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The progress in the field of tinnitus largely depends on the development of a reliable
tinnitus animal model. Recently, a new method based on the acoustic startle reflex
modification was introduced for tinnitus screening in laboratory animals. This method
was enthusiastically adopted and now widely used by many scientists in the field due to
its seeming simplicity and a number of advantages over the other methods of tinnitus
assessment. Furthermore, this method opened an opportunity for tinnitus assessment in
humans as well. Unfortunately, multiple modifications of data collection and interpretation
implemented in different labs make comparisons across studies very difficult. In addition,
recent animal and human studies have challenged the original “filling-in” interpretation of
the paradigm. Here, we review the current literature to emphasize on the commonalities
and differences in data collection and interpretation across laboratories that are using this
method for tinnitus assessment. We also propose future research directions that could
be taken in order to establish whether or not this method is warranted as an indicator of
the presence of tinnitus.

Keywords: gap-prepulse inhibition of the startle reflex, tinnitus assessment, animal model of tinnitus, human
tinnitus

The perceptual phenomenon of tinnitus, commonly described as ringing in the ears, is an affliction
that affects nearly one-third of Americans (1, 2). Although significant progress has been made
in the last few decades, the neural basis of tinnitus is still poorly understood. Several hypothe-
ses on the brain mechanisms responsible for tinnitus development have been raised. Testing of
these hypotheses requires a reliable objective measure of tinnitus in animal models and humans.
A number of animal models have been developed over the years [for a review, see Ref. (3)].
These models have used various behavioral training techniques including lick or lever pressing
suppression (4–8), two-choice operant conditioning (9–11), and reflex modification (12). The
latter paradigm exploits the acoustic startle reflex present in all mammals, which consists of
contraction of the major muscles of the body following a loud and unexpected sound (13). The
reflex is reduced when preceded by a silent gap embedded in a soft background noise or tone.
The ratio between the magnitude of the startle stimulus presented alone (no-gap trial) and trials
in which a gap preceded startle stimulus (gap trials) is calculated as the gap-prepulse inhibition
of the acoustical startle (GPIAS) ratio (12) and reflects gap detection. Reduced inhibition by gaps
embedded in specific background noise frequencies is assumed to reflect tinnitus frequency: because
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tinnitus is qualitatively similar to the background noise, it “fills-in”
the gap and hence, reduces inhibition.

Because of its simplicity, a wide range of researchers has
enthusiastically adopted the paradigm to study tinnitus. How-
ever, recent studies in tinnitus animal models and humans have
seriously challenged this “filling-in” assumption to the point of
questioning whether themethod is worthy of further pursuit. As a
result, the field of tinnitus research split into two coexisting camps
of scientists: one camp continues usingGPIASmethod for tinnitus
assessment because researchers still believe that this method is a
reliable technique for tinnitus assessment whereas another camp
decided to stay away from this method because researchers do not
think GPIAS is detecting tinnitus in animals or humans.

The main purpose of this review is twofold. First, by analyzing
the large GPIAS literature we will extract the most common stan-
dards for GPIAS data collection and analysis that would permit
standardized parameters. It will allow data comparison across
laboratories and might also help to collect definitive arguments
to support the idea that GPIAS indeed assess tinnitus. Second,
analyzing literature from the opposing camp we will try to outline
the research directions that might help to do the final verification
of the validity of GPIAS for tinnitus assessment.

Advantages and Problems with the GPIAS
Method

The GPIAS model has several advantages over the other tinnitus
paradigms. Since it is based on a reflex, the method is much
cheaper and simpler than other methods requiring training ani-
mals for weeks or months [e.g., Ref. (14, 15)]. It also allows for
tinnitus screening of a large number of animals: testing of animals
before and after tinnitus induction can help separate tinnitus
positive from tinnitus negative animals. The seeming simplicity
of and a possibility to be used on human subjects made GPIAS
the most widely used method for tinnitus assessment especially
among scientists with little experience in animal behavior. Yet, the
seminal publication of Turner and colleagues mainly introduced
a proof-of-principle to use GPIAS for tinnitus assessment rather
than setting rigorous standards for the method. Furthermore, the
commercially available equipment designed for GPIAS assess-
ment generally provides a hardware/software kit leaving on users
to setup their own standards and criteria to decidewhat changes in
the gap detection performance can be interpreted as an indication
of tinnitus and what are not. Therefore, different scientists used
their own criteria to interpret gap detection data and often these
criteria can vary dramatically from one lab to the other. Table 1
summarizes the main characteristics of studies that have used the
GPIAS paradigm across species, namely, rats (12, 16–34), mice
(35–41), guinea pigs (42–45), gerbils (46), hamsters (47), and
humans (48–52).

GPIAS in Animal Models

First introduced by Turner and colleagues in 2006 using the
noise-induced rat tinnitus model, the effectiveness of the GPIAS
method in detecting tinnitus was further supported 1 year later
via the salicylate-induced tinnitus rat model (26). This method

of tinnitus assessment is currently one of the most utilized in
the field. Fortunately, the method was developed by scientists
with many years of intense experience and expertise in behavioral
sciences. On the other hand, many basic but important aspects
of this method received little attention in these two publications.
Many scientists, especially those who have little experience with
behavioral experiments, mistakenly believe that this is an easy
and precise method for tinnitus screening and furthermore that
it can be applied to practically any laboratory animal. As a result,
many aspects of this methodology related to data collection and
interpretation have been interpreted freely and thus vary across
laboratories. Such diversity has made intra-species comparisons
dubious at best, while inter-species data are unable to be com-
pared at all. In our review, we want to avoid judging which
of these diverse criteria are right or wrong. Instead, we review
GPIAS literature in order to find consistencies and inconsisten-
cies across laboratories in data collection and interpretation. In
some instances, however, we would like to emphasize on some
critical points of the methodology raised by selected publica-
tions, which, we believe, may be important for further method
improvement.

