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Most light-sensitive organisms on earth have acquired an internal system of circadian
clocks allowing the anticipation of light or darkness. In humans, the circadian system
governs nearly all aspects of physiology and behavior. Circadian phenotypes, including
chronotype, vary dramatically among individuals and over individual lifespan. Recent
studies have revealed that the characteristics of human skin fibroblast clocks correlate
with donor chronotype. Given the complexity of circadian phenotype assessment in
humans, the opportunity to study oscillator properties by using cultured primary cells
has the potential to uncover molecular details difficult to assess directly in humans.
Since altered properties of the circadian oscillator have been associated with many
diseases including metabolic disorders and cancer, clock characteristics assessed in
additional primary cell types using similar technologies might represent an important
tool for exploring the connection between chronotype and disease, and for diagnostic
purposes. Here, we review implications of this approach for gathering insights into human
circadian rhythms and their function in health and disease.
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Introduction: The Web of Body Circadian Clocks

During evolution, most light-sensitive organisms living on earth, including mammals, adapted to
daily and seasonal variations of luminosity and temperature resulting from the earth’s movement.
An internal timing system allowing measuring time, anticipating environmental daily changes, and
tuning physiology and behavior to these variations has therefore been developed. Under constant
conditions, without any light and temperature variations, this internal timing system keeps “free-
running.” It drives cyclic physiology and behavior with a period of approximately, but not precisely,
24 h. Hence, this anticipatory internal timing system was named the “circadian clock,” from the
Latin “circa diem” meaning “about a day,” reflecting this timekeeper’s need to be adjusted on a
daily basis by external time cues. The first recognition of this phenomenon was provided already
in 1729 by Jean-Jacques d’Ortous de Mairan, who observed that the circadian movement ofMimosa
pudica leaves was preserved in constant darkness (1). However, it took more than two centuries
until the first clues about circadian clock molecular cogwheels started to appear. In humans, the
intrinsic period of the circadian pacemaker (τ) probably averages slightly longer than 24 h (2–
5). Molecular circadian clocks are present in virtually all body cells. This complex body oscillator
network keeps its synchrony owing to a small group of pacemakers located in neurons of the
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hypothalamic suprachiasmatic nuclei (SCN), the central clock,
which is synchronized every day by retinal signals emanating
from light. In turn, the central clock uses diverse and not entirely
unraveled pathways to reset the phase of peripheral (or slave)
oscillators (6, 7). The connection between SCN and peripheral
clocks proceeds via a plethora of neural and endocrine pathways,
or indirectly through the control of the rest/activity cycle, the
resulting fasting/feeding and metabolic cycles, as well as through
daily oscillations of body temperature. Light signals represent the
most important synchronization cue, or Zeitgeber. In addition, a
variety of external stimuli such as temperature, nutrient availabil-
ity, or social interactions may contribute to phase resetting of the
circadian clock (8). The circadian clock drives virtually all biolog-
ical processes occurring in the organism in order to synchronize
them to geophysical time. The major purpose of this adaptation
is the orchestration of key metabolic processes, including food
processing (anabolism, catabolism, detoxification), in anticipa-
tion of corresponding feeding/fasting and activity/rest episodes
and therefore in the most efficient manner in terms of energy
balance (9). The current molecular model for the generation of
circadian oscillations is based on interlocked negative feedback
loops of clock gene expression and protein translation. In humans,
similarly to other mammals, the major loop comprises two PAS-
domain helix-loop-helix transcriptional activators BMAL1 and
CLOCK, which form a heterodimer that activates the transcrip-
tion of the negative core-clock limb actors. The negative actors,
members of the PER and CRY protein families, accumulate and
negatively feed back on their own transcription [for detailed
model, see Ref. (10)]. Beyond this transcription–translation loop,
posttranslational events such as the control of protein phosphory-
lation, sumoylation, acetylation, O-GlcNAcylation, degradation,
and nuclear entry, as well as extensive chromatin modification,
contribute critically to the generation of daily oscillations in clock
gene products [(11) and references therein].

