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The human subependymal zone (SEZ) is debatably a source of newly born neurons through-
out life and neurogenesis is a multi-step process requiring distinct transcripts during
cell proliferation and early neuronal maturation, along with orchestrated changes in gene
expression during cell state/fate transitions. Furthermore, it is becoming increasingly clear
that the majority of our genome that results in production of non-protein-coding RNAs
plays vital roles in the evolution, development, adaptation, and region-specific function of
the human brain. We predicted that some transcripts expressed in the SEZ may be unique
to this specialized brain region, and that a comprehensive transcriptomic analysis of this
region would aid in defining expression changes during neuronal birth and growth in adult
humans. Here, we used deep RNA sequencing of human SEZ tissue during adulthood and
aging to characterize the transcriptional landscape with a particular emphasis on long non-
coding RNAs (lncRNAs).The data show predicted age-related changes in mRNAs encoding
proliferation, progenitor, and inflammatory proteins as well as a unique subset of lncRNAs
that are highly expressed in the human SEZ, many of which have unknown functions. Our
results suggest the existence of robust proliferative and neuronal differentiation potential
in the adult human SEZ and lay the foundation for understanding the involvement of lncR-
NAs in postnatal neurogenesis and potentially associated neurodevelopmental diseases
that emerge after birth.

Keywords: long non-coding RNA, subependymal zone, aging, neurodevelopmental disease, neurogenesis,
interneuron

INTRODUCTION
The human subependymal zone (SEZ; also known as the sub-
ventricular zone; SVZ), found adjacent to the lateral ventricle, is
the largest reservoir of newly born neuronal and glial cells in the
adult brain and, in primates, is estimated to produce ~10 times the
number of new neurons compared to hippocampal neurogenesis
(1). In late embryonic development, the area lying juxtaposed to
the lateral wall of the lateral ventricle and just medial to the gan-
glionic eminence is responsible for the generation of inhibitory
interneurons destined for the cortex and caudate. In adult rodents,
proliferative capacity is retained in the SEZ and is critically impor-
tant to the genesis and replacement of olfactory bulb interneurons
that travel from the SEZ via the rostral migratory stream to the
olfactory bulb throughout life (2). The extent of SEZ prolifera-
tion, neurogenesis, and the existence of a rostral migratory stream
is debated in adult humans with some evidence supporting active
neurogenesis and migration postnatally, especially in the first few
years of human life (3–7). There are also examples of reactive
neurogenesis in the human SEZ in response to injury or neural
degeneration indicating that this region harbors precursor cells
throughout life and implicating activation of this region following

brain damage (1). This demonstrates that the adult brain may
not only be capable of generating new cells from the SEZ but
also that these cells could travel throughout the brain if the nec-
essary instructive cues were present. If the appropriate temporal
and spatial requirements of developing cells within the SEZ are
not met, altered production of interneuron precursors in the SEZ
may also contribute to interneuron deficiencies and the develop-
ment of brain disorders, such as a host of psychiatric disorders
including schizophrenia and autism spectrum disorder (8). There
is also evidence that the neurogenic potential of the mammalian
brain is attenuated with the normal aging process (9) suggesting
that transcriptional events involved in SEZ neurogenesis may also
change as humans age.

To more fully understand functional genomic expression in
specialized regions of the human brain, such as the SEZ, requires
the exploration of the entire transcriptome as the human genome
contains only ~1.5% protein-coding sequences (10) but at least
80% of the genome is dynamically transcribed resulting in a tran-
scriptional landscape dominated by long and short non-protein-
coding RNAs (11, 12). Long non-coding RNAs (lncRNAs) are
expressed from conventional promoters and share many features
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with protein-coding transcripts, including intron–exon bound-
aries and alternative splicing; they also commonly possess some
distinct features in that many are nuclear-localized and are far
more cell- and tissue-specific than protein-coding transcripts (13).
There are over 56,000 lncRNAs currently annotated in the human
genome (14), many of which have appeared relatively recently in
evolution, with about one-third being primate-specific (15).

