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Objective: We examined two potential biomarkers of brain damage in hypoxic–ischemic
encephalopathy (HIE) neonates: glial fibrillary acidic protein (GFAP; a marker of gliosis) and
ubiquitin C-terminal hydrolase L1 (UCH-L1; a marker of neuronal injury). We hypothesized
that the biomarkers would be measurable in cord blood of healthy neonates and could
serve as a normative reference for brain injury in HIE infants. We further hypothesized
that higher levels would be detected in serum samples of HIE neonates and would cor-
relate with brain damage on magnetic resonance imaging (MRI) and later developmental
outcomes.?

Study Design: Serum UCH-L1 and GFAP concentrations from HIE neonates (n=16) were
compared to controls (n=11). The relationship between biomarker concentrations of HIE
neonates and brain damage (MRI) and developmental outcomes (Bayley-III) was examined
using Pearson correlation coefficients and a mixed model design.

Result: Both biomarkers were detectable in cord blood from control subjects. UCH-L1
concentrations were higher in HIE neonates (p < 0.001), and associated with cortical injury
(p < 0.055) and later motor and cognitive developmental outcomes (p < 0.05). The tem-
poral change in GFAP concentrations during (from birth to 96 h of age) predicted motor
developmental outcomes (p < 0.05) and injury to the basal ganglia and white matter.

Conclusion: Ubiquitin C-terminal hydrolase L1 and GFAP should be explored further as
promising serum biomarkers of brain damage and later neurodevelopmental outcomes in
neonates with HIE.

Keywords: biomarkers, HIE, UCH-L1, GFAP

INTRODUCTION
Hypoxic–ischemic encephalopathy (HIE) is a serious birth com-
plication due to systemic asphyxia (1), which occurs in about 20
of 1,000 full-term infants and nearly 60% of very low-birth weight
(premature) newborns (2–4). Between 10 and 60% of babies who
exhibit HIE die during the newborn period (4). Of the surviving
neonates with HIE, up to 25% have permanent neurodevelop-
mental handicaps in the form of cerebral palsy (CP), mental
retardation, learning disabilities, or epilepsy (5–7). Until recently,
treatment of HIE consisted of supportive care including respi-
ratory support, treatment of hypotension, careful monitoring of

Abbreviations: GFAP, glial fibrillary acidic protein; HIE, hypoxic–ischemic
encephalopathy; UCH-L1, ubiquitin carboxyl-terminal esterase L1.

fluid and electrolytes, and treatment of seizures. In the last decade,
research has shown that therapeutic hypothermia improves the
neurological and neurodevelopmental outcome of a subgroup
of infants with moderate HIE (8–11). Since, more than 47% of
treated infants are non-responders to hypothermia (10), we should
strive for a better patient stratification including time, location and
severity of brain lesion. To be effective, hypothermia should be ini-
tiated as soon as possible and no later than 6 h after the initial insult
(9, 12). Unfortunately, the bedside clinician is not currently able to
accurately identify the neonate who will respond versus the non-
responder because accurate clinical indicators cannot be assessed
during treatment due to sedatives administered and the effects of
hypothermia itself. Therefore, the development of a new, rapid,
and reliable prognostic test is essential for making therapeutic
decisions.
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Current monitoring and evaluation of HIE, outcome predic-
tion, and efficacy of hypothermia treatment rely on a combination
of a neurological exam, ultrasound, magnetic resonance imag-
ing (MRI), and electroencephalography (EEG) (13–17). However,
these methods do not adequately identify hypothermia non-
responders. MRI requires transport of the neonate with a requisite
40–45 min scan, which is not appropriate for unstable neonates.
The amplitude integrated EEG (aEEG), is a helpful bedside moni-
toring technique for seizures and predict HIE outcomes. However,
hypothermia depresses the aEEG and thus limits its early pre-
dictive ability. Improvement in aEEG tracings may be delayed
until the patient is rewarmed and no longer on sedation (18, 19).
Consequently, the development of a simple, inexpensive, non-
invasive, rapid biochemical test is essential to identify severity
of brain injury, distinguish responders from non-responders to
hypothermia and assess outcome.

