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Alzheimer’s disease (AD) and vascular dementia (VaD) present with similar clinical symp-
toms of cognitive decline, but the underlying pathophysiological mechanisms differ. To
determine whether clinical electroencephalography (EEG) can provide information relevant
to discriminate between these diagnoses, we used quantitative EEG analysis to compare
the spectra between non-medicated patients with AD (n=77) andVaD (n=77) and healthy
elderly normal controls (NC) (n=77). We use curve-fitting with a combination of a power
loss and Gaussian function to model the averaged resting-state spectra of each EEG chan-
nel extracting six parameters. We assessed the performance of our model and tested
the extracted parameters for group differentiation. We performed regression analysis in a
multivariate analysis of covariance with group, age, gender, and number of epochs as pre-
dictors and further explored the topographical group differences with pair-wise contrasts.
Significant topographical differences between the groups were found in several of the
extracted features. Both AD and VaD groups showed increased delta power when com-
pared to NC, whereas the AD patients showed a decrease in alpha power for occipital and
temporal regions when compared with NC. The VaD patients had higher alpha power than
NC and AD.The AD and VaD groups showed slowing of the alpha rhythm. Variability of the
alpha frequency was wider for both AD and VaD groups. There was a general decrease in
beta power for both AD and VaD. The proposed model is useful to parameterize spectra,
which allowed extracting relevant clinical EEG key features that move toward simple and
interpretable diagnostic criteria.

Keywords: Alzheimer’s disease, vascular dementia, electroencephalogram, qEEG, quantitative analysis

INTRODUCTION
Alzheimer’s disease (AD) is a debilitating neuro-degenerative dis-
ease, and is one of the most common forms of dementia among
the elderly population (1) with a significant socio-economic bur-
den for societies in developed countries. AD particularly affects
individuals over the age of 65 years and it is estimated that its
prevalence will triple within the next 40 years (2, 3). Vascular
dementia (VaD) may result either from ischemic or hemorrhagic
cerebrovascular disease (CVD), or from cardiovascular or circu-
latory disturbances that injure brain regions relevant to memory,
cognition, and behavior (4). VaD is the second most common
form of dementia after AD, affecting approximately 20% of the
dementia cases worldwide (5). While VaD can be assessed with
the use of imaging techniques at early stages of the disease,
the similarities between symptoms between the different con-
ditions can lead to diagnostic uncertainty. Autopsy assessment
studies in dementia report that VaD was present in 24–28% of
AD cases (6, 7). One current difficulty is the relative lack of spe-
cific biomarkers; certain diagnosis for AD is still only possible
through a post-mortem exam; routinely several examinations, such
as the mini-mental state examination (MMSE), positron emis-
sion tomography (PET), computer tomography (CT), magnetic

resonance imaging (MRI), and electroencephalogram (EEG) are
used during differential diagnostics (8, 9). So far, clinical EEG
assessment is mainly performed through visual inspection, iden-
tifying clear signs of pathology, while usually not considering
other quantifiable measures. Potentially relevant features that are
not immediately visible, such as power modulations, connectiv-
ity changes, or sparse small amplitude phenomena, may thus be
overlooked.

Quantitative EEG analysis therefore may be helpful in the clin-
ical context. For example, it is well known that decreases of alpha
and beta power and increases of the delta and theta frequencies are
related to brain pathology and general cognitive decline (10–13).
Recent studies have demonstrated that AD has a pre-symptomatic
phase that can last for years, known as mild cognitive impairment
(MCI) and while neuronal degeneration is taking place, the clin-
ical symptoms remain subtle. Consequently, early behavioral and
pharmacological interventions, which can ameliorate the course of
the disease, should not be administered based on clinical data alone
(14–18). However, abundant literature reports that specific drugs
induce alterations on electroencephalographic readings. A com-
prehensive overview of recent studies clusters typical effects with
different pharmacological agents (19). Specifically, drugs that act
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on the nervous system such as psycholeptics and psychoanaleptics
may induce neuronal hyperexcitability or drowsiness and hence
EEG patterns change (20). Nevertheless, it has been shown that the
resting EEG activity can predict future cognitive decline or con-
version to dementia in MCI subjects with high accuracy (21–25).
Furthermore, recent studies suggest that spectral analysis can be
used to distinguish AD from other dementias (26–29). These stud-
ies use various EEG markers such as spectral power, coherence, and
frequency of rhythms in delta, theta, alpha, or beta bands, which
are considered valuable markers for group classification by several
studies (11, 30–35). However, the more EEG features studied, the
larger sample sizes are required, which is often not easy to obtain.
Moreover, many EEG studies using qEEG analysis for classification
of AD differ on the test-paradigm, sample size, methods, features
extracted, and classification models (36). The implementation of
systematic guidelines to access dementia through the use of core
EEG markers would facilitate these methods and provide more
material for research.

