a statistically sig-
nificant overlap with the schizophrenia gene network (one-sided
Fisher’s Exact Test p-value <0.05, odds-ratio point estimate= 1.4
and 1.3, respectively), and an apparently even distribution across
the network (Figure 3).

Notably, upon ranking network genes by our network inter-
action score (see Materials and Methods) we found that 24
(48%) of the top-scoring 50 genes (Table S2 in Supplementary
Material, Network Attributes, Network score) were implicated as
targets of 22q11.2 region miRNAs or miRNAs dysregulated by
DGCR8 haploinsufficiency. These included schizophrenia can-
didate genes (GRIA1, RIMS1, DLGAP2, GRIN2A, and NRXN1)
and several interaction partners. Amongst the latter were genes

involved in glutamate and/or dopamine synapses (e.g., GRIK2
and GRM5), and other genes relevant to brain function such
as NLGN2 and STXBP1 (Table S2 in Supplementary Material).
With respect to the total 78 schizophrenia candidate genes used
to construct the network, other genes that were predicted tar-
gets of the 22q.11.2 region miRNAs were: ATP2A2, CACNB2,
FGF2, SNAP91, and WNT5B. Included amongst the 22 candidate
genes implicated by the DGCR8 mechanism were DISC1, RELN,
and SYN1.

DISCUSSION
In this study, we identified all putative miRNAs in the 22q11.2
deletion region and systematically investigated their predicted
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target genes. The functional enrichment profiles of their predicted
targets suggested a role in neuronal processes and broader devel-
opmental pathways. We found that the genes targeted by these
miRNAs, as well as the genes targeted by miRNAs outside of the
22q11.2 region yet predicted to be dysregulated because of the
DGCR8 hemizygous deletion (21), were significantly represented
in a protein interaction network composed of schizophrenia can-
didate genes (40, 41) and brain-specific interaction partners. These
results further our understanding of the potential pathway(s)
from genotype to phenotype for the greatest known molecu-
lar risk factor for schizophrenia – a 22q11.2 microdeletion. The
findings also provide insight into the etiology of schizophrenia
more generally, and highlight the usefulness of studying the more
genetically homogeneous model for schizophrenia provided by
22q11.2DS-schizophrenia.

miRNA-MEDIATED DISEASE EXPRESSION IN 22q11.2DS AND RELATED
GENOMIC DISORDERS
From the discovery of the first miRNA in C. elegans in 1993 (69)
to the 2014 release of the online repository miRBase 215, 1,881
precursor and 2,588 mature human miRNAs have been identified
(29). This represents over a fourfold increase in numbers just since
2007 (2), and more miRNAs are likely to be discovered (70). These
ongoing advances in our understanding of human genome regu-
lation necessitate a critical reappraisal of the traditional protein-
coding gene focus of cytogenetics. It is now appreciated that
miRNA mechanisms may contribute to the pathogenesis of diverse
neurodevelopmental and neurodegenerative disorders (2). Our

5http://www.mirbase.org

FIGURE 3 | (A,B) Overlap of 22q11.2 deletion region miRNA-related
mechanisms with a physical protein–protein interaction network of
schizophrenia candidate genes and interaction partners relevant to brain
function. The network is composed of 449 genes (78 schizophrenia

candidates and 371 interaction partners relevant to brain function; see text
and Table S2 in Supplementary Material), depicted as circles, and 773
physical protein–protein interactions, depicted as connecting lines.

(Continued)
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FIGURE 3 | Continued
Genes are colored according to the overlap with 22q11.2 deletion region
miRNA deregulation mechanism: (i) predicted targets of the six 22q11.2
miRNAs have color violet if they overlap with curated schizophrenia
candidates used to seed the network, and orange otherwise; (ii) predicted
targets of at least two miRNAs down-regulated in a model of decreased
DGCR8 processing mechanism, excluding predicted targets of the six
22q11.2 miRNAs, have color green if they overlap with curated
schizophrenia candidates used to seed the network, and yellow otherwise.