Although many potential biomarkers of brain damage exist,
glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal
hydrolase L1 (UCH-L1) hold significant promise in this popula-
tion. GFAP is a type III intermediate filament that forms part of
the cytoskeleton of mature astrocytes and other glial cells but is
not found outside the CNS (20). CNS injury that causes gliosis
and subsequently up-regulates GFAP makes GFAP an attractive
candidate biomarker for brain injury screening. UCH-L1, a highly
abundant neuronal protein, is thought to play a critical role in
cellular protein degradation during both normal and pathologi-
cal conditions (21). Both pre-clinical and clinical studies showed
that UCH-L1 levels were elevated in CSF and serum following
TBI and stroke in a manner significantly associated with mea-
sures of injury severity and outcome (22–28). A recent pilot study
in neonates with HIE found that serum GFAP but not UCH-L1
correlated with motor outcomes (29).

In this study, we examined the levels of GFAP and UCH-L1
in cord blood to establish normative levels in cord blood. We
next examined the level of UCHL-1 and GFAP in patients with
HIE undergoing hypothermia at several time points. We hypoth-
esized that the serum concentrations of these two select proteins
would be (1) detectable in cord blood in neonates, (2) the levels
of UCH-L1 and GFAP would be elevated in the patients with HIE
compared with controls, (3) higher in neonates with HIE under-
going hypothermia who had worse brain MRI, and (4) higher
HIE patients with a worse developmental outcomes (Bayley-III).
Comparisons were then made between the volume of injury as
measured by MRI and neurodevelopmental outcomes as measured
by formal developmental testing.

MATERIALS AND METHODS
PATIENT POPULATIONS
All aspects of this study were approved by the University of
Florida Institutional Review Board, and patients were enrolled
after obtaining the informed consent from the parents, at Shands
Teaching hospital at the University of Florida Health (2012–2013).
All studies were approved by the Institutional Review Board at the
University of Florida.

Control population
Cord blood samples were obtained from healthy neonates who did
not have any prenatally diagnosed known risk factors for HIE. The

neonates had Apgar scores of 8 or higher at 1 min and 8 or higher
at 5 min. In addition, none of the controls had abnormal physical
examination or were admitted to the NICU.

HIE population
Patients with HIE who were eligible for hypothermia therapy were
recruited. Entry criteria for hypothermia included a gestational
age of 35 weeks or greater, birth weight of 1.8 and≤6 h of age. The
neonates had evidence of encephalopathy as defined by seizures or
abnormalities on a modified Sarnat exam (level of consciousness,
spontaneous activity, posture, tone, primitive reflexes including
suck and Moro, autonomic system findings including pupils, heart
rate, and respirations). Evidence of hypoxic–ischemic injury as
defined by a pH of 7.0 or less and/or a base deficit of <16 or a
pH between 7.01 and 7.15 and/or a base deficit between 10 and
15.9 or no blood gas available and an acute perinatal event (cord
prolapsed, heart rate decelerations, uterine rupture) (Table 1).

BLOOD SAMPLE PROCESSING
Blood (1 ml) was collected using a tiger top 3.5 ml serum separa-
tor tube (BD Vacutainer SST Plus Blood Collection Tube). Samples
were allowed to clot upright at room temperature for 30 min in
processing lab (45± 15 min from time of collection), then spun
at 1200 RCF (g) at room temperature for 15 min if fixed angle
centrifuge rotor. Spun serum was then collected and transferred
using a disposable transfer pipette into a 2 ml cyrovials with red
cap inserts (USA Scientific REF 1420-9705). A fiberboard cryo-
genic storage box (Fisher Part No. 03-395-114 or equivalent) was
used to store spun serum aliquots. The samples were then stored
in−80°C freezer. The samples were stored (until all samples were
collected) and then hand-carried in dry ice, from our laboratory
to Banyan Biomarkers to be process immediately upon arrival.

ENZYME-LINKED IMMUNOSORBENT ASSAY
Blinded serum samples were processed at Banyan Biomarkers,
Incusing proprietary sandwich enzyme-linked immunosorbent
assays (ELISAs) to determine the concentrations and temporal

Table 1 |The patient demographics of the 16 subjects with HIE are

shown.