Long non-coding RNAs display highly specific spatial and
temporal expression patterns (13, 16–18), implying that their
functions lie in the refinement of regulatory circuits specific to
particular cell types and activities, especially the epigenetic con-
trol of differentiation and development (19, 20). The majority of
lncRNAs are expressed in the brain, many exclusively (13, 15). It is,
therefore, unsurprising that they have critical roles in brain devel-
opment (21) and are emerging as significant contributors to brain
disease, such as schizophrenia (22), when dysregulated.

Long non-coding RNAs have been implicated in neurogene-
sis (23) and functional studies are accumulating demonstrating
the mechanisms underpinning their involvement. For example,
knockdown studies have identified lncRNAs that are specifically
required for neurogenesis, with three lncRNAs (designated N1–
N3) shown to be critical for proper neuronal differentiation (24).
These lncRNAs also associate with chromatin remodeling com-
plexes, a common theme among lncRNAs such as REST and
SUZ12, to control cell fate. Moreover, Ng et al. have demon-
strated that RMST, an lncRNA regulated by REST and induced
during neurogenesis, interacts with the transcription factor SOX2
and is required for its recruitment to key neurogenesis promoting
genes (25). Furthermore, distal-less homeobox 1 (DLX1) while a
protein-coding gene, plays an important role in the specification
of interneuron subtypes in the SEZ (26, 27), the activity of the
sense strand mRNA may be modulated by an antisense lncRNA
in mice, termed Dlx1as (28). Although, Dlx1as is thought not to
exist in humans (28).

A deeper transcriptomic analysis of human neurogenic regions
may be required to determine if there are known and unique lncR-
NAs expressed in the human SEZ that may be involved in interneu-
ron genesis. Although the SEZ is strongly linked to neurodevel-
opmental programs and may be a source of adult neurogenesis,
there has been no study to date investigating the non-coding RNA
molecular landscape of this region and transcriptional changes
during aging. Therefore, we sought to characterize age-dependent
expression of protein-coding RNA and lncRNA transcripts to gain
insight into SEZ neurogenesis.

MATERIALS AND METHODS
HUMAN SUBEPENDYMAL ZONE TISSUE
Tissue from the anterior caudate of 21 normal individuals between
the ages of 21 and 81 years was obtained from the New South
Wales Tissue Resource Centre (Sydney, NSW, Australia; HREC
07261). Cases were screened for neuropathology and toxicol-
ogy and were free of psychiatric or neurological disease. The
cause of death for most cases was cardiac (cardiac n= 17, car-
diac/respiratory n= 1, unknown n= 2, cancer n= 1) and the
cohort consisted of 3 females and 18 males, with an average age of
53.95 years, average PMI of 30.1, average pH of 6.68, and average
RIN of 7.3 (Table S1 in Supplementary Material). Fresh-frozen

caudate tissue was sectioned on a Leica CM3050 S cryostat, taking
sets of 20µm× 60 µm sections interspersed with 10µm× 14 µm
sections. Tissue for RNA extraction was dissected from 60 µm
thick sections while frozen. Cuts were made ~2 mm deep to the
lateral surface of the lateral ventricle to include the SEZ using
Wescott spring scissors (T106, ProSci Tech). For each case, tissue
was dissected from 3 sets of 3–4 adjacent 60 µm sections spaced
~1340 µm to give 10 sections/case (~40 mg tissue total/case).

RNA extraction
Total RNA was extracted from SEZ-containing tissue for each case
using Trizol (Invitrogen), and RNA quality was assessed on an
Agilent Technologies 2100 Bioanalyzer with an RNA 6000 Nano
kit (Agilent Technologies, USA) according to the manufacturer’s
instructions. cDNA was synthesized from 3 µg total RNA per
case using SuperScript® III First-Strand Synthesis kit and random
hexamers (Invitrogen). For LINC00657, NEAT1, Dlx1, and Dlx1
enhancer, 2 µg of total RNA was DNase treated using TURBO
DNA-free kit (Ambion) prior to cDNA synthesis to minimize
genomic DNA amplification.