In an effort to meet the needs of clinical EEG community, this
study proposes a model for extracting EEG spectral features in
groups of dementia patients, which might also be used as biomark-
ers for other diseases involving encephalopathy. This study shows
the potential to differentiate between two of the most common
types of dementias (AD and VaD) at the group level. In particular,
we performed quantitative spectral analysis on clinical EEGs col-
lected from a large in-house database (37), which holds over 30,000
EEG records. We applied a curve-fitting algorithm to model the
frequency spectrum of each patient, extracting a total of six para-
meters from each channel. These features represent low (delta)
and high (beta) frequency bands, decay of amplitude from low to
higher frequencies, alpha power, alpha frequency, and dispersion
of alpha.

MATERIALS AND METHODS
DESIGN
We performed a retrospective analysis of AD and VaD patients,
examining EEGs that were collected as part of clinical diagnostic
procedure.

SAMPLE
The database of the neurophysiology department of Haukeland
University Hospital contains more than 37,000 EEG datasets from
about 23,000 subjects available internally for research. From this
database, we initially selected a convenience sample of all datasets
from outpatients diagnosed with AD (n= 534), with interna-
tional classification disease (ICD) codes ICD-10, F00.x and G30.x;
VaD (n= 203) (ICD-10 F01.X), and NC (n= 3138) of non-
hospitalized individuals at the time of the EEG recording, free
of medication, and with no brain disease on record. The mean
age and SD of the initial sample were 74.34± 9.92, 72.41± 11.16,
and 52.2± 14.38 years for AD, VaD, and NC, respectively. We
applied stringent criteria for inclusion and exclusion of samples
as described in Sections “Selection Criteria” and “Pre-processing,”
remaining with a total of 242, 88, and 1950 datasets on AD, VaD,
and NC groups, respectively. The samples were then age and gen-
der matched, leaving 77 cases in each group, with an average age
of 73.1± 10.4 years and 51% males.

Selection criteria
For the initial sample described above, we applied the same inclu-
sion criteria to all groups. First, we excluded patients with ages
below 35 years old at the time of the recording. Second, we
excluded the EEG recordings performed when subjects were hos-
pitalized. Lastly, we excluded multiple EEG datasets from each
patient including only the latest EEG dataset from each.

A general exclusion rule was applied when incongruent, insuf-
ficient, or poor data quality was found on the patient’s clinical or
personal information, which excluded 988 patients. We consid-
ered the medications prescribed to each patient at the time of EEG
recording, and excluded patients who were taking anticholinergic
and dopaminergic agents, antipsychotics, anxiolytics, hypnotics
and sedatives, anti-depressants, and psychostimulants. A complete
list of the medications prescribed was resumed in Table S1 in Sup-
plementary Material. The entire clinical diagnose history available
from each patient’s record was taken into consideration: for the
patients belonging to NC, we excluded those who had been diag-
nosed at any time point (prior or post the EEG recording date) with
any CVD, any mental, behavioral, or neurodevelopmental disor-
ders. For the AD and VaD groups, we excluded those who had been
diagnosed at any time with any other brain or CNS-related disor-
der. In particular, the AD and VaD groups contained datasets from
patients who had been only diagnosed with Alzheimer disease or
VaD, respectively, before or persistently after the EEG recording
date. For further details on the selection criteria, please see Table
S2 in Supplementary Material. From the initial sample, we con-
sidered 2092, 269, and 118 datasets for NC, AD, and VaD groups,
respectively, which were submitted to the pre-processing. A total
of 199 datasets were excluded during the pre-processing due to
insufficient epochs (see next section). The final sample was consti-
tuted by 77 age- and gender-matched subjects on each group with
age averages of 71.5± 11.2, 73.5± 9.9, and 74.1± 9.9, respectively.
The gender distribution was 49, 51, and 52% males for NC, AD,
and VaD groups, respectively.