Gestational age 38 ± 2 weeks

Transferred 44%

NRFHT 55%

Apgar scores

5 min 2±2

10 min 3±2

Intubation in DR 81%

Cord pH 6.98±0.16

Base deficit −18±6

Sarnat stage

Moderate 41%

Severe 58%

Inotropic support 50%

EEG seizures 19%
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profiles of UCH-L1 and GFAP in human serum. Banyan has
successfully used these sensitive biomarker assays in a series of
previously published studies in adults following TBI and epilepsy
(24–26, 30–32). A detailed description of the ELISA procedures
has been published elsewhere (31). Briefly, both mouse mono-
clonal capture antibody against recombinant UCH-L1 full length
and partial protein, and rabbit polyclonal detection antibody were
produced in-house at Banyan Biomarkers, Inc. Similarly, propri-
etary mouse monoclonal antibody for solid phase immobilization
and a polyclonal rabbit detection antibody were used for ELISA to
detect the levels of intact GFAP and its breakdown products. Such
an approach allows more sensitive detection of GFAP analytes
from patients’ blood (31, 33). Standard curves using recombinant
proteins were generated for each assay and quantitative determi-
nation of the biomarker levels in unknown samples were based
on four-parameter non-linear regression analyses using SigmaPlot
software (Systat, Chicago, IL, USA).

MRI SCORING AND VOLUMETRIC ANALYSIS
Magnetic resonance imaging was performed between 4 and 12 days
of age since the majority of the patients are stable enough for
transport. All patients were scanned on the same 3 T scanner
(Verio; Siemens, Erlangen, Germany), with a 32-channel head
coil. Analysis focused on the T1-weighted, T2-weighted, and diffu-
sion weighted (DWI) abnormalities. A single subspecialty board-
certified neuroradiologist with 10 years of experience in neonatal
imaging interpreted all the MRI images using the Barkovich scor-
ing system (34). Brain injury was stratified according to location
into four groups: cortical, basal ganglia and thalamus, deep white
matter. The volumetric T1-weighted images (3D MP-RAGE), with
effective voxel size of 1 mm× 1 mm× 1 mm were analyzed using
ITK-SNAP Version 2.0 (Penn Image Computing and Science Lab-
oratory). While correlating with DWI and standard T1- and T2-
weighted images, the area of abnormality was manually traced
on each slice. The volume of abnormality was then calculated
automatically by the software.

STATISTICAL ANALYSIS
All statistical analyses were performed using SAS 9.3 (Cary, NC,
USA). To compare levels of UCH-L1 and GFAP either between
HIE and control neonates or HIE neonates over time, a gener-
alized linear model was fit using a logarithmic link function so
that the assumption of normality of the residuals was approxi-
mately met. This provides a comparison of medians on the data
scale. In addition, the differences in variability among neonates
over time and the correlation among measurements from the
same neonate were accounted for in the modeling process. The
Pearson correlation coefficient was used to assess the association
between each of the protein biomarkers (UCH-L1 and GFAP)
and percent injury in the cortex, white matter, and basal gan-
glia regions as measured by MRI and the cognitive, language, and
motor developmental outcomes. Receiver–operator characteristic
(ROC) curves were constructed to determine area under the curve
(AUC) for each serum biomarker value obtained from each of the
time points sampled to with the ability to detect HIE. The graphs
were created using GraphPad Prism (GraphPad Software, La Jolla,
CA, USA).

DEVELOPMENTAL TESTING
Neurodevelopmental outcome of the HIE infants was assessed
between 4.8 and 10 months of age using the Bayley Scales of
Infant and Toddler Development, Third Edition (35). The three
primary Bayley-III Index Scores (cognitive, language, and motor)
were used to classify HIE participants into “good outcome” and
“poor outcome” groups. All raw scores were transformed into
norm-referenced standard scores (scale mean= 100 with SD= 15)
using the Bayley-III scoring software published with the test.
Standardized scores that were at or >1 SD below the norma-
tive sample mean (i.e., scores≤ 85) were classified as indicative
of “poor outcome” (i.e., developmental delay in one or more
domains).

RESULTS
UCH-L1 AND GFAP IN UMBILICAL CORD BLOOD
A total of 11 patients had cord blood collected. Both UCH-L1 and
GFAP were able to be detected in the serum samples from cord
blood (Figures 1A,B).

HIE SUBJECTS
The demographics of the HIE patients are shown in Table 2. A total
of 16 subjects underwent hypothermia and had serum samples
obtained. A total of 54 samples were obtained for analysis.

RECEIVER–OPERATOR CHARACTERISTIC
We analyzed the ability of UCH-L1 and GFAP to detect HIE using
values measured at different time points (Figure 2). The ROC plots
showed that UCH-L1 measured from 0 to 6 h after the birth had
AUC= 1.00, and there is a decreasing trend of AUC with the time
of measurement. AUC summarizes diagnostic accuracy, with those
approaching 1.00 being very accurate while AUC approaching 0.5
are considered more associated with pure chance. The AUC for
GFAP increased slightly over time, with all point estimation >0.5.