Tinnitus Induction

Methodologies of tinnitus induction in laboratory animals are
not directly related to GPIAS. However, issues concerning these
methods should be discussed here for the following reasons. First,
understanding the pros and cons of various tinnitus induction
techniques can assist researchers in choosing themost appropriate
method for a given tinnitus study. Second, standardized methods
for tinnitus induction, especially for the same animal model,
may ameliorate data comparison across laboratories. There are
two methods of tinnitus induction used in the field, namely,
pharmacological manipulations and exposure to loud sounds (see
Table 1 for a summary). Pharmacological methods encompass
the effects of two drugs, salicylate and quinine. Salicylate has
been proven to induce tinnitus in the vast majority of treated
animals. Most of salicylate studies were performed on rats. After
1–2 h following systemic salicylate injection ranging in dosage
from150 to 400mg/kg rats exhibit GPIAS deficits typically around
16 kHz (26), rarely at wider range of frequencies (24) or across
all frequency range tested (28). In one salicylate study conducted
on guinea pigs, GPIAS deficits were detected at slightly lower
frequency range compared to rats, that is, between 8 and 10 kHz
(45). Apparently, the dose of salicylate is not so critical for the
outcome, because tinnitus has been reliably induced by lower
as well as high doses. One of the main advantages of salicylate-
induced tinnitus is its potential reversibility. Typically, the GPIAS
deficits in salicylate models reverse back to normal within 72 h of
the last administration. Although this method can reliably induce
tinnitus in laboratory animals it has some disadvantages. First of
all, salicylate has significant effects not only on periphery but also
direct effect on the entire central auditory system [see Ref. (53)
for a review]. Most importantly, the salicylate model has minimal
relevance to human pathology, which is usually triggered by noise
trauma, and does not induce chronic tinnitus, as tinnitus retreats
when the intake is stopped.
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TABLE 1 | Main methodological characteristics of animal studies that have used GPIAS and human studies that have examined gap detection for tinnitus assessment.

Authors/group Species/number Method for tinnitus Stimuli Gap duration Time tested Criterion for deficit

Rats Noise exposure

Turner et al.
(12)

31 Long–Evans 16
NE+ 16 controls

NBN 16 kHz for 1 h at 116 dB
SPL meant to induce a
10 kHz tinnitus

60 dB SPL Background: BBN, NBN at 10 or
16 kHz SS 20ms at 115dB SPL 10
Startle-only+ 12 Gap trials

50ms ending
50ms before
startle

Pre and every week post
NE for 2months

Signif. GPIAS
reduction vs. control

Wang et al.
(16)

29 Fisher-Brown
Norway 14 NE+ 15
controls

NBN 17 kHz for 1 h at 116 dB
SPL

60dB SPL Background: BBN, NBN at 4, 8, 10,
12, 16, 20, 24, 32 kHz SS 20ms at 115dB
SPL/number of stim NS

50ms ending
50ms before
startle

20 days post NE every
2weeks up to 16weeks

Signif. GPIAS
reduction vs. control

Kraus et al.
(17)

12 Sprague-Dawley
9 NE+ 3 controls

NBN 12 kHz for 2 h at 126 dB
SPL

60dB SPL background NBN at 6, 12, 16, 20, and
24 kHz 20 pairs of Gap and SS trials

50ms ending
50ms before
startle

Pre NE+days 1–10 post
weeks 8–10 post

A lack of GPIAS

Luo et al. (19) 6 Long–Evans 10 kHz tone for 3 h at 116 dB
SPL

60dB SPL background BBN+NBN 6–8; 10–12;
14–16; 18–20; 26–28 kHz SS 50ms at 115dB
SPL/8 SS trials+ 8 gap trials

40ms Not specified Signif. GPIAS
reduction vs. control

Pace and
Zhang (18)

29 Long–Evans 10 kHz tone for 2 h at
118–120dB SPL second
exposure 5weeks later for 3 h

60dB SPL background BBN+NBN 6–8, 10–12,
14–16, 26–28 kHz SS 50ms at 115dB SPL/8
SS+ 8 gap trials

40ms ending
50ms before
startle

1 day post NE and
biweekly for 6weeks

Signif. GPIAS
reduction vs. control

Engineer et al.
(20)

28 Sprague-Dawley NBN 16 kHz for 1 h at 115dB
SPL

65dB SPL NBN at 2, 4, 8, 10, 16, 20, 24 kHz SS
20ms white noise burst at 100dB SPL 15 SS and
15 Gap trials

50ms ending
50ms before
startle

4weeks 10 and 20days
after beginning of the
therapy

Signif. GPIAS
reduction vs. control

Holt et al. (21) 24 Sprague-Dawley
8 NE, 8 SA, 8
controls

NBN 10 kHz for 4 h at 118 dB
SPL (n= 6) SA: 300mg/kg ip.
(N= 6 animals)

Background tones 4, 8, 12, 16, 20, and 24 kHz
45 and 60dB SPL and 75 and 90 for NE rats SS
20ms at 120dB SPL/10 trials each frequency

50ms ending
50ms before
startle

S: 2 h previous to imaging
N: 24 h after NE 2 h prior
to imaging

Signif. GPIAS
reduction vs. control

Ropp et al.
(22)

Sprague-Dawley 16 kHz tone for 2 h at 116 dB
SPL

50dB SPL NBN, 7, 10, 14, 20 kHz SS BBN
20ms at 110dB SPL/12 trials

30ms ending
50ms

Two to three times a week,
1–4months post NE

Signif. GPIAS
reduction vs. control

Norman et al.
(23)