Pre-processing
All EEG datasets were acquired using 22 channels positioned in
10–20 system placements (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3/T7,
C3, Cz, C4, T4/T8, T5/P7, P3, Pz, P4, T6/P8, O1, O2, M1, M2)
acquired at 128 Hz (n= 59), 256 Hz (n= 164), and 500 Hz (n= 8)
using NicoletOne™ EEG system. Input impedances were set to
Z > 100 MΩ. Hardware single pole high-pass (0.16 Hz± 10%)
and low-pass (500 Hz± 10%) filters were applied individually to
each channel before pre-amplification. EEGs were stored under
raw format in the database. All the pre-processing and data analysis
were performed in the Mathworks® Matlab environment. EEG raw
files were imported to the EEGLab v.10.1.1.0b toolbox (38) using
an in-house data-reader. Data were resampled to 256 Hz. From the
standard clinical EEG recording protocol that lasts for 20 min and
includes eye open/closed conditions, hyperventilation, and provo-
cations with photic stimulation, we restricted the input data for
analysis to the first 9 min,which contained only the alternating eyes
open/closed resting conditions. A 1536-points high-pass-band fil-
ter was applied with cut-off frequency of 0.5 and a low-pass filter
with cut-off of 50 Hz using a standard least square linear-phase FIR
filter design. EEGs were segmented into non-overlapping epochs
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of 1 s that were evaluated for possible rejection using automatic
amplitude, power, and statistical thresholding. The remaining seg-
ments were subjected to an individual independent component
analysis (ICA) using the Infomax algorithm with 15 components
in order to identify and remove residual contributions from eye
movements. Four spatial templates for these types of artifacts were
generated using 24 randomly drawn datasets, in which the corre-
sponding artifact maps were visually identified and averaged across
subjects to form the templates. Figure 1 displays the eye move-
ment templates. The ICA topographies from each EEG dataset
were correlated against the artifact templates and were removed
if an absolute correlation coefficient above 0.8 was found. The
continuous data were reconstructed from the non-artifact com-
ponents and then segmented into 2 s epochs with 1 s overlap,
which is equivalent to the Welch’s procedure (39) with a rectan-
gular windows and 50% segment overlap. Subsequently, the data
were transformed into the frequency domain using fast Fourier
transform (FFT). Since the frequency spectrum selected for the
pre-processing was from 0.5 to 50 Hz, we obtained 100 frequency
data points for the 22 channels and a variable number of epochs
for each dataset subjected for analysis. The spatial standard devi-
ation (sSTD) index of each epoch was calculated across the 22
channels in the frequency domain according to (40) and z-scored.
Epochs where the sSTD index exceeded |z | > 1 were excluded from
further analysis, as illustrated in Figure 2. With the exclusion of
such epochs, we ended up with a limited number of available seg-
ments of data for the initial sample. In order to unify the amount
of data across subjects for the final sample, we determined the
minimum common number of existing epochs across subjects
that maximized the inclusion. This resulted in the selection of
334 epochs of data from each dataset (approx. 5 m 30 s). Subjects
with fewer than 334 epochs were excluded from the initial sample.

FIGURE 1 |Topographic templates of eye muscular artifacts used in
ICA: eye blink – (A,B); lateral eye movement – (C,D).

The available epochs of the final sample followed a normal dis-
tribution across the three groups with averages of 386± 24 for
the NC group, 391± 28 epochs for AD, and 387± 20 for the VaD.
No significant differences were found in the amount of available
segments of data between the three groups (F = 1.03, p= 0.43).
Epochs that contained higher amplitude in the range of the alpha
band (8–12 Hz), were given priority for inclusion and remaining
epochs were discarded. In this way, we expected to maximize the
expression of the alpha frequency in the analysis. After age-gender
matching of the groups, the final sample used in the analysis was
composed of 334 epochs of data for each subject and 77 subjects
in each group.