CONCENTRATIONS OF UCH-L1 AND GFAP IN SERUM OF NEONATES
WITH HIE COMPARED WITH CORD BLOOD AT 0–6 H AFTER BIRTH
The serum levels of UCH-L1 at 0–6 h of age (n= 4) were compared
with age-matched controls (n= 11). The results demonstrate that
UCH-L1 levels are significantly higher in the HIE group compared
with the controls (p < 0.001). Notably, the lowest concentration in
the HIE patients was 18 ng/ml compared to the highest value of
4.8 ng/ml in the controls (Figure 1A). The levels of GFAP were not
significantly elevated compared to control cord blood samples at
0–6 h of age (p= 0.7) (Figure 1B).

SERUM CONCENTRATIONS OF UCH-L1 AND GFAP OVER TIME
NEONATES WITH HIE
The serum concentrations of UCH-L1 were still above control
concentrations at 12 h (p < 0.05). By 24 h, there was no difference
between the control concentrations and the HIE concentrations.
The concentration of UCH-L1 dropped significantly between the
0–6 h and 12 h sampling time points. The 0–6 h sampling time
point was significantly higher than all other sampling time points
(Figure 3A). The serum concentrations of GFAP demonstrated
a trend over time with a rise in the concentration over the 96 h
measured (Figure 3B).
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FIGURE 1 |The serum concentrations of UCH-L1 (A) and GFAP (B) in neonates with HIE are compared with control neonates. Increased serum levels of
UCH-L1 at 0–6 h in HIE patients (n=4) compared with controls (n=11), p < 0.0001. The serum concentration of GFAP did not differ statistically from the control
population.

Table 2 | Demographic and key medical variables in a prospective sample of HIE neonates treated with hypothermia who had serial biomarker

samples obtained and formal developmental follow-up.

Patient Biomarker profile Neurodevelopmental outcome

UCHL (ng/ml) GFAP (ng/ml) (Bayley-III assessment)

0–6 h 12 h 24 h 0–6 h 12 h 24 h Age (months) Cognitive Language Motor Outcome

Subject 1 141.71 – 10 0.2 – 0.06 9.9 130 106 82 Poor

Subject 2 – – 1.792 0 – NA 10 135 121 100 Good

Subject 3 17.82 2.281 2.308 0 0.09 0.1 9.7 105 100 94 Good

Subject 4 – – 1.296 – – 0.03 5.5 145 91 79 Poor

Subject 5 – 59.43 – – 0.065 – 6.1 85 103 46 Poor

Subject 6 66.18 36.65 15.96 0.501 0.369 0.218 4.8 85 83 82 Poor

Bayley-III index scores (scale mean=100; SD=15); –, samples were unavailable.

CORRELATION OF SERUM UCH-L1 AND GFAP CONCENTRATIONS AND
MRI IN NEONATES WITH HIE
The serum concentrations of GFAP demonstrated the strongest
correlations with the percent injury of the cortex at a time of 0–6 h
of age (p= 0.08) and the percent injury of white matter and basal
ganglia injury at 12 h of age (p= 0.06). UCH-L1 concentrations
were associated with cortical injury at 12 h (p= 0.055).

CORRELATION OF SERUM UCH-L1 AND GFAP CONCENTRATIONS AND
DEVELOPMENTAL OUTCOMES IN NEONATES WITH HIE
Developmental outcomes were performed on 6 subjects rang-
ing in age from 4.8 to 10 months of age with an average age of
8± 3 months (Table 2). Four of the six subjects had poor develop-
mental outcomes defined as performance on any of the primary
Bayley-III domains (motor, cognitive, and language) that was at
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FIGURE 2 | Receiver–operator characteristic plots of UCH-L1 and GFAP
at different time point in detecting HIE. Area under curve (AUC with 95%
confidence interval) for UCH-L1 is 1.00, 0.83 (0.57–1.00), and 0.73

(0.51–0.94) for 0–6, 12, and 24 h, respectively. AUC (95% CI) for GFAP is
0.58 (0.15–1.00), 0.61 (0.33–0.88), and 0.64 (0.41–0.87) for 0–6, 12, and
24 h, respectively.