A Link Between Human Chronotype,
Chronic Circadian Misalignment, and
Disease

Chronotype reflects the tendency of each individual to be active
early or late (12, 13). It is typically assayed by questionnaire, for
example, the Horne–Ostberg Morningness–Eveningness Ques-
tionnaire [MEQ, (14)], which quantifies subjective time-of-day
preference, or the Munich ChronoType Questionnaire [MCTQ,
(15)], whichmeasures sleep timing duringworkdays and free days.
MCTQ analysis of a large cohort of subjects in different geo-
graphical areas suggests a near-Gaussian distribution for MCTQ
coefficient that ranges from extremely early-active to extremely
late-active individuals. Such extreme lark and owl chronotypes
are barely overlapping in their activity phases (13, 15). Moreover,
individual chronotype is evolving during one’s lifetime. Circa-
dian organization of sleep/wake cycles and physiology appears in
newborns during the first several months. Its progression is char-
acterized by earliness during childhood moving to lateness that
reaches a maximum around the age of 20. Then, a gradual return
to earliness is observed with increasing age. Women reach their
maximal lateness before men and are then exhibiting generally

earlier chronotypes than men, although this sex difference disap-
pears around the age of 50 (13, 16). Social behavior impacts on
both chronotype and sleep duration. Indeed, sleep duration and
timing are often different during work and free days, and depend
on sleep debt accumulation during the week, as well as on social
interactions (15). Timing of the sleep/wake cycle is a complex trait
that involves many genes and their interactions with environmen-
tal factors. Genetic linkage and association studies have resulted in
the identification of genetic variants associated with period length
and entrainment of the circadian clock (17–22).

Modern lifestyle can be associated with prolonged exposure
to artificial light, late meal times, sleep curtailment, potentially
rotation shift work into the night-time, and frequent interconti-
nental time-zone changes. These common aspects of the indus-
trialized world can generate a misalignment between internal
circadian clocks and the external light–dark cycle. Such a situation
is exacerbated by the frequent difference in the timing of sleep on
workdays and free days, leading to a chronic circadian phaseshift
known as “social jetlag” (9, 23, 24). Perturbation of circadian
rhythms in animals and humans through simulated or actual
shift work has been well-documented to interfere with numerous
aspects of health (25), and to provoke pathological conditions,
including metabolic diseases such as obesity and type 2 diabetes
(T2D), cardiovascular diseases, thrombosis, or cancer (9, 10, 26–
32). Moreover, chronic sleep and circadian disruption caused
extensive inflammation (33), modulated cortisol levels and signif-
icantly increased C-reactive protein (CRP), tumor necrosis factor
α (TNFα), and other inflammatory cytokine levels in plasma (34).
Of note, the occurrence of social jetlag can be linked to individual
chronotype. One striking example is that of teenagers exhibiting
later chronotype than younger children and adults, and therefore
often suffering from chronic social jetlag due to the obligation to
cope with early school opening hours. Moreover, individuals with
extreme early and extreme late chronotypes might exhibit vastly
different reactions to the same shift work schedule, depending on
their natural morningness or eveningness (35). Due to accumu-
lating evidence about the detrimental effects of chronic circadian
misalignment upon quality of life, professional performance, and
health, it becomes evident that individual chronotype should be
regarded as an important parameter for one’s rest-activity routine
schedule.

Human Peripheral Clocks: An Important
Diagnostic Tool and Therapeutic Target

Experimental Approaches for Studying Human
Clocks In Vivo
The elucidation of the emerging link between clock alterations,
individual chronotype, and disease necessitates a molecular dis-
section of individual clock properties in physiological conditions,
and as a result of circadian misalignments. This requires pro-
longed and regular subject observation and sampling procedures
under controlled laboratory conditions. Current protocols are
typically based upon “forced desynchrony” or “constant rou-
tine” procedures in which individuals deliberately maintain non-
circadian schedules under carefully controlled conditions, while
monitoring the timing of the circadian hormonemelatonin and/or
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circadian variations in body temperature (36, 37). Although such
studies remain the “gold standard” for the determination of
human behavioral period length, they are expensive and labor-
intensive, and require considerable subject commitment.