GROUP SPECTRUM DIFFERENCES
To display the general differences between groups, we averaged the
spectra first over all epochs within subjects, then over all subjects
within each group. The mean spectrum± 1 standard error of the
mean (SEM) for each group are displayed in Figure 3. Further
spectrum differences were explored using a curve-fitting model
for comparison

CURVE FITTING
To describe the power spectrum in a concise way, we combined
a power-loss function modeling the roughly 1/f drop-off and a
Gaussian function centered on the alpha-frequency peak. Specif-
ically, we modeled the spectral power, P(f), with the following
expression:

P
(
f
)
= Sf −k

+ Ae−
(f−c)2

w + b

All parameters were estimated using a non-linear least squares
trust-region optimization algorithm, as provided in Matlab’s fit-
curve toolbox. The model was fit to the power spectrum (averaged
across epochs) in the frequency range of 1–30 Hz, to avoid taper-
ing effects caused by the low-pass filter (0.5 Hz). We applied a
particular exclusion rule for the fit of the power-loss function,

FIGURE 2 | Discrimination of epochs using the spatial standard
deviation (sSTD) index.
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Neto et al. AD and VaD spectral features

FIGURE 3 | Averaged frequency spectrum over all channels for each
group with absolute frequency.

excluding data points that correspond to the alpha band range (7–
13 Hz). For the fitting curve algorithm, upper and lower estimation
boundaries for each of the parameters were determined based
on fits to the grand average spectra and are provided in Table 1.
The goodness-of-fit of the model was assessed with the R2 statis-
tic (Figure 4), and examples of best and worst fits are shown in
Figure 5. The six parameters used in our model can be related to
classic electrophysiological markers. Free parameters S and k relate
to the power-loss function and represent its scale and loss, respec-
tively. Values of S represent the amplitude at lower frequencies
(delta waves), while k indicates the roughly 1/f decay of ampli-
tude from lower to higher frequencies. Larger values of k denote a
faster drop-off in power. Parameters A, c, and w relate to the Gauss-
ian and represent the amplitude, center, and dispersion of the alpha
peak, respectively. The alpha peak, here characterized by the ampli-
tude, A and the center, c, which is often described in the literature
as the occipital dominant rhythm (41–44) and is related to brain
pathology and may potentially be used as reliable markers for a
group differentiation (45, 46). Parameter w, which represents the
dispersion of the alpha peak, has been described previously as
the dominant frequency variability (47). Parameter b represents a
global offset or baseline power of the entire frequency spectrum
where the drop function and Gaussian best fit on and is related
with the limit of the high frequency (beta) amplitude. For a gen-
eral group comparison, we used the results from parameter c to
estimate the averaged value of the alpha frequency for each group
across all channels.

STATISTICAL ANALYSIS
Because of the mild covariance between some spectral parame-
ters (see Results), we used a multivariate analysis of covariance
(MANCOVA) model as implemented in the MANCOVAN tool-
box (42) to understand group differences while controlling for
other nuisance factors. Prior to modeling, we used Box–Cox
power transforms to improve normality of parameters S and A,
which were highly skewed. Lambda values (Box–Cox parameters)

Table 1 | Fitting curve algorithm setup with initial, upper and lower

boundaries for each of the six parameters.

