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FUNCTIONAL REORGANIZATION IN MS:
AN OUTDATED CONCEPT?
The current field of multiple sclerosis (MS)
research is an active and highly interest-
ing one: structural abnormalities such as
inflammatory lesions and brain atrophy
are studied with a wide array of advanced
neuroimaging techniques (1). These tech-
niques are subsequently used to try to
explain the large clinical heterogeneity in
patients. Clinically important in MS is cog-
nitive dysfunction, which is present in 40–
70% of all patients (2, 3). Cognitive impair-
ment in MS receives much attention, as
there is currently no proven effective treat-
ment, but symptoms may nevertheless start
in early stages of disease already (4). Cog-
nitive decline is known to exert deleteri-
ous effects on psychosocial functioning (2,
5, 6). Traditional structural imaging mea-
sures like lesion volumes are notoriously
poorly related with cognitive function (7),
so a move toward more sensitive, compre-
hensive measures is required, such as those
that measure brain function in addition to
brain structure.

Historically, most early imaging stud-
ies have used the paced auditory serial
addition test (PASAT) to study cognition
in MS, a task that measures information
processing speed (8–10). These observed a
combination of hyperactivation of frontal
regions in response to the task and a
recruitment of additional areas, not nor-
mally attributed to the task in controls.
The functional changes were mostly posi-
tively related to the amount of structural
damage in the brain, and were stronger
in patients who scored normally on the
PASAT, indicating that it might be a ben-
eficial process. Later studies investigated

other cognitive domains and also showed
such an apparently beneficial increased
local activation, for example, during a
memory task in the hippocampus (11)
and during the N-back working memory
task in the dorsolateral prefrontal cortex
(DLPFC) (12). Importantly, these stud-
ies also showed decreased activation in
cognitively impaired patients.

The body of literature of that point
in time led to our previous hypothesis
of functional reorganization in MS (13).
This hypothesis asserted that a “compen-
satory” change is seen in the brains of
MS patients in the form of an increase in
brain function, i.e., both increased activa-
tion and increased connectivity. Functional
connectivity is conceptually quite differ-
ent from task-based activation and reflects
the amount of communication between
brain regions, i.e., coherent patterns of
firing typically measured with correlation
measures. Early connectivity studies inves-
tigated the so-called “default mode net-
work” (DMN), which is only coherently
active during a resting state. Two such stud-
ies found DMN changes that were inter-
preted in the same way as the task-based
activation studies: increased DMN connec-
tivity in clinically isolated syndrome (CIS)
patients (14) and decreased DMN connec-
tivity in progressive MS, which was related
to cognitive impairment (15). We proposed
that increasing structural damage, in com-
bination with an optimum curve of “func-
tional reorganization,” results in a delayed,
non-linear, development of cognitive dys-
function.

However, the previous model was
mostly based on task-based activation
studies, while the connectivity field was still

in its infancy. As the concept of functional
reorganization was gaining support, the
field was primed for finding cognitively rel-
evant connectivity changes. Interestingly,
recent studies have mostly related increased
functional connectivity to cognitive dys-
function, raising doubts on the previous
concept of functional reorganization in
MS. In this paper, we will review this recent
functional connectivity literature and reit-
erate the case around functional connectiv-
ity changes in MS and their potential effects
on cognition. Which reported connectivity
changes can be justifiably said to be “com-
pensatory”or“beneficial”? Which are likely
“maladaptive”? Can any such predicate be
arrived at all, based on the neuroscien-
tific studies available? Is it perhaps time
to revise our previous model of functional
reorganization?

FUNCTIONAL CONNECTIVITY IN MS: A
FIELD OF CONTRADICTIONS
Resting state network changes have been
observed in relapsing remitting MS
(RRMS) patients, both within and between
almost all resting state sub-networks (16).
The DMN de-activates when performing a
task, and appears to be strongly related to
cognition. DMN changes have been diffi-
cult to place within our previous hypoth-
esis, as cognitive dysfunction was related
to both decreased (17–21) and increased
DMN connectivity (22–24). In pediatric
MS, increased DMN connectivity was seen
in cognitively preserved patients in the
anterior cingulate gyrus, while decreased
connectivity of the posterior cingulate was
seen in cognitively impaired patients (25).
Increased connectivity of the anterior cin-
gulate cortex was also found in adult

www.frontiersin.org April 2015 | Volume 6 | Article 82 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00082/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00082/abstract
http://loop.frontiersin.org/people/210337/overview
http://loop.frontiersin.org/people/217572/overview
http://loop.frontiersin.org/people/227226/overview
mailto:m.schoonheim@vumc.nl
http://www.frontiersin.org
http://www.frontiersin.org/Multiple_Sclerosis_and_Neuroimmunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schoonheim et al. Network collapse in multiple sclerosis