Less elaborate methods for studying human clocks in vivo
have been developed to study individuals in home environments
[reviewed in Ref. (38)]. Among relatively non-invasive methods,
continuous recording of thoracic skin surface temperature (39, 40)
or periodic recording of urinary or salivary melatonin (41) can
yield biological circadian phase information if not free-running
circadian period. A second type of measurement developed in
the past decade relies upon serial sampling of biological matrices
such as oral mucosa biopsy (42), hair follicle (43), suction blister
content (44), blood, and saliva. For example, by collecting saliva
and blood samples “around-the-clock”, diurnal changes in the
levels of plasma melatonin (45), cortisol (46), thyroid hormones,
insulin, and many other hormones and cytokines can be assessed
(47, 48). In a more elaborate approach, timing and amplitude of
internal body rhythms have been assessed by large-scale circadian
metabolome and transcriptome analysis in blood samples (49–
51). Moreover, metabolome analysis of saliva samples, collected in
a circadian manner, provided interesting clues to free fatty acids,
amino acids, and other metabolites exhibiting strongly oscilla-
tory profiles (52). Remarkably, non-invasive large-scale real-time
breathmetabolome analysis, or “breathprinting,” has been recently
proposed (53), significantly enhancing the speed and ease of
sample collection.

However, marker-based methods often suffer from the relative
variability of the markers employed. Melatonin, although the
standard reference for precise timing of circadian phase, provides
no measure of circadian amplitude because of variations in pineal
size and calcification (54, 55), and requires numerous serial mea-
surements. Although transcriptomic and metabolomic methods
could in principle use manymarkers of different phase to estimate
timing with only a single timepoint, inter-individual variability
in marker expression has greatly limited the precision of these
techniques so far (50, 53). Collectively, these methods represent a
significant step forward and brought important new insights into
the human circadian clock.

In Vitro Synchronized Human Primary Skin
Fibroblasts as a Powerful Tool for Studying
Human Circadian Oscillators
In view of the difficulty of methods for in vivo clock studies
in humans, extensive efforts have been undertaken aiming at
establishing novel approaches for assessing inter-individual dif-
ferences in circadian amplitude, phase, and free-running period
using in vitro cultured human primary explants/cells. Exper-
iments performed in immortalized mouse and rat fibroblasts
revealed that circadian clocks can be synchronized in vitro by
multiple signaling pathways allowing the subsequent measure of
circadian gene expression for several days (56–59). Fluorescent
and bioluminescent circadian reporters represented an additional
important breakthrough in circadian clock studies. Among other
important information provided by this methodology, it allowed
for elegant and direct demonstration of peripheral clocks as cell-
autonomous (60).

Our recent studies, employing these important experimental
advances, provided convincing evidence that cultured primary
human skin fibroblasts expressing circadian bioluminescence
reporters represent an excellent experimental system for the dis-
section of oscillator properties [Figure 1; (61)]. In addition, the
same cells could in the future provide substrates for biochemical
or genetic analysis of themechanisms underlying these properties.
Of note, circadian clock parameters measured by the continu-
ous recording of circadian bioluminescence cycles produced by
human skin fibroblasts vary widely among the cells harvested
from different donors (61, 62). Importantly, circadian oscillator
characteristicsmeasured in cultured skin fibroblasts correlatewith
rhythmic human behavior, as evaluated on the basis of human
subjects whose circadian physiology was examined under labo-
ratory conditions (63) or individuals completing a questionnaire
(62, 64–66). These studies demonstrated that long and short peri-
ods in fibroblast clock gene expression were associated with long
(“owl-like”) and short (“lark-like”) chronotypes, respectively (62).
Moreover, the effect of human blood-borne factors on the period
length of circadian gene expression in cultured human fibroblasts
cells has been studied in this system. Remarkably, cultured fibrob-
lasts exposed to serum collected from elderly people displayed
shorter periods than fibroblasts exposed to serum harvested from
young individuals (67). This suggests that circadian molecular
oscillators are plastic: they can change their properties according
to their environment.