Parameter Interpretation Initial Lower

limit

Upper

limit

S Low frequency power 1000 0 ∞

k Decay from lower to

higher frequencies

1 0 5

A Alpha power 50 0 ∞

c Alpha frequency 8 6 14

w Alpha dispersion 1 0.25 25

b Baseline of the entire

frequency spectrum

60 0 ∞

were determined by maximizing the log-likelihood of normality
and were 0.07 and 0.27, respectively. We first applied a MAN-
COVA to the spectral parameters averaged over all channels, and
used a stepwise regression procedure with backward elimina-
tion to remove predictors that did not account for significant
variance. Specifically, our initial model included the following
predictors: group (an indicator variable coding for NC, AD, and
VaD), age, gender, number of ICA components removed dur-
ing pre-processing, original sampling-rate, and number of clean
epochs initially available; our dependent variable was a [342× 6]
matrix, which contained the six spectral parameters (S, k, A, c,
w, and b) averaged over channels for the 342 subjects. Following
stepwise reduction with an alpha value of 0.01, the final model
retained group (T = 76.23, p= 7.1× 10−10), age (T = 34.79,
p= 1.7× 10−5), gender (T = 23.89, p= 1.0× 10−3), and number
of epochs (T = 38.7, p= 3.8× 10−6) as highly significant predic-
tors. We then used these predictors in a second MANCOVA to
model the spectral parameters at each channels, i.e., the depen-
dent variable was a [342× 132] matrix, representing 6 parameters
at 22 channels, for all subjects. We confirmed that the four predic-
tors (group, age, gender, and number of epochs) still accounted for
significant variance in this larger model (p < 0.005 for all terms).
Significance of the “group” factor at the channel level was deter-
mined from the F-statistics and corresponding p-values as shown
in the Section“Results.”p-Values were corrected for multiple com-
parisons using False Discovery Rate (FDR, q= 0.05). For chan-
nels/parameters meeting significance, pair-wise contrasts were
performed between groups (i.e., NC vs. AD, NC vs.VaD, and AD vs.
VaD). Pair-wise contrasts are denoted as significant at the (uncor-
rected) level of p < 0.05, very significant at p < 0.01, and highly
significant at p < 0.001, highlighted in Figures S1–S6 in Supple-
mentary Material with “*,”“**,” and “***,” respectively. For brevity,
in presentation of our results, we determined the effect size for the
group differences found at significant levels p < 0.05 using Cohen’s
d (48) and displayed on topographical maps as shown in Figure 6.

RESULTS
GROUP SPECTRA
Figure 3 displays the average spectra across all channels for the
NC, AD, and VaD groups. Clear group differences were observed
in the delta, theta, and alpha-frequency bands. These differences
were quantified by comparing the six parameters (S, k, A, c, w, and
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Neto et al. AD and VaD spectral features

FIGURE 4 | Histogram of the distribution of R2 values for each group.

FIGURE 5 | (A) Outlier for best fit performed by the model (AD patient, channel T6, R-square value of 0.9955); (B) outlier for worst fit performed by the model
(VaD patient, channel Fp2, R-square value of 0.7324); (C) outlier for worst fit performed by the model (subject from NC, channel O1, R-square value of 0.5724).
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Neto et al. AD and VaD spectral features

FIGURE 6 |Topography of the parameters effect sizes (S, k, A, c, w, and b) between groups (NC, AD, and VaD). Red or blue color gradients denote,
respectively, a positive or negative effect when comparing the groups using Cohen’s d effect size scale (|d | < 0.2 – small effect; 0.2 < |d | < 0.8 – medium effect;
|d | > 0.8 – large effect).

b) used in the model, as described in the section “Materials and
Methods.”

EVALUATION OF THE MODEL
To determine whether our model fit the data well, we calculated
the R2 measure for each fit, reflecting the fraction of data variance
captured by the model. Additionally, we computed the correlations
between model parameters to check for dependence between para-
meters, which can indicate model redundancies or instabilities in
the fitting procedure. Histograms of the R2 values are displayed
in Figure 4, and show excellent model fits in nearly all cases. The
median goodness-of-fit was 0.96 and the first and third quartiles
were 0.92 and 0.98, respectively. We performed a Kruskal–Wallis
one-way ANOVA test and no group differences were found in
the R2 values between the groups (p < 3.5e−8), meaning that the
model performed equally well fitting the datasets from each group.
Examples of best and worst fits (as determined from the R2 values)
are shown in Figure 5. Only relatively weak correlations (|r |≤ 0.4)
between the parameters were found, with the exception of a high
correlation between parameters k and b (r = 0.74). This corre-
lation was equally present within each group: r = 0.81 for NC,
r = 0.64 for AD, and r = 0.79 for VaD.

GROUP DIFFERENCES
Group differences in spectral parameters were determined from
the MANCOVA applied separately at each channel for all six
parameters. For brevity, we report only findings that passed the
FDR correction for significance (see Materials and Methods).