10 Sprague-Dawley 17 kHz tone for 2min at
115dB SPL

70–85dB SPL Background: NBN at 10 or 16 kHz
SS 20ms at 90–100dB SPL 20 Startle-only+20
Gap trials

50ms ending
50ms before
startle

10–20min after exposure Signif. Increase in
tinnitus index vs.
control

Salicylate

Turner and
Parrish (24)

10 Fisher-Brown
Norway

Salicylate
0–150–250–300–350mg/kg

60dB SPL BBN or NBN at 4, 8, 10, 12, 16, 20,
24, 32 kHz PPI in quiet 50ms pulse at 60 dB SPL
at same frequencies

50ms ending
50ms before
startle

Pre and 2 h post and
1week post (washout)

Signif. GPIAS
reduction vs. control

Sun et al. (25) 16 Sprague-Dawley
10 SA, 6
SA+ vigabatrin

Salicylate 250mg/kg 70dB SPL BBN 3 gap types: onset, offset,
onset-offset SS 20ms at 100dB SPL/20 trials in
each gap condition

50ms ending
40ms before
startle

pre and post 1 h, 3 h, and
1day post

N/S

Yang et al. (26) 20 Sprague-Dawley
10 startle, 10
SIPAC

Salicylate 150 or 250mg/kg SIPAC: 16 kHz tone or 2, 4, 8, 16, 20, NBN at
40–60dB SPL GPIAS: 60 dB SPL NBN at 6, 12,
16 kHz SS BBN at 115dB SPL/20 pairs at each
frequency (X3)

50ms ending
50ms before
startle

1 h after injection Startle
2 h after injection GPIAS

Signif. GPIAS
reduction vs. control

(Continued)
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TABLE 1 | Continued

Authors/group Species/number Method for tinnitus Stimuli Gap duration Time tested Criterion for deficit

Ralli et al. (27) 24 Sprague-Dawley
12 SA, 12 quinine

Salicylate 300mg/kg/day
4 days quinine
200mg/kg/day 4 days

60dB SPL NBN at 6, 12, 16, 20 kHz SS BBN at
50ms 117dB SPL/100 gap and 100 SS trials

100ms ending
50ms before
startle

2 h after each treatment
(4 days) 24 h the last
treatment

Signif. GPIAS
reduction vs. control

Su et al. (28) 6 Wistar Salicylate 350mg/kg 60dB SPL NBN 6, 12, 16, 20, 24 kHz SS NBN
5–10 kHz at 105 dB SPL 100 pairs of gap and SS
trials; 20 of each Freq

75ms ending
25ms before
startle

1 h after injection Signif. GPIAS
reduction vs. control

Ralli et al. (29) 36 Sprague-Dawley
12 SA, 12 MEM, 12
SAL+MEM

Salicylate 300mg/kg
5mg/kg/day

60dB SPL NBN at 6, 12, 16, 20 kHz SS BBN
50ms at 117dB SPL 80 gap and 80 no-gap trials

100ms ending
100ms before
startle

2 h after each treatment
(5 days)

Signif. GPIAS
reduction vs. control

Hu et al. (30) 48 Sprague-Dawley Chronic salicylate:
200mg/kg/day for 3, 7, or
14 days Acute salicylate
400mg/kg

65dB SPL NBN 6, 12, 16 kHz SS WN at 100dB
SPL 30 gap and 30 SS trials

50ms ending
50ms before
startle

1 h before sacrifice Signif. GPIAS
reduction vs. control

Park et al. (31) 14 Sprague-Dawley Salicylate 400mg/kg for
8 days

60dB SPL NBN at 16 kHz SS BBN 20ms at
120dB SPL 20 gap and 20 SS trials

50ms ending
50ms before
startle

Pre and 2 h post NE every
24 h during 9 days

Signif. GPIAS
reduction vs. control

Blast exposure

Mahmood
et al. (32)

24 Sprague-Dawley
10 blast-
exposed+ sidenafil
6 blast-
exposed+ saline, 8
sidenafil

3 Blast exposure shock
waves

60dB SPL NBN 6–8; 10–12; 14–16; 18–20;
26–28; BBN; SS BBN 50ms at 115dB SPL PPI
40ms at 60 dB SPL

40ms ending
50ms before
startle

1 h post blast Signif. GPIAS
reduction vs. control

Luo et al (33) 39 Sprague-Dawley Single 10ms blast 22 psi with
one ear occluded with
silicone earplug

60dB SPL NBN 6–8; 10–12; 14–16; 18–20;
26–28; BBN; SS BBN 50ms at 115dB SPL

40ms 1day, 1month, 3months Signif. GPIAS
reduction vs. control

Luo et al. (34) 39 Sprague-Dawley Single 10ms blast 22psi with
one ear occluded with
silicone earplug

60dB SPL NBN 6–8; 10–12; 14–16; 18–20;
26–28; BBN; SS BBN 50ms at 115dB SPL

40ms 1day, 1month, 3months Signif. GPIAS
reduction vs. control

Mice Noise exposure

Llano et al.
(35)

13 CBA/Caj aged 6
NE, 4 sham, 3
controls

NBN 16 kHz for 1 h at 116 dB
SPL

60dB SPL NBN at 4, 8, 10, 12.5, 16, 20, 24,
32Hz+BBN PPI NBN 50ms at 60 dB SPL
number of stimuli NS

50ms ending
50ms before
startle

Pre and post NE and
24–30months

Group differences

Turner et al.
(36)

C57B16 mixed 15
NE, 8 sham

NBN 16 kHz for 1 h at 116 dB
SPL

60dB SPL NBN at 4, 8, 10, 12, 16, 20, 24, 32,
BBN gap and SS: 290 trials

50ms ending
50ms before
startle

Pre; day 1, 3–4, 7–8
weekly for 12weeks post
NE then monthly for
7months

Signif. GPIAS
reduction vs. control

Longenecker
and Galazyuk
(38)