QUANTITATIVE REAL-TIME PCR
TaqMan gene expression assays
Transcript levels were measured by quantitative real-time PCR
(qPCR) on an ABI Prism 7900HT Fast Real-time PCR system
with 384-well format and TaqMan Gene Expression Assay [Applied
Biosystems; Ki67, Hs010324433; see Ref. (29)]. Changes in expres-
sion of mRNAs for one coding (DCX) and two expressed lncR-
NAs, one novel (LINC00657) and one known (NEAT1), with
age were validated with qPCR in the entire cohort with a total
of 21 cases (Table S1 in Supplementary Material). TaqMan gene
expression assays Hs01035496_m1 and Hs01008264_s1 were used
to detect DCX and NEAT1 mRNAs, respectively, and custom
probe AI6RO2N was used to detect LINC00657. All measure-
ments from each subject were performed in duplicate and rel-
ative quantities determined from a seven-point standard curve
of pooled cDNA. Transcript quantities for Ki67 were normal-
ized by the geometric mean of four housekeeping genes: ubiquitin
C (Hs00824723_m1), actin β (Hs99999903_m1), glyceraldehyde-
3-phosphate dehydrogenase (Hs99999905_m1), TATA box bind-
ing protein (Hs00427620_m1) that did not correlate with age
(r =−0.02, p > 0.05). Quantity means for DCX, LINC00657, and
NEAT1 were normalized to glyceraldehyde-3-phosphate dehydro-
genase (Hs99999905_m1) transcript expression.

Sybr green
Quantitative real-time PCR was also conducted using KAPA SYBR
Fast qPCR universal kit (KAPA Biosystems, USA) according to
manufacturer’s instructions in 384-well plates. Primers used were
DLX1 (forward: CTCAGGTCAAGATCTGGTTC; reverse: GGAT-
GAAGAGTTAGGGTTCC), DLX1 enhancer (forward: CGAG-
GATTAACACTTCCTGAA; reverse: GGGAGTGATTATGTATG-
CACC), and GAPDH (forward: CAGCCTCAAGATCATCAGCA;
reverse: ATGGACTGTGGTCATGAGTC). Ten microliter qPCR
reactions were performed in triplicate using 2 µL of diluted cDNA
per reaction. Quantitative PCR reagent master mixes included 2×
KAPA SYBR FAST qPCR Master Mix (2×) Universal, ROX-high

Frontiers in Neurology | Neurogenomics March 2015 | Volume 6 | Article 45 | 2

http://www.frontiersin.org/Neurogenomics
http://www.frontiersin.org/Neurogenomics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barry et al. lncRNAs in the human SEZ

reference dye and 200 nM final concentration of each forward
and reverse primer (Integrated DNA Technologies, Inc., USA). An
Applied Biosystems 7900HT Fast Real-Time PCR machine fitted
with a 384-well thermal block was used for qPCR (Life Technolo-
gies, USA). Thermal cycling conditions consisted of initial 3 min
enzyme activation at 95°C followed by 40 cycles of 95°C for 5 s,
60°C for 30 s, and finished with the default instrument dissocia-
tion protocol. Melt curve (dissociation) analysis was performed to
identify the presence of primer–dimers and to analyze the speci-
ficity of the reaction. Amplicon sizes were verified for all primer
pairs by agarose gel electrophoresis. Initial analysis of raw qPCR
data utilized SDS v2.4.1 software (Life Technologies, USA).

DEEP SEQUENCING
Eleven samples were chosen for deep sequencing based on cost
limitations while maintaining statistical relevance and the best
possible spread of age and sex.

RNA isolation for library preparation
Prior to library preparation, 1.5 µg of each total RNA sample was
DNase-treated using TURBO DNase (Ambion, USA) according
to the manufacturer’s instructions followed by purification with
Agencourt RNAClean XP beads (Beckman Coulter, USA) also
according to manufacturer’s instructions. RNA concentration was
measured using a Nanodrop 2000 spectrophotometer (Thermo
Fisher Scientific, USA).

Library preparation
Five hundred nanograms of total RNA were used as input mate-
rial for library preparation using the TruSeq Stranded Total RNA
Sample Prep Kit (Illumina, USA) according to manufacturer’s
instructions including the recommended modification to the RNA
fragmentation duration to account for partially degraded RNA.
Individual libraries were indexed as recommended by Illumina.