MS patients, although these connectivity
changes showed both positive and nega-
tive correlations with cognitive dysfunction
(26). Another recent paper in adult-onset
MS suggests that the severity of cogni-
tive impairment is directly related to the
level of increased functional connectiv-
ity of the DMN (27). As the DMN de-
activates during tasks, task-based studies
have also looked at this network. Dur-
ing performance of the N-back working
memory task, researchers noted less de-
activation of the DMN (12) in cognitively
impaired patients. Another recent study,
however, seems to contradict this finding,
as an increased DMN activation during a
similar task was related to both higher intel-
lectual enrichment and information pro-
cessing speed performance (28). In short,
the DMN results have been difficult to
interpret.

Unfortunately, results from seed-based
analyses investigating other structures like
the DLPFC have not been very consis-
tent either. One such study (29) found a
reduced connectivity between the DLPFC
and the superior medial frontal gyrus in
patients who scored normally on the N-
back, in relation to increased difficulty of
the task, and also found increased con-
nectivity between the left and right pre-
frontal cortices. This connectivity between
the DLPFC and medial frontal regions was
increased in MS patients in another study,
during the Go/No Go task, at which they
were impaired (30). The DLPFC was also
studied during performance of the PASAT
in patients with CIS who were impaired on
this test (31, 32), showing decreased con-
nectivity with several areas, including the
anterior cingulate and thalamus. Contrar-
ily, another study only showed increased
connectivity during the PASAT in CIS
patients, who were also impaired on this
test (33).

Studies looking at several other cogni-
tively relevant structures such as the thal-
amus, hippocampus, and cerebellum have
shown varying patterns of connectivity in
MS as well. Thalamic atrophy has well-
known and strong effects on cognition in
MS (34), which appears related to global
cortical network changes (24,35). An afore-
mentioned task-based CIS study showed
decreased connectivity between the thala-
mus and DLPFC during the PASAT (31), at
which patients were impaired. Strikingly,

during a resting state, the thalamus has
also been shown to have increased connec-
tivity with frontal areas in clinically def-
inite MS patients with cognitive impair-
ment (36, 37). Similarly, at rest, the hip-
pocampus showed decreased connectivity
related to hippocampal atrophy in patients
with still intact memory performance (38),
but increased connectivity in patients with
memory impairment (39). The cerebel-
lum, however, showed decreased connec-
tivity in patients with cognitive dysfunc-
tion, both during the PASAT (40) and
Stroop tasks (41).

WHAT DOES IT ALL MEAN?
As described above, the body of litera-
ture on cognitively relevant connectivity
changes in MS is currently difficult to
interpret. As it seems, our previous model
for functional reorganization is incomplete
and the term is currently used in a num-
ber of ways and lacks a clear definition.
Additionally, these findings were studied
across the spectrum of clinical and cogni-
tive phenotypes in MS, with very different
methodological and statistical approaches,
leaving the data ambiguous in places.
Some studies now refer to any connec-
tivity change as functional reorganization,
leaving it to the reader to disentangle “ben-
eficial” or “maladaptive” functional reor-
ganization post hoc. This process actually
seems quite complicated, however, as cross-
sectional studies have related both connec-
tivity increases and decreases to cognitive
dysfunction in MS. Therefore, the studies
that do claim that changes might be benefi-
cial for cognitive performance in MS might
not have enough evidence to do so. In
truth, we are currently unable to disentan-
gle“good”from“bad”and are strongly lim-
ited by the cross-sectional nature of almost
all of these studies.