22 CBA/CBJ 14
NE, 8 controls

NBN 16 kHz for 1 h at 116
SPL

75dB SPL NBN 10, 12.5, 16, 20, 25, 31.5 kHz
SS WN 20ms at 110dB SPL 10 gap and 10 SS
trials at each frequency

20ms ending
80ms before
startle

Pre NE; day 1, 3–5, 7 days
post NE weekly for
2months; at 3months

Signif. GPIAS
reduction vs. control

(Continued)
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TABLE 1 | Continued

Authors/group Species/number Method for tinnitus Stimuli Gap duration Time tested Criterion for deficit

Longenecker
et al. (37)

CBA/CaJ follow-up
to above study

NBN 16 kHz for 1 h at 116
SPL

Idem 20ms ending
80ms before
startle

6–12months post NE Signif. GPIAS
reduction vs. control

Hickox and
Liberman (39)

CBA/CaJ NBN 8–16 kHz for 2 h at 100
or 94 dB SPL

Near gap and far gap 60dB SPL BBN and NBN
from 5.6 to 45.3 kHz SS 20ms BBN continuous
60dB SPL/11 blocks of trials

50ms ending 0
or 80ms before
startle

1–10weeks post NE Signif. GPIAS
reduction vs. control

Middleton
et al. (41)

CBA/CaJ NBN 16 kHz for 45min at
116dB SPL

70dB SPL NBN at 10, 12, 16, 20, 24, and 32 kHz
SS 20ms BBN at 115dB SPL

50ms ending
80ms before
startle

Pre; 2–9weeks post NE Fixed GPIAS threshold

Li et al. (40) IRC (CD-1) NBN 16 kHz for 45min at
116dB SPL

70dB SPL NBN 10, 12, 16, 20, 24, 32 kHz SS,
NS

50ms ending
80ms before
startle

Pre; 1week post NE Signif. GPIAS
reduction vs. control

Guinea
pigs

Dehmel et al.
(42)

14 pigmented 7
NE+ 7 sham

NBN 7kHz for 2 h at 97 dB
SPL 2 exposures

60 and 70dB SPL NBN 4–6, 8–10, 12–14,
16–18 kHz+BBN SS 20ms BBN at 115dB
SPL/10 pairs of for each frequency

15ms ending
85ms before
startle

Pre; 2–3weeks post NE Signif. GPIAS
reduction vs. control

Koehler and
Shore (43)

16 pigmented 10
NE+ 6 sham

NBN 7kHz for 2 h at 97 dB
SPL 2 exposures

60 and 70dB SPL NBN 4–6, 8–10, 12–14,
16–18 kHz+BBN, SS 20ms BBN at 115dB SPL

50ms ending
50ms before
startle

Pre; 2 h post
NE+biweekly

Signif. GPIAS
reduction vs. control

Mulders et al
(44)

32 pigmented 20
NE+ furosemide

NBN 10 kHz for 2 h at 124 dB
SPL

60 or 70 dB SPL NBN 8 or 14 kHz 8 is below HL;
14 is within SS 20ms NBN at 115dB SPL/25
pairs of Gap and SS trials

50ms ending
50ms before
startle

Pre; weekly testing post
NE

Signif. GPIAS
reduction vs. control

Salicylate

Berger et al.
(45)

24 pigmented Salicylate 350mg/kg 55, 60, or 70 dB SPL NBN 5, 9, 13,
17 kHz+BBN SS 20ms BBN adjusted for each
GP 95, 100, or 105dB/10 pairs of gap and SS
trials

50ms ending
50ms before
startle

Pre; 2, 5, and 72 h post
NE

Signif. GPIAS
reduction vs. control

Gerbils Noise exposure

Nowotny et al.
(46)

9 Mongolian NBN 10 kHz for 1 h at 105 dB
SPL

65 and 75dB SPL NBN 4–20 kHz SS BBN 20ms
optimal level 65–115dB SPL, 25 pairs of gap and
no-gap

50ms ending
100ms before
startle

Pre+ 3–5weeks post NE Signif. GPIAS
reduction vs. control

Hamsters

Chen et al. (47) 18 hamsters 9
NE+ 9 unexposed

10 kHz tone for 4 h at 115 dB
SPL±6dB

70–75–80dB SPL NBN 12–14 kHz SS 20ms
BBN 100–105–110–115dB SPL 15 trials

50ms ending
100ms before
startle

2weeks post NE and on
until 28weeks

N/S

(Continued)
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TABLE 1 | Continued

Authors/group Species/number Method for tinnitus Stimuli Gap duration Time tested Criterion for deficit

Humans

Fournier and
Hébert (48)

15 tinnitus+15
control adults
Clinical normal
hearing 250–8 kHz
L at 12.5, 14, and
16 kHz

Psychoacoustic assessment
high-frequency tinnitus (11
and 16 kHz) Loudness 0.8 dB
SL and 10.1 (11.3 and 16)

65 dB SPL NBN centered around 500Hz and
4 kHz, SS BBN 50ms at 105dB (A) SPL

50ms ending
120ms before
startle

Mean TD= 9.3 years Group differences

Campolo et al.
(49)

13 tinnitus+13
control adults
important hearing
loss and variability
in tinnitus adults

Selection of NBN closest to
tinnitus pitch tinnitus pitch at
the center F of selected NBN
tinnitus loudness match

15dB SL NBN 1octave above and below NBN
tinnitus between 1 and 16 kHz Continuous
background with gaps at random/GO/NO GO
task

50ms Unknown Group differences

Mahmoudian
et al. (50)