Quantification and quality control of DNA library templates
Indexed DNA libraries were analyzed individually using an Agilent
Technologies 2100 Bioanalyzer with the DNA 1000 kit according
to the manufacturer’s instructions (Agilent Technologies, USA).
Libraries were diluted and pooled to a final concentration of
10 nM each in nuclease-free H2O (Ambion, USA). Pooled libraries
were quantitated using a Life Technologies Qubit 2.0 Fluorometer
with the Qubit dsDNA HS Assay Kit (Life Technologies, USA) and
further diluted to 2 nM. Final DNA library concentration was con-
firmed using a Qubit dsDNA HS Assay Kit. PCR-competent library
DNA concentration was verified using the universal KAPA Library
Quantification Kit for Illumina Sequencing Platforms according
to manufacturer’s instructions (KAPA Biosystems, USA).

Sequencing
Total RNA sequencing was performed using the Illumina
HiSeq2500 platform with 100 bp paired-end sequencing with a
fragment size of ~295 bp. Illumina TruSeq version 3 chemistry
was used for cluster generation and sequencing.

BIOINFORMATIC ANALYSIS
Initial and post trimming quality control was performed with
FastQC (version 0.10.1). Adapter and quality trimming was per-
formed with TrimGalore [version 0.3.3; (30)] including adapter

cutting, a minimal length of 20 bp and a Quality Phred score
cutoff of 20. Trimmed paired-end reads were aligned against
assembly GRCh37 of the human genome with TopHat [ver-
sion 2.0.10; (31)] and Bowtie [version 2.1.0; (32)] using a pre-
built transcriptome based on Gencode (version 19). Post pro-
cessing and quality control of the alignment was performed
with Bedtools [version 2.17.0; (33)], Samtools [version 0.1.19;
(34)], Samstat [version 1.08; (35)], and RNA-SeQC [version 1.1.7;
(36)]. The pipeline incorporating the aforementioned algorithms
was built with NGSane [version 0.4.0; (37)]. Transcript nor-
malization was performed using upper quartile normalization
applied through the edgeR package (38). The average million
reads per sample are ~16 million paired-end reads (16,106,463)
and the average mapping of these reads is 94.38%. For tran-
scriptome analysis, alignment counts were resolved on gene and
transcript identifiers based on Gencode (version 19) annota-
tion. Quantification was performed post alignment with HTSeq
(version 0.5.4p5) in union mode considering only uniquely
mapped reads. Transcriptome assembly was carried out with
Cufflinks (39). Age regression analysis was performed using
GraphPad Prism Version 6.0B with a linear regression fit and
a 95% confidence interval with a p value of <0.05 deemed
significant.

RESULTS
GENOME-WIDE TRANSCRIPTOMIC ANALYSIS OF THE ADULT
HUMAN SEZ
First, we wanted to confirm that proliferating cells within the cell
cycle are likely to exist in the human SEZ. By qPCR we found that
mRNA for the proliferation marker Ki67, required in all active
phases of cell division while absent in the non-proliferating state,
was present and that the levels of this transcript decreased sharply
with increasing age (Figure 1). Next, to determine the molecular
identity of lncRNAs in the adult human SEZ and to understand the
mechanisms underpinning neurogenesis that may be applicable
during adulthood, we used next generation sequencing (NGS) for