Other schizophrenia candidate genes have color blue, while the remainder
of the genes have color gray. The densely connected network core
corresponding to GRIAs, GRIKs, GRINs, DLGs, DLGAPs, SHANKs, and
HOMERs is highlighted by an olive green shade. Gene names are
highlighted in boxes for 22q11.2 deletion region miRNA target genes that
overlap schizophrenia candidate genes (A), and for target genes of
miRNAs implicated by a decreased DGCR8 processing mechanism that
overlap schizophrenia candidate genes, as well as a selected subset of
other genes of interest for schizophrenia (B).

results suggest that the 22q11.2 deletion region is characterized
by increased miRNA density, and that target genes of these miR-
NAs are enriched in gene-sets of brain function and/or develop-
ment, as well as other developmental processes and pathways. In
22q11.2DS, this provides an enhanced model for understanding
multisystem pathogenesis that moves beyond DGCR8, TBX1, and
other protein-coding genes within the 22q11.2 deletion region.

The pleiotropy of the implicated miRNA target genes could con-
tribute to the variable expression that is a hallmark of 22q11.2DS,
and involve the brain and multiple other organs. This could help to
explain the constellation of congenital features previously known
as DiGeorge syndrome in addition to individual major later-onset
features such as schizophrenia. Some of the classic variability asso-
ciated with other “contiguous gene syndromes” could similarly be
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mediated by miRNA dysregulation and disruption of non-coding
elements.

Consistent with our hypothesis, we found evidence that
the effect of a 22q11.2 deletion on phenotypic expression of
schizophrenia could involve not only the hemizygosity of DGCR8
but also reduced dosage of all of the miRNAs within the 22q11.2
deletion region. Target genes of the 22q11.2 region miRNAs exhib-
ited a statistically significant overlap with a protein interaction
network composed of schizophrenia candidate genes and interac-
tion partners relevant to brain function. These data are consistent
with, and expand on, previous studies implicating miR-185 and
its downstream pathways in schizophrenia (71). We also observed
a statistically significant overlap between target genes of miRNAs
predicted to be dysregulated by hemizygous deletion of DGCR8
and the schizophrenia network. The results suggest that the lev-
els of influence of these two miRNA mechanisms were at similar
levels. Collectively, these findings provide new insights into the
pathway from 22q11.2 deletion to expression of schizophrenia.
The overlap between the 22q11.2DS miRNA mechanism-related
targets and the schizophrenia network suggests that hemizygosity
of the 22q11.2 region may have downstream effects that are rel-
evant to the general schizophrenia population. These data also
provide further support for the optimistic notion that robust
genetic findings in schizophrenia will soon be found to converge on
a reasonable number of final pathways (42). For example, Figure 3
and Table S1 in Supplementary Material document genes related to
22q11.2 region miRNA mechanisms that include several involved
in glutamatergic and/or dopaminergic pathways, such as GRIA1
(40). Other implicated genes are key regulators of neurodevelop-
ment, e.g., FGF2 (72). Genes such as NRXN1 (73) and DISC1 (74)
have now been shown to be involved in the aetiopathogenesis of
schizophrenia through diverse lines of evidence.

ADVANTAGES AND LIMITATIONS
To our knowledge, this is the first study of the potential conse-
quences of reduced gene dosage effects of the collective miRNA-
related content in the 22q11.2 deletion region. Animal model and
human miRNA studies performed to date relating to the 22q11.2
deletion had primarily focused on DGCR8 and, to a lesser extent,
miR-185 (21–24). There is little written about the cluster of the
seven validated and putative miRNAs in the 22q11.2 deletion
region beyond miR-185. For example, a recent publication listed
just four miRNAs in this region (75). Also, miRNAs, including
miR-185 and the other six from this region, are not represented
on standard RNA expression arrays, and thus are not available
for reporting in existing expression databases and papers. These
technology-based limitations would be in addition to important
issues related to expression differences between specific tissues,
brain regions, and developmental stages. There are also species dif-
ferences, and potentially activity-regulated differences, in expres-
sion. For example, in rat hippocampal neuron cultures, miR-185
has recently been shown to be associated with altered expression
after NMDA receptor-dependent plasticity changes (76). A further
limitation of the current study is the reliance, related to all bioin-
formatic approaches, on published data. As new expression and
other data become available, there will be further opportunities to
study the potential contribution of regional miRNA mechanisms

to expression of schizophrenia in 22q11.2DS. We note that DGCR8
has activities that are miRNA independent (77, 78), that could be
additive to its roles in miRNA-processing genome-wide.