28 tinnitus+33
control adults
H<20dB HL
250–2 kHz<40dB
HL 4–8 kHz

Psychoacoustic assessment
of pitch, loudness, MML, and
RI not used in the study

65dB SPL, 75ms pure tone at 500, 1, and
1.5 kHz with a gap within the tone

7ms Mean TD= 5 years Group differences

Mehdizade
Gilani et al.
(51)

20 tinnitus+20
control adults all
with HL ≤20dB HL
from 250 to 8 kHz
Group differences
not specified

Psychoacoustic assessment
of pitch and loudness and
MML not used in the study

Gap-in-noise (GIN) test 50 dB SL background
noise Identification of 4/6 gaps of shortest gap is
the threshold

2–6, 8, 10 12,
15, 20ms

Median TD=7 years Group differences

Boyen et al.
(52)

22 tinnitus+20
control adults No H
differences in HL
between groups

Psychoacoustic tinnitus pitch
matching Loudness matching
on a VAS 0–10

5, 10, and 25dB SL 300ms NBN of 4–8, 4–5,
and 5–6.3 kHz 3I-3AFC with 1 interval containing
a gap Adaptive procedure 2 down–1 up

Starting at
30ms

Mean TD= 7 years Group differences

All animal studies have used unilateral noise-exposure except Engineer et al. (20) and Chen et al. (47) and while animals were under anesthesia.
BBN, broadband noise; NBN, narrow-band noise; SS, startle stimuli; NE, noise exposure; SA, salicylate; NS, not specified; TD, tinnitus duration; F, frequency; MEM, memantine.
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Acoustic trauma is the most popular method of tinnitus induc-
tion for different tinnitus animal models. Although this method is
themost common across laboratories, the parameters for inducing
tinnitus are quite variable. Sound levels used for acoustic trauma
vary from 94 dB SPL to 125 dB SPL. However, most laboratories
follow the tinnitus induction protocol first described by Turner
and colleagues (12). Despite very little justification in the original
publication, the 116 dB SPL sound intensity level is commonly
used for rats and mice (22, 36, 38, 41). But the intensities also
range from 94 (39) to 126 dB SPL (8). For other animal tinnitus
models such as guinea pigs, gerbils, and hamsters, sound intensity
is slightly weaker, with 97, 105, and 115 dB SPL, respectively (46,
47, 54). Despite the differences in sound intensity some common
themes exist between studies. The most common parameters
for tinnitus induction include narrow-band-noise (often 1 octave
bandwidth) presented during 1–2 h. In some studies, however,
1/3 octave or pure tones have been used. One of the most consis-
tent features is unilateral noise exposure. This is an understand-
able commonality because the GPIAS method requires at least
one normally functioning ear, while acoustic trauma may alter
animal’s hearing performance.

Military personal are exposed to intense blasts of noise on a
regular basis, which commonly result in an instantaneous percep-
tion of tinnitus. More than half of military personnel reported
tinnitus following blast exposure [for a review, see Ref. (55)].
Although both noise and blast exposures have been classified
in a similar way, blast exposure should be differentiated from
noise exposure based on the following criteria. First, peak sound
intensities during a blast can momentarily approach 200 dB SPL,
a value starkly differentiated from noise exposure, which rarely
exceeds 120 dB SPL, albeit for a longer duration. Second, dam-
age to the auditory periphery can be extensive in blast-induced
trauma. Disarticulation of the ossicular chain, perforation of the
tympanic membrane, and significant structural damage to the
organ of Corti are typical for blast-induced-trauma. Such damage
is uncommon following noise exposure. In addition, traumatic
brain injury and damage to internal organs are also typical fol-
lowing a blast exposure. Both the morbidity and prevalence of
blast-induced tinnitus in military personnel would suggest that
a blast-induced tinnitus animal model is important for tinnitus
research. However, the extensive consequential damage result-
ing from blast exposure would make the development of such
a tinnitus animal model very challenging. For these reasons,
this model is only being developed in one laboratory (32–34,
56). These studies have suggested that after a single or multiple
unilateral blast exposures animals typically developed gap detec-
tion deficits, which are evident across a wide range of sound
frequencies.

In summary, there are several methods available to induce
tinnitus in laboratory animals. Each of these methods has pluses
and minuses that need to be carefully considered before imple-
mentation in a given animal tinnitus model.

Criteria for the Presence of Tinnitus

GPIAS studies lack common criteria for tinnitus identification.
Agreement between scientists on these criteria is vital for the

field because these are the only measure of tinnitus we have
to identify animals that experience tinnitus following tinnitus
induction and to conclude whether tinnitus is affected by our
manipulations. One of the possible reasons for a lack of a com-
mon criterion is that Turner et al. in their original publication
(2006) did not separate sound exposed animals between tinni-
tus positive and tinnitus negative using the GPIAS method. The
presence of tinnitus in the sound exposed rats had first been
assessed using Bauer and Brozoski’s methods [see Ref. (5, 14,
57)] and then confirmed by GPIAS. Therefore, it is likely that
different criteria have been designed by scientists who adopted
the GPIAS method in their laboratories. Below, we provide
an overview of tinnitus assessment criteria in attempt to find
similarities across laboratories and also understand which of
these criteria can be potentially used as a gold standard(s) in
the field.