FIGURE 3 |The serum concentrations of UCH-L1 and GFAP in neonates
with HIE are plotted over the time of sample collection. The serum
concentrations are expressed as the mean±SEM. The serum concentration

of UCH-L1 decreased rapidly over the initial 24 h with the highest
concentrations obtained at 0–6 h (A). The serum concentrations of GFAP
increased over the 96 h of sampling (B).

least 1 SD lower than age-matched normative data. All four sub-
jects who were classified as having poor developmental outcomes
exhibited delays in motor development. Two of the four subjects
had additional delays in cognitive development, and one sub-
ject exhibited delays in all three developmental domains (motor,
cognitive, and language).

The UCH-L1 profiles in the patient who had a good outcome
demonstrated a serum concentration of 17.82 ng/ml at 0–6 h of
age with a decrease in the concentration to 2.28 ng/ml at 12 h
(Figure 4A). Subjects with a poor developmental outcome had a
mean serum concentration of UCH-L1 103 ng/ml at 0–6 h with
a decrease to 48 ng/ml at 12 h (Figure 4A). The mean concentra-
tion at 24 h was 8.62 for the subjects with a poor developmental
outcome and 2.05 in the subjects with a good prognosis.

The concentration of GFAP in the patient who had a good out-
come was undetectable at 0–6 h with an increase to 0.092 ng/ml

at 12 h. Subjects with a poor outcome had a mean serum con-
centration of GFAP at 0–6 h of 0.348 ng/ml with a decrease to
0.217 ng/ml at 12 h (Figure 4B).

Subject 6, who exhibited developmental delays across all
three domains assessed, had serum concentrations of UCH-
L1, which were persistently elevated over the first 24 h.
The subject’s concentrations of GFAP were also elevated
and were the highest measured values over the first 96 h
(Table 2).

Ubiquitin C-terminal hydrolase L1 concentrations at 12 h
were correlated with developmental motor outcomes (p < 0.05).
Further, the temporal changes in UCH-L1 were predictive of
both developmental motor (p < 0.05) and cognitive outcomes
(p < 0.05). Finally, the temporal change in the concentration
of GFAP was predictive of developmental motor outcomes
(p < 0.05).
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FIGURE 4 |The serum concentrations of UCH-L1 (A) and GFAP (B) in
neonates with HIE who had good (black boxes and lines) and poor
developmental outcomes (gray boxes and lines) are plotted over the

96 h sampling period. The mean serum concentrations are represented
by the line while the bar represents the minimum and maximum serum
concentrations.

DISCUSSION
Hypothermia has become standard of care for neonates with HIE.
As the field of neonatal neuroprotection evolves, there must be a
method to distinguish neonates who will respond to hypothermia
to those whom hypothermia will not benefit. A rapid bedside test
offers the greatest promise to objectively stratify these neonates. In
this report, we have described two proteins, UCH-L1 and GFAP,
which are candidates to potentially utilize for stratification. To the
best of our knowledge, this is the first report, which has correlated
serum biomarkers temporal changes in biomarker concentrations
with developmental outcomes.

As a clinical tool, the earlier the proteins can be identified,
the better the potential clinical utility. Both proteins were able
to be detected in umbilical cord blood samples. Umbilical cord
blood measurements were chosen because it is readily obtainable
in healthy term neonates and most closely matched the 0–24 h
sampling points in our HIE population. The umbilical cord blood
provided a true control since the neonates all went to the newborn
nursery and did not have serum samples routinely obtained for
clinical indications in the first 6 h post birth. Umbilical cord blood
may provide information about the degree of injury at the time of
birth and potentially the timing of injury based on the serum con-
centrations at the time of birth. In the future, our group plans
to obtain umbilical cord blood from neonates with HIE. The
normative information obtained in this study will be used for
comparison.

The serum concentrations of UCH-L1 were significantly ele-
vated in the neonates with HIE compared with the control pop-
ulation. Importantly, for the bedside clinician, the elevation in
UCH-L1 concentrations occurred at 0–6 h of age and continued to
be higher than control concentrations for the first 24 h of sampling.
The concentrations of UCH-L1 at 12 h correlated with develop-
mental motor outcomes in neonates with HIE. We suspect that
the concentrations at 0–6 h would also predict motor outcomes,
but too few samples were obtained to make any firm conclu-
sions. UCH-L1 is an abundant protein localized exclusively to the
perikarya and dendrites of neurons (36). Therefore, UCH-L1 may
be a very important early marker of neuronal injury. UCH-L1 is
resistant to endogenous brain and serum proteases (37). These

characteristics along with our results make UCH-L1 an ideal can-
didate to serve as a biomarker of brain injury in neonates with
HIE.