One limitation of all contemporary miRNA studies is the forced
reliance on target gene prediction tools, given that there are lim-
ited validated gene target data available, and even then the miRNA
expression studies that are the gold standard may be imperfect (79,
80). For that reason, in this preliminary study we did not restrict to
validated targets. We also did not add validated targets. As an exam-
ple, HTR2C, one of seven genes dramatically decreased in Dgcr8±

mutant mice hippocampus and previously shown to be decreased
in prefrontal cortex in schizophrenia (24), though present in our
network, was not a predicted DGCR8 target using our methods.
Also, miRNAs are being identified daily, and the prediction tools
are limited by the data available on these miRNAs and their gene
targets. Different gene target prediction software can produce dif-
fering sets of predicted target genes. For example, Forstner and
colleagues (81) used the Molecular Signatures Database 3.1 to
derive 124 targets of miR-185. We elected to employ a strategy
based on two distinct prediction tools for miRNA target predic-
tion, and generation of averaged percentile-transformed scores.
Although imperfect, the integration of more than one prediction
method tends to balance out the precision and recall, arguably
resulting in better accuracy and coverage of predictions (19, 82).

In the absence of any single widely accepted schizophrenia gene
list or network, we generated a network using data derived from a
published CNV and GWAS study (40, 41) together with genes rele-
vant to brain function. This network was designed to be free of bias
from 22q11.2 deletion effects. The relatively few candidate genes
for schizophrenia highlighted in the recent large-scale PGC GWAS
was in part a consequence of the high threshold for genome-wide
significance (40). The specific approach that led to the selection
of the 35 genes in that study was not described in detail and thus
could not be applied to the other gene list used in this study. In
contrast, the list of genes derived from the study of rare CNV (40,
41) was larger, particularly in proportion to the respective sam-
ple sizes of the two studies. In this case, many more genes were
scrutinized and thus ultimately considered to be of potential rel-
evance to schizophrenia, because of the implicit assumption that
any very rare CNV could potentially be a risk factor of moderate
or greater effect. Many of these 107 genes had been implicated in
other studies of rare copy number or sequence variation (42–54).
We applied homogeneous criteria to filter both candidate gene
lists, using up-to-date and comprehensive annotations, resulting
in a more balanced final ratio of GWAS to rare CNV candidates of
about 1:2. Furthermore, the dependence of the network on the ini-
tial candidate list was reduced by the inclusion of genes relevant
to brain function that interact not only with the schizophrenia
candidates but also with other brain-specific genes.

FUTURE DIRECTIONS
Functional studies could determine if there is an appreciable dif-
ference in gene expression in the 22q11.2 region miRNA gene
targets highlighted in this study, between those individuals with
22q11.2DS who did and did not develop schizophrenia. As sug-
gested by our functional enrichment mapping results, miRNAs in
this deletion region may also play a role in other developmental
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aspects of the 22q11.2DS phenotype, including congenital heart
disease. More generally, our experimental approach could now
be applied to miRNAs and their target genes within the genomic
extent of diverse large rare CNVs with variable neuropsychiatric
and other expression, e.g., duplications and deletions at 16p13.11
(19, 50). Conversely, one could investigate whether other areas of
the genome where miRNA density is high are more likely to have
rare CNV deemed pathogenic. Interaction partners of schizophre-
nia candidates included in our network may be helpful to delineate
the broader pathways that may be underpinning schizophrenia
pathogenesis, and thus could be implicated by future studies (fol-
lowing the principle of “guilt-by-association”) (68). Adding to a
focus on variants in the exome, there is recent evidence that rare,
non-coding variants have an important impact on expression and
complex disease burden (83). While rare variants may have higher
prior likelihood of functional impact (83), a miRNA mechanism
can embrace both rare and common variants in pathogenesis (27).
Using advanced technologies in integrated studies of the transcrip-
tome and genome (83) may contribute to discovering the “hidden
heritability” of schizophrenia.
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