Human Circadian Clock Properties as a Hallmark
of the Disease
In view of the correlation between oscillator properties assessed
in vitro in human skin fibroblast experiments and circadian phe-
notype observed in vivo, one important application of fibroblast-
based methodologies would be to examine changes in clock
properties in different pathological conditions. For example, we
have already discussed that some age-related circadian changes
are reflected in human skin fibroblasts cultured in the presence
of serum from aged subjects (67, 70). In line with these find-
ings, disturbed circadian behavior in bipolar disorder (71, 72)
was reflected in reduced amplitude of clock gene expression in
fibroblasts [Figures 2A–C; (73)] in one study, and changes in the
amplitude of the clock-associated CREB signaling in another (74).
If similarly dysregulated in the brain, such circadian changes may
contribute to the etiology of depressive disorders, or alternatively
be the consequence of disorder-related changes.

Extension of such approaches to primary cell culture estab-
lished from various peripheral organs holds further promise to
obtain tissue-specific information on the molecular makeup of
human clocks and their roles in numerous aspects of physiology
and pathophysiology. Indeed, robust circadian oscillations have
been observed in human pancreatic islets kept in organotypic
cultures or as dispersed islet cells [Figure 1; (69)], and in pri-
mary human skeletal myotubes differentiated in vitro (Figure 1,
Laurent Perrin andCharnaDibner, unpublished data). Recent evi-
dence suggests a link between circadian clock perturbations and
metabolic diseases in humans (see above), and work in rodents
shows an essential role of the circadian clock in insulin secretion
by the pancreatic islet (75), as well as in insulino-sensitivity by the
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FIGURE 1 | Studying peripheral oscillators in humans [adapted from Ref.
(10) with permission]. The master clock in the suprachiasmatic nuclei (SCN) of
the hypothalamus maintains phase coherence between peripheral oscillators
present in virtually all cells of the body by means of daily synchronizing cues
(hormonal signals, neuronal signals, rest/activity and feeding/fasting control,
body temperature regulation). Circadian gene expression of different peripheral
tissues, such as thyroid gland (68), skeletal muscle myotubes (Laurent Perrin

and Charna Dibner, unpublished), pancreatic islets (69), or skin fibroblasts (61,
63), can be monitored in vitro in synchronized cultured cells from patients
biopsies or donors samples using bioluminescent circadian reporters
(Bmal1-luciferase in this scheme). Circadian properties of these oscillators
(phase, period, amplitude, magnitude, resetting) can be analyzed to give
subject-specific circadian phenotype information that might be included in
diagnostic procedures in the near future.

skeletal muscle (76). Therefore, studying the properties of human
pancreatic islet and skeletal muscle clocks in primary culture may
represent an important and unique approach for understanding
the etiology of obesity and T2D, and potential connections of the
clock to metabolic diseases. For example, the levels of mRNAs
encoding PER2, PER3, and CRY2 proteins are decreased in pan-
creatic islets isolated from T2D donors in comparison to their
healthy counterparts (77). Characterization of circadian profiles
of synchronized healthy vs. T2Dhuman isletsmight provide infor-
mation about the mechanism underlying these and other changes
in clock function as a result of this disease, and how they relate to
transcriptomic and functional changes within the pancreatic islet.