Figure 6 represents the topographical differences on a scale of
Cohen’s d effect size, where |d | < 0.2 is considered a small effect;
0.2 < |d | < 0.8 medium effect; |d | > 0.8 – large effect. For full
details, readers are referred to Figures S1–S6 in Supplementary
Material, which display the average parameter values, F-statistics,
and p-values for each channel and group comparisons.

[S] (low frequency power)
As shown in Figure 6, both AD and particularly VaD patients
had larger S compared to NC. This difference was highly signifi-
cant for most channels (F > 7, p < 1.52× 10−3). The VaD group
also showed significantly higher S than AD patients for parietal,
temporal, and occipital channels (F > 17, p < 1.51× 10−7).

[k] (1/f decay from lower to higher frequencies)
No significant differences were found between AD, VaD, and NC
group at group level.

[A] (alpha power)
Significant differences were observed in the VaD group compared
with NC, with VaD showing larger A values over the left hemi-
sphere and central channels (F > 4, p < 2.36× 10−2). VaD also
showed significantly greater A values compared with AD in nearly
the same regions. AD, however, had significantly lower A than NC
at occipital-left and lateral-right channels.

[c] (alpha frequency)
Vascular dementia patients had significantly lower c values com-
pared with NC for all channels (F > 8, p < 8.43× 10−4). The same
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trend was observed for AD compared with the NC group, where
AD patients had lower c values at all channels. At central and
frontal channels, VaD showed lower c compared with AD. Mean c
values at occipital channels, were 9.4, 8.4, and 8.1 Hz for NC, AD,
and VaD patients, respectively.

[w] (alpha dispersion)
Higher w was found in AD compared with NC at central, occipital,
and parietal areas (F > 4, p < 2.53× 10−2), while VaD had higher
w at occipital and right-temporal channels compared with NC
(F > 7, p < 1.46× 10−3) The AD group had significantly higher w
than VaD mainly at lateral electrodes (F > 5, p < 1.65× 10−2)

[b] (baseline of the entire frequency spectrum)
For the parameter b, significant differences were found between
NC and both AD and VaD groups. Both AD and VaD groups dis-
played significantly lower b than NC at central and frontal channels
(F > 4, p < 2.5× 10−2).

DISCUSSION
This study explored electrophysiological differences that might
be used as markers to automatically distinguish between groups.
In order to assess those differences, we implemented quantitative
analysis in clinical EEGs of NC, AD, and VaD and applied a model
that extracted six EEG parameters to describe the average spec-
trum from each channel. Preliminary results (Figure 3) indicated
marked differences between the three groups. Our approach uses
standard models with relatively simple implementation and low
computational costs. The EEG features extracted by our model are
related to key relevant EEG markers for clinical assessment. We
tested our model in AD and VaD group differentiation using the
extracted features. Significant differences were found for several
of the parameters with topographical specificity between AD and
VaD in relation to healthy subjects. Our results inspire the use
of such model as a standard approach for the extraction of EEG
features and possible future use of such features as biomarkers in
group differentiation.

SPECTRUM MODEL
The curve-fitting approach allowed us to describe the frequency
spectrum using only six parameters, which are related with known
electrophysiological markers. In general, we found that the model
is a good fit to the data most of the time and that performs
equally well regardless of the type of participant (see “Evalua-
tion of the model” in “Results” section). We observed that a poor
fit occurred in two situations: (1) subjects/channels where the
spectrum curves contained a clear and distinguished theta peak
that was distinct from alpha; (2) subjects/channels where low beta
frequency amplitude was pronounced (as seen in Figure 5). Addi-
tionally, a correlation between the six parameters verified that
parameters k and b are highly correlated (r = 0.75). This corre-
lation points to a weakness in the model, since it appears that
parameters k and b may work against each other.