FIGURE 1 | Proliferation significantly decreases in the human SEZ
during aging. Quantitative PCR reveals that mRNA for the proliferation
marker Ki67 sharply decreases in an age-dependent manner. (Significance
is defined as p value <0.05).
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genome-wide analysis. Transcript expression levels were ranked
according to average HTSeq counts (expression counts; Table S2
and Figure S1 in Supplementary Material) over the 11 samples.
Interrogating the top 100 expressed transcripts using DAVID 6.7
analysis for functional annotation (40) revealed highly significant
cluster annotation (high stringency) for neuron development and
differentiation (Enrichment score 6.18; Table S3 in Supplementary
Material) providing confidence that this dataset may be valuable
for investigating neurogenesis-related mechanisms in the human
SEZ and supporting that this region is potentially enriched in
immature neurons. We confirmed a decrease in neuronal dif-
ferentiation in the human SEZ with advancing age as our NGS
data revealed significant declines in the early neuronal differenti-
ation and migration marker doublecortin [DCX; (41); Figure 2A;
confirmed by qPCR (Figure S2A in Supplementary Material) in
a larger cohort of samples (Table S1 in Supplementary Mater-
ial)] and predicting additional mRNAs, which can be involved
in proliferation, such as β-catenin [CTNNB1; (42); Figure 2B].
Interestingly, however, the neuronal progenitor marker paired box
6 [PAX6; (43); Figure 2C] and the early glial specification fac-
tor nuclear factor I A [NFIA; (44); Figure 2D], were predicted to
be not significantly altered with age and trended upwards with
increasing age implying that the progenitor pool for neurogene-
sis may persist during aging. These data suggest that significant
neurogenesis may still be possible in the adult brain but prolif-
erative levels of certain precursor cells may decline with regards
to age.

INCREASE IN INFLAMMATORY MARKERS IN THE HUMAN SEZ DURING
AGING
Increased brain inflammation with aging is thought to underlie, at
least in part, the gradual decline of human brain function (45, 46).
Our data predict that mRNA-encoding receptors of inflammatory
mediators interleukin (IL)-1 and IL-6, IL1R, and IL6R, are signifi-
cantly upregulated during aging in the human SEZ (Figures 3A,B).
These changes were in contrast to the predicted decrease in pro-
liferative (Figures 1 and 2B), progenitor (Figures 2C,D), and
immature neuron (Figure 2A) markers, and could reflect indi-
cators of brain injury, senescence, or neurogenic impairment.
However, as our samples were from donors with no overt phe-
notype these increases are likely due to the involvement of IL-1
and IL-6 pathways in “normative” senescence (47).

A SUBSET OF lncRNAs ARE HIGHLY EXPRESSED AND UPREGULATED
DURING AGING IN THE HUMAN SEZ
To begin to characterize more fully the molecular signature of
lncRNAs in the human SEZ, we determined the highest expressed
lncRNAs from the human SEZ NGS data (Table 1). Expectedly,
due to the generally low expression of lncRNAs in any particular
brain region, we found that only 30 lncRNAs fell into the top 2262
of the most highly expressed transcripts, i.e., the 30th most highly
expressed lncRNA was 2262nd (Table S2 in Supplementary Mater-
ial). We chose the top 30 as they represent a reasonably high level of
expression. The fairly well-known, widely and robustly expressed
lncRNAs, such as MALAT1, involved in neuronal function (48)

FIGURE 2 | Next generation sequencing shows age-dependent decreases
in early neuron differentiation and putative proliferation markers but
stable expression of neural progenitor markers in the human SEZ.
Significant decreases during aging are observed in the expression levels of
(A) the immature neuronal marker doublecortin (DCX; validated by

quantitative PCR; Figure S2A in Supplementary Material) and (B) a key
promoter of neuronal proliferation β-catenin (CTNNB1). Non-significant
age-dependent alterations are observed in the expression of radial glial
markers (C) paired box 6 (PAX6) and (D) nuclear factor I A (NFIA).
(Significance is defined as p value <0.05).
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Barry et al. lncRNAs in the human SEZ

FIGURE 3 | Inflammatory receptor mRNAs related to senescence increase in the human SEZ with age. Significant increases during aging are observed in
the expression levels of (A) interleukin-1 receptor 1 (IL1R1) and (B) interleukin-6 receptor (IL6R). (Significance is defined as p value <0.05).

and proliferation (49), and NEAT1, implicated in paraspeckle for-
mation and alternative splicing (50), were among the most highly
expressed lncRNAs in the human SEZ. Additional lncRNAs that
have been linked to differentiation were in the highly expressed
group (Table 1) and were predicted to increase in expression dur-
ing aging [Figures 4A–D; NEAT1 examined by qPCR increases
with age; however, the relationship is not significant (Figure S2B
in Supplementary Material) in a larger cohort of samples (Table S1
in Supplementary Material)]. For example, the lncRNA Gomafu is
implicated in neuronal differentiation (18) and alternative splicing
in human cortical neurons (22) and we find that Gomafu expres-
sion is suggested to increase in the human SEZ during aging. This
is also true for the lncRNA TUG1 that is a direct target of the
tumor suppressor p53 and reported to regulate proliferation (51).