Unfortunately, some papers did not provide their criteria by
which animals were separated on tinnitus positive and tinnitus
negative after tinnitus induction. From the papers that did, we get
the following picture. A majority of laboratories use a statistically
significant reduction in GPIAS as a criterion for behavioral evi-
dence of tinnitus. Although sometimes not clearly stated in the
methods of published work, this criterion is most commonly used
for identifying animals with gap detection deficits and/or for the
separation of tinnitus positive from tinnitus negative individuals
(16, 18, 20, 26, 30, 33, 34, 36–40, 45, 56, 58–60). These reductions
in GPIAS typically were observed at a narrow frequency range
in salicylate (21, 26, 30) as well as in noise-induced tinnitus
animal models (37, 38, 41, 43, 44). Other laboratories established
different strategies to assess whether animals developed tinnitus.
One of these approaches uses a lack of GPIAS as a criterion to test
whether an animal developed tinnitus (17, 44). In other words,
the startle amplitude in “no-gap” and “gap” trials are compared
statistically. If they are not significantly different in some animals,
such animals are assigned to the tinnitus positive group. Some
labs choose to not separate animals on tinnitus positive or neg-
ative. The GPIAS values of exposed animals are compared with
a control (unexposed) group assuming that some of the animals
in the exposed group would develop tinnitus following tinnitus
induction (35). One more approach uses a fixed threshold above
which animals would be considered as a tinnitus positive (41).
In these studies, only mice that showed the GPIAS ratios under
0.65 are used for the control and noise-induced groups. After
sound exposure, only mice that showed GPIAS ratios above 0.7
are included in the tinnitus positive category. One laboratory
decided to stay away from GIPAS ratio as most researchers do
but, instead, developed their own metric of tinnitus, tinnitus
index (23).

Thus, a variety of criteria have been established to assess
GPIAS deficits in laboratory animals. Each of these criteria
has its own advantages and disadvantages and cannot be easily
rejected or accepted as a gold standard. However, it is impor-
tant for the field to choose one to allow data comparison
across labs. Logically, it would be reasonable to focus on the
most commonly used method: the statistically significant reduc-
tion in GPIAS relative to the control recorded before tinnitus
induction.
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GPIAS and Hearing Loss

Hearing loss can potentially affect GPIAS screening for two
reasons. First, hearing loss caused by noise exposure or ototoxic
drugs can make the background sound and the embedded gaps
less audible. If so, the GPIAS method would be impossible to
use for tinnitus screening. Second, hearing loss can also attenuate
startle reflex magnitude. Indeed, many sound exposed animals
show a significant reduction (about 50%) of their startle response
amplitude compared to the controls (8, 20, 38, 47). Such a reduc-
tion in startle amplitude can be observed up to a year after
sound exposure (37). The continuous background noise during
GPIAS testing has also been shown to substantially reduce startle
response amplitude in a frequency dependent manner even in
control (unexposed) animals (58). The GPIAS paradigm requires
a robust startle reflex to observe its inhibition. If a startle is
“overly suppressed” by hearing loss, this can result in a “floor
effect,” which may mask any further suppression by a gap in the
GPIAS test. This problem can be corrected by a slightly enhancing
the startle stimulus intensity in noise-exposed mice (58). Since
GPIAS always uses “no-gap”/“gap” startle ratios the absolute startle
magnitude would not affect the ratio within a reasonable range
of startle stimulus intensities (58). An alternative approach has
been recently proposed to address startle suppression after tin-
nitus induction. Acoustic startle stimulus was substituted with a
rapid air puff applied to the animal’s back that cannot be subject
to hearing loss (8). This approach can definitely address noise-
induced startle reductions, but it would not make the background
sound more audible.

Another common approach to overcome the possible effect
of hearing loss on GPIAS testing is unilateral sound exposure.
This approach was adopted by the vast majority of laboratories
that are using GPIAS for tinnitus assessment. Unilateral exposure
preserves one ear for the subsequent testing and also allows the
animal to serve as its own control. However, we have to keep in
mind that the ascending auditory pathways are binaural. There-
fore, it is reasonable to assume that a unilateral acoustic trauma
might affect both contra- and ipsilateral sides. This hypothesis
has been partially supported by the fact that the startle reflex
magnitude is reduced in unilaterally exposed animals.

Pre-pulse inhibition (PPI) of the acoustic startle reflex is a
widely accepted method to assess whether tinnitus induction
manipulations have resulted in hearing loss in laboratory animals.
During PPI experiments, a short duration noise-burst of the same
amplitude as the background sound used in GPIAS testing is
presented prior to the startle stimulus. It is assumed that if the
pre-pulse reliably inhibits the startle reflex, the audibility of the
background and the embedded gap is not an issue. Multiple lines
of evidence suggest that this assumption is not accurate. First,
if PPI could simply be thought of as the inverse of the GPIAS
methodology, the amount of startle reflex suppression between
these two approaches would be similar. Contrary to this notion,
practically all GPIAS studies have demonstrated that the PPI is
much more robust than GPIAS in sound exposed as well as in
control (unexposed) animals [as well as in humans, e.g., Ref.
(48)]. Second, the brain circuitries responsible for PPI and GPIAS
are quite different. Several studies have shown that the auditory

cortex is necessary for detections of gaps that are used for tin-
nitus assessment with GPIAS [e.g., Ref. (61–63)]. On the other
hand, PPI does not require cortex (62, 64–66), indicating that
PPI primarily reflects an automatic process at the pre-attentive
stage. These issues raise concern to whether it is appropriate to use
PPI to conclude that the animal is able to appropriately perceive
background narrow-band noise presented in GPIAS testing.