GROUP DIFFERENCES
Patients vs. controls
Our results revealed significant increase of S and a decrease of b
comparing the AD group with NC, in line with previous litera-
ture (49). Parameter c was 9.4 Hz in NC compared to 8.5 Hz in

AD. Similar alpha slowing from 10.2 to 8.1 Hz has been reported
previously (50). Our study also indicates that AD patients have
lower A than NC. Slowing of alpha frequency and decreased alpha
power have been reported in several studies, when comparing AD
and also MCI patients with healthy controls (36, 50–55). This is
thought to be associated with general cognitive decline (10–13).
AD patients had higher w than NC, in agreement with the find-
ings from (47). VaD also had increased S, lower b, and increased
A compared with NC. The decrease of the c was 9.4 to 8.1 Hz
when compared with NC. (50) reported the corresponding values
as 10.2–8.3 Hz. In contrast to the AD group, VaD had higher A in
occipital regions than NC, in accordance with previous studies (45,
56, 57). It is well established that the source of the alpha rhythm is
clearly predominant at occipital cortical regions (58). Other stud-
ies suggest that for AD and VaD patients, the increase of the alpha
power is positively correlated with the glucose metabolism in the
occipital lobe whereas the increase at lower frequencies of the EEG
is negatively correlated with metabolism (59).

VaD vs. AD
Our results show significant differences for the S parameter
between VaD and AD, in particular, an increase of S for the VaD
group for occipital, temporal, and parietal channels compared to
the AD group, see Figures 3 and 6. In addition, VaD had signif-
icantly higher A when compared with AD at occipital, temporal,
lateral, and frontal electrodes. Interestingly, we observe a more
pronounced decrease in c for the VaD patients. Only very few
studies have performed spectral comparisons between these two
groups. Nevertheless, the slowing of alpha rhythm and the increase
of power in the delta and theta band were more pronounced in
VaD than in AD patients, as reported in the literature (50, 60). The
general increase of S along with decrease in b and further slowing
of c have been reported in other studies and was suggested the use
of such markers for accessing cognitive function (10–13) in MCI
and AD studies.

Parameter w differentiates patients with AD both from VaD and
from NC at several channels. This parameter is similar to the dom-
inant frequency variability (47), which was found to differentiate
between AD, Lewy body, and Parkinson’s disease. It is known that
occipital frequency differences persist both in AD and VaD patients
(45). Furthermore, at early stages of the disease, the neuropsycho-
logical and behavioral tests provide subtle differences leading to
miss diagnoses of AD in VaD patients or vice-versa (6, 7). There-
fore, we believe particularly this parameter w to be an interesting
biomarker for group differentiation.

LIMITATIONS
As we discussed previously, the EEG datasets that we included in
our study were collected during normal clinical routine from the
hospital and we relied on the latest existing clinical working ICD-
10 diagnosis determined by neurologists, (geronto-)psychiatrists,
and neuropsychologists’ staff. Despite the stringent criteria used to
select these patients, there is still an uncertainty on diagnosing VaD
or AD, which can only be confirmed by a post-mortem test. More
detailed reports of patient performance on various tests would
require full access to patient data, which was not feasible here.
Also, we have not correlated EEG findings with clinical scores such
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as MMSE, such that we cannot speculate about the relationships
between severity of dementia symptoms and EEG abnormalities.
Therefore, the group differences described in this study are biased
to the uncertainty of diagnoses of our sample and should not per se
be fully generalized.

CONCLUSION
Since this study included a large sample of unmedicated, age, and
gender matched of AD, VaD, and NC with clinical EEGs, it was
possible to compare the spectral differences between these groups
simultaneously. The model used in this study extracted relevant
EEG features such as low and high frequency amplitudes, decay
of amplitude from low to high frequencies, alpha frequency, alpha
power, and dispersion of alpha frequency. The implementation of
this model is suitable for analyzing EEG, and has relatively low
time and processing costs by reducing the complexity of the broad
spectrum curve. Our findings revealed significant differences in
several of the features extracted by the model, namely lower alpha
power at lateral-occipital regions for AD patients when compared
with NC in contrast to VaD patients who had higher power com-
pared with NC for the same regions. Both AD and VaD patients
had higher delta power than NC and, for posterior channels. VaD
patients had even higher delta power than AD patients. The dis-
persion of alpha, w, was a novel feature extracted by our fit-curve
model and established quantifiable differences between AD and
VaD. Based on this study, we believe that the proposed model
is useful for extraction and quantification of differences between
these groups of patients, and may have the potential to be used as
a general tool in quantitative EEG analysis.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fneur.2015.00025/
abstract
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