The temporal change in the concentration of UCH-L1 was
shown to correlate with developmental motor and cognitive out-
comes. Specifically, there was a rapid decrease in the serum
concentration in the two neonates with HIE who had good devel-
opmental outcomes. This demonstrates that UCH-L1 may be a
candidate biomarker to stratify neonate undergoing hypothermia
as responders versus non-responders.

The serum concentrations of UCH-L1 at 12 h demonstrated
a weak correlation with cortical injury. Our previous work
demonstrated that UCH-L1 serum concentrations were higher in
neonates with evidence of basal ganglia injury on MRI. It is impor-
tant to note that these studies were performed in neonates who
had not undergone hypothermia therapy. Previously, UCH-L1 and
GFAP were shown to have elevated concentrations in neonates
with HIE undergoing hypothermia, which correlated with severe
MRI abnormalities or death (38).

The blood brain barrier is an anatomic structure composed of
brain capillary epithelium joined by tight junctions and the foot
processes of astrocytes (39). The blood brain barrier prevents the
passive movement of water-soluble molecules larger than 500 Da
(39). Following HIE, the blood brain barrier becomes permeable
with severe disruption in severe HIE (40). The permeability of the
blood brain barrier is measured by CSF to plasma albumin ratios,
which may be difficult to perform in an unstable neonate follow-
ing HIE (40). Serum UCH-L1 has been shown to be a marker of
the integrity of the blood brain barrier in patient with traumatic
brain injury (39). Therefore, the elevation of biomarker may pro-
vide information for the delivery of large neuroprotective drugs,
which do not typically cross the blood brain barrier. This may
provide a bedside test to determine the exact windows for drug
administration, which will individualize care for each patient.

Glial fibrillary acidic protein is a cytoskeleton intermediate fil-
ament protein of the astrocytes and is released into the blood
following astrocyte death (41). In this report, GFAP concentra-
tions were not higher than controls at 0–6 h but had a higher
mean. The concentrations of GFAP in cord blood and at 0–6 h

Frontiers in Neurology | Neuropediatrics December 2014 | Volume 5 | Article 273 | 6

http://www.frontiersin.org/Neuropediatrics
http://www.frontiersin.org/Neuropediatrics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Douglas-Escobar et al. UCH-L1 and GFAP in HIE

obtained in our study were similar to those previously reported in
neonates with HIE undergoing hypothermia (29). Although the
concentrations of GFAP were not different than the control sam-
ples at 0–6 h, it is important to note that the temporal change in
the concentration of GFAP was predictive of developmental motor
outcomes.

The serum concentrations of GFAP demonstrated a strong cor-
relation with injury to the cortex (0–6 h), basal ganglia, and white
matter (12 h) as detected by MRI. A previous study demonstrated
correlations between GFAP concentrations and MRI injury in
serum samples obtained at 12 and 24 h of life (38). Taken together,
our results along with those published suggest that GFAP may be
an important biomarker in predicting regions of brain injury in
the first 24 h of life in neonates with HIE.

This study has demonstrated that UCH-L1 is elevated as early
as 0–6 h in patients with HIE and the concentrations correlate
with developmental motor outcomes. Our data differ from Cha-
lak et al. (42) that found no correlation between UCH-L1 and
developmental outcomes, and no temporal changes in UCH-
L1 (during hypothermia) (42). Our data demonstrated that the
temporal profile of UCH-L1 correlated with the developmen-
tal motor and cognitive outcomes. It is possible that our results
are different because we had neonates with more severe HIE,
making more feasible to demonstrate motor outcomes differ-
ences between the groups. Our study’s major weakness was a
small number of patients. However, this has been a weakness of
all biomarker studies in neonates, to date (43). In addition, the
developmental outcomes were performed at a multiple ages post-
injury. Although this could be construed as a weakness, this is
the only the second study, which has demonstrated that serum
based biomarkers correlate with long-term neurologic outcomes
and further suggests that serum biomarkers may be used to predict
long-term outcomes (42). Furthermore, outcomes were evaluated
using norm-referenced scoring methods that control for any inher-
ent differences due to varied outcome time points across subjects.
The results from this study provide further data to support the use
of UCH-L1 and GFAP in a larger study to evaluate the correlation
between serum concentrations and outcomes at 18–24 months of
age (42). UCH-L1 appears to offer great promise as a serum based
bedside marker to be utilized by the bedside clinician managing
neonates with HIE.
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