A UNIQUE SUBSET OF lncRNAs OF UNKNOWN FUNCTION DECREASED
DURING AGING IN THE HUMAN SEZ
Our analysis of the SEZ reveals that there are highly expressed
and uncharacterized lncRNAs that display significant regula-
tion that parallel decreased age-related proliferation such as
LINC00657 (Figure 5A) and SNORD3A (Figure 5B). The func-
tion of LINC00657 is unknown but this lncRNA appears to decline
rapidly during aging (Figure 5A), a result validated through qPCR
in a larger cohort of samples (see Figure S2C and Table S1 in
Supplementary Material). This lncRNA is conserved in verte-
brates (Figure S3 in Supplementary Material) and, although widely
expressed, is enriched in the brain (Figure S3 in Supplementary
Material). SNORD3A, an lncRNA encoding a small nucleolar RNA
(C/D Box 3A), is predicted to be similarly downregulated during
aging in the human SEZ (Figure 5B). This lncRNA is mammalian-
specific (Figure S4 in Supplementary Material) and its expression
levels are lower in brain tissue than elsewhere (Figure S4 in Sup-
plementary Material) and may reflect expression specificity in
particular cell types or regions, or dependence on activity in the
human brain.

POSSIBLE ENHANCER TRANSCRIPT FOR DLX1 DETECTED IN THE
HUMAN SEZ
A lncRNA, antisense to the mouse Dlx1 gene (Dlx1as), may reg-
ulate Dlx1 function and hence interneuron specification but is
proposed not to exist in humans (28). Interestingly, when we

Table 1 | Most highly expressed lncRNAs in the human SEZ.

ENGS_ID Genes Average

(counts)