Testing of Tinnitus “Filling-In” Assumption
in Tinnitus Animal Models

Two recent animal studies have investigated the tinnitus “fill
in” hypothesis in rodent tinnitus models (39, 67). One study
demonstrated that GPIAS deficits in noise-exposed mice were
largely dependent on the interval between the silent gap and
startle stimulus (39). These animals demonstrated GPIAS deficits
only when the gap was placed immediately before the startle
stimulus. This result is contradicting the “filling-in” assumption,
because the presence of such deficits should be independent on
where the gap is placed. The reversed gap detection performance
between control and sound exposed animals over the entire fre-
quency range for near-gaps vs. far-gaps strongly suggest that
these different gap locations might suppress startle responses via
fundamentally different mechanisms [see Figure 8 in Ref. (39)].
This may explain why animals with tinnitus would demonstrate
different GPIAS deficits for near- and far-gaps. Rather the type
of neurons, for instance, the gap termination neurons, might also
play an important role in these findings (61). Another study tested
the assumption using go/no-go operant gap detection task (67).
This study found that the behavioral threshold for gap detec-
tion embedded into continuous narrow-band background noise
is not different in rats before and after tinnitus induction with
overdose of salicylate. Taken together results of these two studies
suggest that data interpretation of GPIAS experiments should be
taken with caution and raise the possibility that the mechanisms
involved are less straightforward thanwas originally hypothesized.

Gap Detection in Humans with Tinnitus

Five human studies have examined whether gap detection is
impaired in tinnitus. These studies are discordant among them-
selves and also from animal studies in several ways (see Table 1).
Two studies are compatible with gap detection impairment in
tinnitus. Fournier andHébert (48) used theGPIAS procedure as in
Turner and Parrish (24) and was very similar. Gap trials consisted
of 50ms gaps embedded in high-frequency (centered around
4 kHz) and low-frequency (centered around 500Hz) background
noises set at 65 dB SPL. Startle noises were 50ms broadband noise
bursts (20Hz–20 kHz) set at 105 dB (A) SPL. Prepulse inhibition
trials consisted of 50ms bursts of high- or low-frequency noises
at 65 dB (A) SPL in a silent background followed by a startle
sound. Participants had bilateral tinnitus for about 10 years and
had normal clinical hearing from 250Hz to 8 kHz not different
from controls’ (thresholds only differed from controls at very-
high frequencies 12.5, 14, and 16 kHz). Tinnitus participants had
their tinnitus matched in frequency with a reliable psychoacous-
tic method (68) and the most reported dominant frequencies
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were 11 and 16 kHz. Results showed that besides an increased
startle response, there was indeed a GPIAS deficit in tinnitus
participants, but in both 500 and 4 kHz background noises. Yet,
barely half of the participants reported 4 kHz as contributing to
their tinnitus, and only one person reported having 500Hz as
contributing to the tinnitus. In contrast, there was no deficit in
prepulse inhibition compared to controls without tinnitus. These
findings were essentially replicated in a subset of participants
6months later. These results are not incompatible with animal
data but along with other studies (39, 67), cast a serious doubt on
the interpretation that tinnitus “fills-in” the gap, since there was no
correspondence between the tinnitus and the background noise
frequencies.

Mahmoudian et al. (50) examined the cortical correlates of gap
detection in tinnitus participants andmatched controls using elec-
troencephalography (EEG). More specifically, the mismatched
negativity (MMN) waves between standard and deviant sounds
were compared between tinnitus and controls without tinnitus.
The auditory MMN response is an auditory evoked potential that
in response to a deviant stimulus embedded in a train of standard
stimuli. It can be elicited by any discriminable change in a sound
sequence irrespective of the subject’s attention and therefore prob-
ably reflects pre-attentive stages of sound processing. Trains of
75ms pure tones at 500, 1 and 1.5 kHz (standard stimuli) were
presented at 65 dB SPL and 7-ms gaps were inserted occasionally
within these pure tones (deviant stimuli). MMN amplitudes for
the gap detection stimuli were significantly smaller in the Tinnitus
group compared to controls, suggesting a cortical deficit to pro-
cess short gaps. Interestingly, had authors applied the appropri-
ate Bonferroni corrections for multiple t-tests, gap-related MMN
amplitude differences would have remained significant while the
other deviant types (frequency, intensity, duration, and location)
would have not? Hearing thresholds at 500, 1 and 1.5 kHz did not
differ between groups. However, there is no information about
the relationship between gap deficits and tinnitus or background
pure-tone frequencies.

Finally, using the Gap-in-noise test (69) involving detecting
short gaps (2–20ms) within a 50 dB SL white noise background,
Mehdizade Gilani et al. (51) reported greater thresholds and lower
performance in both ears for normal hearing tinnitus patients
compared to controls without tinnitus. No information was pro-
vided about the relationship between these findings and tinnitus
characteristics.

In contrast, two further studies found no-gap detection deficits
in tinnitus. Using a gap duration of 50ms but a GO/NO-GO
gap detection psychophysical task rather than GPIAS, Campolo
et al. (49) found no-gap detection deficit. Authors hypothesized
that if tinnitus fills-in the gap, tinnitus participants would have
difficulty to detect a gap embedded in a noise tuned to their
tinnitus frequency, but should be able to detect silent gaps in back-
ground noises above or below their (carefully matched) tinnitus
frequency. Various 90 s, 15 dB SL narrow-band noises in which
50ms gaps were inserted were presented and participants had
to press a key when detecting a gap and refrain from doing so
when there was no gap. Tinnitus participants had no deficit to
detect gaps in noises that were 1 octave below, above, or at their
tinnitus frequency, and detection in these conditions did not differ

from one another. Overall, however, tinnitus participants were
impaired in detecting gaps compared to controls, significantly
in the left ear (95.5 vs. 86.8%), but not in the right ear (93 vs.
88.6%). This effect was attributed to hearing loss that was more
pronounced in tinnitus than in non-tinnitus participants.

Boyen et al. (52) also used a psychophysical gap detection task
but smaller gap durations. Four 300ms narrow-band noise (4–8,
4–5, 5–6.3, 6.3–8 kHz) served as stimuli and were presented at 5,
10, and 25 dB SL for each participant. The task was an adaptive 3I-
3AFC where a gap was inserted within one of three noise stimuli,
starting with 30ms gaps and decreasing in duration with a two-
down, one-up procedure. Feedback was provided after each trial.
Results showed that there were no differences in gap detection
thresholds in tinnitus participants compared to no-tinnitus par-
ticipants matched in age, gender, and hearing loss or to a control
group of non-tinnitus young participants without hearing loss.
In addition, there was no relation between the matched tinnitus
frequency and the gap detection.