Similarly, circadian bioluminescence patterns of skeletal
myotubes from obese subjects revealed a tendency toward
reduced circadian amplitude in these individuals (Laurent Perrin
and Charna Dibner, unpublished), in agreement with findings
in rodents (78). Robust circadian reporter oscillations have also
been recorded in human primary thyrocytes established from
thyroid biopsies [Figure 1; (68)]. In contrast, synchronization
properties of thyrocytes were altered in cells established from
papillary thyroid carcinoma [PTC; (68)]. Moreover, strong
alterations of BMAL1 and CRY2 expression levels in PTC thyroid
nodule tissue biopsies were observed in comparisons to benign

counterparts in multiple studies [Figure 2D; (68, 79)]. In view
of the strong emerging connection between cellular circadian
clock alterations, malignant transformation, and its outcome
[(68, 80–83); reviewed in Ref. (84–86)], these differences in
clock function between malignant and benign nodules could
hold potentially important implications for preoperative thyroid
cancer diagnostics.

The examples cited above directly underscore the potential rel-
evance of circadian studies in primary human cells for metabolic
diseases and for cancer. Certainly, such in vitro experiments do
not necessarily recapitulate the multifactorial aspect of the in vivo
environment. However, this simplification can be considered as an
advantage, since it allows dissection of oscillator function in the
absence of interference by physiological state (light input, sleep-
wake cycle feedback, blood-born factors), and thus reflects inher-
ent characteristics of individual molecular clocks and potential
durable alterations of this clockwork in pathological situations.
Not only genetic alterations, but also epigenetic ones due to either
disease or its treatment could be potentially studied in vitro in
this way.

Such isolation can be particularly useful for examining effects
of pharmacological treatments specifically upon the circadian sys-
tem. For example, in bipolar disorder, not only has it been shown
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FIGURE 2 | Disease-associated alterations of circadian function in
human patients. (A) The amplitude of expression of Dbp after serum
shock is reduced by 35% in fibroblasts from bipolar patients (BPI) as
compared to healthy matched controls (MCs). Amplitude of rhythmic gene
expression, defined at 12 h after serum shock for a series of individual gene
(B) or overall relative expression levels of each individual genes (C) in

fibroblasts from bipolar patients and age- and gender-matched unrelated
controls. (D) Alterations of the expression of Bmal1 core-clock gene in
tissue biopsies of follicular thyroid carcinoma and papillary thyroid
carcinoma as compared to benign thyroid nodules (**P<0.01) (A–C) were
adapted from Ref. (73), and (D) was adapted from Ref. (68), with
permissions.

that pharmacological treatment of human fibroblasts by valproic
acid or lithium can alter circadian clock properties (87–89), but
also in reverse that clinical pathology can predict their effects
upon the clockwork (90). Thus, we propose that peripheral tissue
circadian diagnostics could hold implications for personalized
pharmacotherapy in a wide variety of disorders.

In a related fashion, circadian drug delivery already plays an
important role for some common drugs like statins and holds
considerable promise for oncology, metabolic, and respiratory
disease. Therefore, determination of circadian body timing could
be key to efficacy (86, 91). While chronic measures in primary
culture lose this timing information, acute sampling methods
could provide it, adding an additional reason to collect and analyze
such samples for a wide range of pathologies.

Conclusion and Perspectives

Recent studies have demonstrated that cultured primary human
skin fibroblasts represent a non-invasive and informative exper-
imental system allowing assessment of circadian clock func-
tion in humans (62). Moreover, extending this approach to
human primary cells established from different organ biopsies has

offered the opportunity to gain important molecular insights into
human peripheral clockwork (68, 69). Continuous monitoring
of circadian gene expression in cultured human primary cells
synchronized in vitro may not only allow the characteriza-
tion of individual circadian phenotype, but also bring new
insights into the connection between circadian oscillator func-
tion and the etiology of metabolic disorders or cancer. This
approach may therefore give important information for person-
alized medicine. If specific alterations of circadian function are
associated with a disease, one might imagine oscillator modu-
lation as a new therapeutic approach for management of this
disease (92, 93), or as markers for its diagnosis (68, 79). Given
the increasingly apparent importance of circadian clock function
in homeostasis and metabolism, the knowledge of individual
circadian phenotype may become meaningful in a broader range
of circumstances than expected, and have immediate clinical
implications.
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