For example, suppose that a functional
connectivity increase is observed in cog-
nitively preserved patients, and a decrease
in a cognitively impaired patient group.
Although many studies interpret such a
finding as cognitively relevant, as described
previously, such data could, in fact,be inter-
preted in several ways. First, the functional
connectivity increase in cognitively pre-
served patients might reflect “beneficial”
functional reorganization, delaying cogni-
tive impairment. In impaired patients, this
effect of functional reorganization is then

lost. Second, the functional connectivity
increase in cognitively preserved patients
might be a “maladaptive” response, fol-
lowing, e.g., disinhibition, heralding an
imminent network collapse, and further
deterioration into cognitive impairment.
Third, the functional connectivity increase
in cognitively preserved patients could be
an unrelated epiphenomenon. Or, that the
connectivity increase is related to structural
damage, but that it has no direct impact
on cognition at all. And finally, given the
fact that most studies are cross-sectional,
it cannot be excluded that the frequently
observed functional connectivity increases
in patients with cognitive impairment are,
in fact, “beneficial.” It is possible that
such increases are, e.g., a bleed through of
beneficial functional reorganization from
the cognitively preserved stage. This could
be due to a poor definition of cognitive
impairment and/or plastic changes that
persist throughout this stage of the disease.
The only way we are going to understand
the cognitive role of functional connectiv-
ity changes in MS will be to study them over
time.

Preliminary longitudinal studies linking
connectivity changes to cognitive rehabili-
tation (42, 43), as well as pharmacologi-
cal intervention (44), show some promise.
Unfortunately, determining sufficient sam-
ple sizes and time frames remains difficult
given the current lack of data, leaving these
small studies difficult to interpret. Such
intervention studies aiming to increase
neurotransmitter levels in MS appear logi-
cal, as there is an apparent cholinergic (45)
as well as glutamate (46) imbalance in MS,
which might leave the network unstable.
Therefore, pharmacological therapies tar-
geting such neurotransmitters might prove
valuable (47). It must be stressed, however,
that there may also be downsides to such
an approach, as specific glutamate receptor
subtypes have been linked to brain atro-
phy (48) and excitotoxic effects due to the
treatment and the functional reorganiza-
tion process might actually increase tissue
damage and network stress.

THE FUTURE: MEASURING NETWORK
COLLAPSE IN MS
As the field of functional imaging in MS
matured, the clinical interpretation of the
combined set of functional changes in MS
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FIGURE 1 | A hypothesis of network collapse as a cause for developing cognitive impairment in
MS. In early stages of MS, structural damage is low, leaving network efficiency relatively high. As the
structural damage accumulates over time, network efficiency levels drop, inducing a network collapse
after a critical threshold (indicated by the dotted line) is exceeded. After this, the network is unable to
function normally and cognitive impairment develops.

has become much more complex, leav-
ing our previous model of functional
reorganization in MS incomplete and
too simplistic. After exploring abovemen-
tioned individual structures and sub-
networks in MS has not made matters
much clearer, it is now opportune to look
at connectivity in another way. One option
is to take functional connectivity values
and convert them into a more holistic net-
work model of the entire brain. This so-
called graph analysis approach (49) uses
different parameters such as the cluster-
ing coefficient and path length (50) to
describe network information flow. Appli-
cations of these techniques in MS have
been very limited (49),but have highlighted
the power of graph analysis in discrimi-
nating patients from controls (51). Graph
analytical studies in MS have shown that
cognitive dysfunction is related to an inef-
ficient network, as seen by the change in
clustering coefficient and path length (52–
54), impaired network integration of infor-
mation (55) and clustering (56), decreases
in network centrality (57, 58), increases
in modularity (59), and changes in min-
imum spanning tree parameters (35, 60).
These graph measures provide us many
new ways to conceptualize and understand

what actually happens to the global sta-
tus of the entire brain network in patients
with cognitive impairment in MS, beyond
the poorly understood local increases or
decreases in connectivity. Future longitu-
dinal studies are now required to assess
the predictive power of these measures.
Together, it appears that the brain network
of patients with cognitive impairment in
MS features a strong decrease in whole-
network efficiency, i.e., a network “collapse”
(see Figure 1).

In summary, thinking about functional
reorganization processes and labeling them
as either “beneficial” or “maladaptive” has
proven to be overly simplistic. A more
holistic approach is required, encompass-
ing both activation and connectivity data
into a frame of network dynamics in
a longitudinal fashion. Following this,
first steps toward using more sophisti-
cated (functional) imaging tools to mon-
itor cognitive deficits can hopefully be
taken.
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