In summary, neither gap duration – 50ms in Ref. (48, 49)
<10ms in Ref. (50–52) – nor hearing thresholds – comparable
between groups in Ref. (48, 50, 52), not comparable between
groups in Ref. (49); unknown in Ref. (51) – seem to explain
differences in findings among human studies. However, two other
factors might be involved, namely, task requirements and back-
ground noise levels. Indeed, two studies (49, 52) that used tasks
requiring high-level cognitive resources found not gap detection
deficits [an exception is the study of Mehdizade Gilani et al. (51)]
whereas the two studies (48, 50) that used tasks not requiring such
resources, namely startle reflex and pre-attentional processing,
found gap detection deficits although not specific to the tinnitus
frequency. It is possible that the requirement – or lack thereof –
of attentional resources on a simple task, that is, behavioral per-
formance in detecting a gap, can overcome subtle gap deficits.
Perhaps more importantly, studies that found gap deficits used
background noise levels higher (50 dB SL and 65 dB SPL) than
those that did not (between 5 and 25 dB SL). The type of neurons
responding to low vs. high-level sounds might be involved.

Future Research Directions

TheGPIASmethod is based on the assumption that tinnitus “fills-
in” the gap during GPIAS testing (12). However, several recent
studies conducted on laboratory animals as well as on humans
found little evidence to support this assumption. While these
studies raised concerns and emphasized caution, they did not rule
out a possibility that GPIAS deficits can indeed be interpreted as
an indication of tinnitus. On the other hand, multiple studies have
demonstrated robust GPIAS deficits in a subset of animals after
manipulations that are known to induce tinnitus. Such deficits
have been shown to persist for a long time period (a 7-month
to 1-year) after being first identified (36, 37). The presence of
tinnitus identified by the GPIAS method has been supported by
two studies (26, 36). Furthermore, changes in neuronal firing rate
and synchrony in the range of tinnitus assessed by GPIAS or
altered latencies and amplitudes of the selected ABR waveforms,
have shown to be linked to GPIAS deficits (42, 43). Further GPIAS
research is needed to clarify whether these deficits are linked to
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tinnitus or some other auditory abnormalities. Human studies
would be the most logical and convincing way to test whether the
GPIAS method can reliably and objectively assess tinnitus simply
because we have control of the tinnitus percept in humans. One
line of research would be to use EEG to collect evoked potentials
while manipulating acoustic parameters surrounding the gap.
Background noise levels (high vs. low), frequency (tinnitus fre-
quency vs. frequency above or below), and gap duration (short
vs. long) should be manipulated in order to disentangle which
of these parameters is the most critical to explain discrepancies
among studies. Another line would be to use the startle paradigm
and manipulate the background frequency and sound levels for
a single individual to discover whether particular gap deficits are
correlated with the tinnitus frequency. In addition, since tinnitus
is a type of subjective experience, it is of importance to develop
new experimental paradigms with the manipulation of attention
to either the (internal) tinnitus object or the (external) gap pre-
pulse in order to investigate the potential link between GPIAS
deficits and tinnitus [see Ref. (70) for a review].

Although human studies would be the first choice, studies on
animals could also make a significant contribution to answer
this fundamental question. It would be useful to confirm the
presence of tinnitus identified by GPIAS with other behavioral
paradigms that are known to involve the auditory cortex, rather
than the GPIAS paradigm that relies mostly on the acoustic startle
brain stem circuit. The contribution of hearing loss to the GPIAS
deficits also needs to be further clarified and, if possible, ruled
out. Generalized hearing loss can attenuate startle responses while
frequency specific hearing deficits could render gaps preceding a
startle in an otherwise continuous background less audible (8, 38).

The tinnitus “filling-in” assumption has been challenged in
several animal and human studies. However, if animals or humans
constantly experience a phantom sound, this sound must still be
present during the silent gap during GPIAS testing. However, a
gap, even partially filled by tinnitus, would still be detectible unless
the background sound used in the testing was ideally matched

to the intensity and spectrum of the tinnitus. Such matching
process could be possible for humans but would be a dubious
process for animal due to a lack of knowledge about their tinnitus
characteristics. Contrary to what has been commonly assumed in
animal research tinnitus is rarely composed of only one frequency
but rather encompasses a wide range of frequencies. Given the
right methodology (i.e., finding tinnitus spectrum and level),
such hypotheses can be relatively easy to explore with tinnitus
patients but very challenging with animal models. One of the
possible approaches would be to create a psychometric function
representing the ability of a tinnitus patient to identify a gap
based on various background noise and gap parameters. Ide-
ally, one would identify a range of this function that allows for
optimal tinnitus detection. A similar approach has recently been
suggested to select appropriate startle stimulus intensity in mice
(58). Startle input–output function has sigmoid shape. At high
startle intensities (i.e., 120 dB SPL), this function is saturated. As a
result, changes in gap detection deficits are hardly detectible if the
startle stimulus is 120 dB SPL. However, when the startle stimulus
intensity was reduced by about 25% of the maximum, such startle
response was very sensitive to small changes in gap detection [see
Figure 8 in Ref. (58)]. If all stimulus parameters can be adjusted
in the similar way, it might greatly improve the sensitivity of
the GPIAS method. In the long-term, the development of new
techniques such as optogenetic, which uses light to control and
read out specific neurons, might answer questions related to what
types of neurons (61) are involved in gap detection deficits in
tinnitus.
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