SD

ENSG00000251562.3 MALAT1 25823.83865 5448.001106

ENSG00000258486.2 RN7SL1 7552.087429 4836.752255

ENSG00000259001.2 RPPH1 3233.617342 1543.386952

ENSG00000269900.2 RMRP 1379.439891 282.2752341

ENSG00000214548.10 MEG3 1244.18418 266.2397648

ENSG00000236824.1 BCYRN1 1104.320094 299.1965189

ENSG00000260032.1 LINC00657 1103.68697 259.3204245

ENSG00000245532.4 NEAT1 613.6523589 210.4050131

ENSG00000247556.2 OIP5-AS1 485.6564217 71.60747981

ENSG00000269821.1 KCNQ1OT1 454.9719056 64.03659426

ENSG00000229807.5 XIST 426.524232 495.9491165

ENSG00000257151.1 RP11-701H24.2 343.6736379 77.53051621

ENSG00000249614.1 RP11-703G6.1 231.6482767 58.90302218

ENSG00000225783.2 MIAT 230.6506684 56.30339301

ENSG00000259380.1 RP11-346D14.1 228.4430582 51.89955342

ENSG00000263934.2 SNORD3A 216.0758427 51.21067197

ENSG00000239002.2 SCARNA10 209.7943427 24.60247805

ENSG00000242808.3 SOX2-OT 200.6236003 62.92766253

ENSG00000249348.1 UGDH-AS1 194.0595263 35.73419584

ENSG00000232164.1 AC092669.3 180.1620377 35.64551905

ENSG00000258441.1 LINC00641 165.1920813 32.95864173

ENSG00000253352.4 TUG1 154.6567408 17.20914581

ENSG00000255794.2 RMST 147.9867556 36.22319234

ENSG00000260918.1 RP11-731J8.2 143.6049122 33.63902851

ENSG00000263244.1 RP11-473I1.10 141.0085938 19.45147484

ENSG00000231074.4 HCG18 140.0152075 13.24767675

ENSG00000225733.1 FGD5-AS1 139.7240432 18.8825367

ENSG00000255248.2 RP11-166D19.1 117.5159698 29.70264099

ENSG00000250366.2 LINC00617 88.79670147 16.83608733

ENSG00000242125.2 SNHG3 87.05553931 13.80532119

examined our human SEZ RNAseq data specifically examin-
ing the DLX locus, our analysis revealed reads that aligned to
the syntenic region of Dlx1as. The position and structure of
the human antisense transcript appears altered compared with
mouse (Figures 6A,B). The total size of the antisense transcripts
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FIGURE 4 | Highly expressed lncRNAs that increase in expression during
aging in the human SEZ. A significant increase during aging in the human
SEZ is observed in the expression levels of (A) MALAT1. Insignificant,

although upward trending, increases in expression during aging are also seen
for the highly expressed lncRNAs (B) Gomafu, (C) NEAT1, and (D) TUG1.
(Significance is defined as p value <0.05).

FIGURE 5 | Examples of highly expressed and uncharacterized lncRNAs
that are downregulated during aging in the human SEZ. Significant
age-related decreases in the human SEZ are observed for the expression of

the lncRNAs (A) LINC00657 (Validated by quantitative PCR; Figure S2C in
Supplementary Material) and (B) SNORD3A. (Significance is defined as p
value <0.05).

(excluding intronic regions) between mouse and human are com-
parable; however, the human transcript seems to have lost the
DLX1-overlapping portion and may not possess an intron as seen
in the mouse (at least in the adult human SEZ transcript pool). In
a comprehensive study of enhancer regions, Andersson and col-
leagues designated this transcript as a possible actively transcribed
enhancer (52). The putative human enhancer DLX1 (eDLX1) tran-
script is expressed at much lower levels in the SEZ than DLX1
(Figure 6C) but is of interest as neither ENCODE/GENCODE,
RefSeq, UCSC (Figure S5 in Supplementary Material) nor the Illu-
mina Body Atlas (data not shown) could find evidence of the
human transcript emanating from the opposite DNA from the

DLX1 sense strand. This may be due to the fact that it is uniquely
expressed in the SEZ, or other discrete regions, and no other study
has sequenced this region in depth. It remains to be seen whether
this transcript indeed acts as an enhancer or traditional antisense
regulator. Both DLX1 (Figure 6C) and eDLX1 (Figure 6D) are
predicted to be expressed at relatively stable levels throughout the
age range studied.

DISCUSSION
In the case of neurodevelopmental diseases, interneuron maldevel-
opment may underlie conditions such as schizophrenia and autism
due to the fact that interneurons are specified and still developing
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FIGURE 6 | Detection of a human DLX1 antisense transcript that
may function as an enhancer in the human SEZ. Graphical
depiction of the corresponding (A) human (DLX1, antisense
transcripts, and DLX2) and (B) mouse (Dlx1, Dlx1as, and Dlx2)

regions of the genome. Both (C) DLX1 and (D) the putative DLX1
enhancer transcript expression are predicted to remain relatively
constant during aging in the human SEZ. (Significance is defined as
p value <0.05).

well into postnatal life (7, 53–55) and accumulating evidence sup-
ports an inhibitory neuron dysfunction that may be common in
both conditions and is, in fact, well replicated in schizophrenia (8,
56, 57). However, the role of interneurons in brain disorders first
diagnosed in older adults or in normal brain aging is not as clear.
Although different types of interneurons are present in the brain,
a general deficit in interneuron progenitor pools could affect all
interneuron subtypes or it may be that interneuronal specification
potential changes with age such that abnormal molecular envi-
ronments arising at a particular life stage could lead to distinct
outcomes. As the human SEZ is a major source of interneuron
production during development (1) and may contribute to adult
neurogenesis, an understanding of the molecular control of this
region is fundamental to our understanding of human brain dis-
eases. In this study, we provide transcriptional evidence to suggest
that interneuronal genesis may continue throughout human life
in the SEZ, including the detection of mRNA encoding a mole-
cule (DCX) known to be expressed by migrating interneurons (6,
58–60), and an mRNA encoding a transcription factor capable of
directing cell fate toward the interneuron phenotype, DLX, and

finally a putative DLX1 enhancer transcript, perhaps providing a
window into unique transcripts that operate to induce prolifera-
tion, cell differentiation, and early neuronal migration even into
advanced years of life in humans.

Our transcriptomic analysis of the human SEZ during adult-
hood revealed a bias for neuronal differentiation and an lncRNA
“signature” that includes a small subset of highly expressed func-
tionally known and unknown lncRNA transcripts. Interestingly,
our data predict that the expression of some putative proliferative
mRNA markers (Ki67, CNTTB1) and immature neuron markers
(DCX) decrease during aging but intriguingly, progenitor markers
(PAX6, NFIA) remain stable suggesting that the transition from
multipotent progenitor cells to more committed precursors and
neuroblasts (those in a transitional state) is reduced with age.
An age-dependent decrease in neurogenesis seemed to coincide
with the predicted increase in some of the highly expressed and
proliferation-associated lncRNAs, such as Gomafu, MALAT1, and
NEAT1 that form nuclear speckles and require activity to per-
form their functions. We did not anticipate this result, and it
may be that during aging these lncRNAs become unresponsive to
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mitogenic or environmental stimulation or the stimuli themselves
are diminished or not relayed correctly.

Several studies suggest that genesis of new neurons may be
induced in the adult brain under trauma such as ischemia and
injury (61). Injury or disease resulting in inflammation increases
levels of pro-inflammatory cytokines such as IL-6, and we have
previously reported that increased cortical cytokines are related to
increased density of neurons in the white matter in adult humans,
which can be interpreted as a possible increase in immature migra-
tory neurons (56, 59). Furthermore, in this study, we predicted
significant increases in IL1R and IL6R in the human SEZ with
advancing age (Figure 3). These observations coupled with other
reports of increased pro-inflammatory cytokines in brain aging
(62) would suggest that we may expect to find increases in cell
proliferation and early neuronal differentiation in the aging SEZ.
However, this was not the case. While it may be that increases
in inflammatory cytokines can be involved with inducing neuro-
genesis in a younger brain (63), inflammatory pathways are also
implicated in senescence (47) and IL-6 can inhibit neuronal differ-
entiation of neural stem cells (64) and astrocytic overexpression
of IL-6 inhibits hippocampal neurogenesis (65). We find that the
mRNA-encoding cytokine receptors for both IL1 and IL6 are sug-
gested to increase in the aging human SEZ while the proliferation
marker Ki67 is decreased. Our results would be consistent with a
speculative model where receptors for cytokines may be involved
in sensing and translating the demise of the human brain and
stimulating senescence of the SEZ. It is also possible that although
inflammation-induced neurogenesis is potentially viable in the
young brain this system may become more sensitized to inflam-
mation in the aging brain making it unable to respond to injury-
or degeneration-induced inflammation in the same manner (66).

FUTURE DIRECTIONS
Our data suggest that neurogenesis in the adult human brain con-
tinues across the typical life span. However, normal levels of neu-
rogenesis may be hampered in aging perhaps by an altered ability
of resident SEZ progenitor cells to successfully initiate prolifera-
tion in response to extrinsic cues, i.e., up regulation of cytokines.
Additionally, we have identified that many lncRNAs are expressed
in this region, some of which may be unique. Future experi-
ments aimed at a greater understanding of the role of lncRNAs
in human neurogenesis and how cell intrinsic molecular factors
may interact with cell extrinsic molecular cues in cell specific pat-
terns over aging are needed to advance our understanding of how
to harness and control new neuronal birth. Also, separating these
possibilities of change in proliferative response of neuronal pre-
cursors to cytokines over aging would be of great relevance to the
field. Furthermore, mechanistic insight into the function of highly
expressed and uncharacterized lncRNAs in the human SEZ could
uncover neurogenic regulatory processes central to this region. We
believe that this study will inform future analyses of neurodevelop-
mental and neurodegenerative diseases and highlight the need to
examine lncRNAs in larger sample sizes in future transcriptomic
studies to reveal region-specific function.
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