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Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works 
in chronobiology have revealed that disruption of the circadian timing system in mice, 
either by surgical, genetic, or environmental manipulation, increased tumor development. 
In humans, shift work is a risk factor for cancer. Based on these observations, the link 
between the circadian clock and cell cycle has become intuitive. But despite identification 
of molecular connections between the two processes, the influence of the clock on 
the dynamics of the cell cycle has never been formally observed. Recently, two studies 
combining single live cell imaging with computational methods have shed light on robust 
coupling between clock and cell cycle oscillators. We recapitulate here these novel findings 
and integrate them with earlier results in both healthy and cancerous cells. Moreover, we 
propose that the cell cycle may be synchronized or slowed down through coupling with 
the circadian clock, which results in reduced tumor growth. More than ever, systems 
biology has become instrumental to understand the dynamic interaction between the 
circadian clock and cell cycle, which is critical in cellular coordination and for diseases 
such as cancer.
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Clock and Cell Cycle, 2 Biological Oscillators

The Circadian Clock
The Earth’s rotation results in predictable daily variations of environmental conditions (light/dark, 
food, temperature). Biological clocks give an unbiased estimation of time and allow coordination of 
physiology in anticipation to recurring changes.

Circadian clocks are implicated in normal functioning of numerous systems (digestive, endocrine, 
cellular). They control 24-h rhythms, termed as “circadian rhythms” (sleep, body temperature, cortisol 
secretion …).

An important milestone in the field was the discovery of the mammalian circadian “conductor”: 
the suprachiasmatic nuclei of the hypothalamus (SCN) (1, 2). From the molecular standpoint, the 
SCN machinery consists of feedback loops relying on clock genes. A main loop involves CLOCK and 
BMAL1, which heterodimerize and activate the transcription of Period (Per1–2–3) and Cryptochrome 
(Cry1–2) genes. PER:CRY proteins in turn inhibit their own transcription by direct interaction 
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with CLOCK:BMAL1. This essential loop is modulated by the 
REV-ERBα–β and RORα–β–γ proteins, which operate a negative 
and positive feedback, respectively, on Bmal1 transcription. This 
genetic network is also extensively regulated via post-translational 
processes. The molecular clockwork acts autonomously and, in 
the absence of resetting cues, oscillates with a period close to 24 h; 
it is the basis of circadian rhythmicity and defines the endogenous 
period of a clock (3). It is synchronized to a sharp 24-h period by 
environmental parameters (light/dark, feeding cycles, hormones). 
A rhythmic message integrating environmental informations is 
then generated by the SCN, and redistributed to the entire organ-
ism to synchronize physiological functions. Circadian rhythmic-
ity and clock genes are not an exclusive property of the SCN as 
clock genes are rhythmically expressed in nearly all cells. Each 
individual cell can thus be regarded as a circadian clock (4, 5).

The Cell Cycle
Cell cycle is the process leading to cell division. It consists of two 
critical phases: the S phase, in which the cell replicates its DNA, 
and the M phase where it divides (mitosis); they are preceded by 
growth phases G1 and G2, respectively. Non-dividing (somatic) 
cells are in a quiescent state (G0). They may resume cell division, 
depending on environmental parameters such as growth factors, 
to enter G1 phase (6, 7).

Progression of the cell cycle relies on transient and sequential 
activation of cyclin-dependent kinases (CDKs) forming com-
plexes with cyclins (CCN). Cell cycle successively depends on 
CCND/CDK4–6 (G1), CCNE/CDK2 (G1/S transition), CCNA/
CDK2 (S), CCNA/CDK1 (S/G2 transition), and CCNB/CDK1 
[M – (8–10)]. Activity of these enzymatic complexes finely tunes 
cell cycle duration, especially at critical checkpoints. Association 
with CDK inhibitors (CKI–P16, P27, P21) or phosphorylation by 
the kinase WEE1, inhibit activity of targeted CCN/CDK across 
the cycle. On the other hand, they are activated by phosphatases 
such as CDC25A–B–C (11). These activators or inhibitors are tar-
gets of proteins involved in DNA repair. Indeed, a double-strand 
DNA break activates the ataxia telangiectasia mutated (ATM) 
and check-point kinase 2 (CHK2) proteins, while a single-strand 
break or a replication error activate ataxia telangiectasia related 
(ATR) and check-point kinase 1 (CHK1) proteins (12, 13). These 
complexes cause a cell cycle arrest by indirect induction of CKI.

From a dynamical point of view, the cell cycle can be modeled 
either as a series of checkpoints (“domino” model) or as a bio-
chemical oscillator where successive waves of CCN/CDK activity 
control its progression (14–16). In the following parts, we will 
use this second model as it recapitulates the rhythmic properties 
of the cell cycle.

Both cell cycle and molecular clocks display periodic phases of 
activation and repression from transcriptional to post-translational 
levels (17). Thus, they can be considered as biological oscillators 
coexisting in dividing cells.

The Circadian Gating Model

In unicellular organisms, circadian rhythms and cell division 
are considered as non-independent processes. In particular, the 

circadian system controls timing of cell division both in prokary-
otic and eukaryotic species. This is the case in the cyanobacterium 
Synechococcus elongatus and in the flagellate alga Euglena gracilis, 
where the molecular clock operates as a “gating” and only allows cell 
division at specific circadian phases (18–20). Thus, the circadian 
oscillator can be viewed as an additional checkpoint for mitosis.

It was tempting to extrapolate this phenomenon to other organ-
isms; although some research was conducted toward demonstra-
tion of circadian gating of the cell cycle in mammalian cells, results 
led to controversial evidence. While a study from 2004 reported 
that the majority of cell divisions occur in three phases of the 
circadian cycle (4), two more recent papers describe an absence 
of cell cycle regulation by the circadian clock (21, 22).

Dynamical Coupling Between Clock and 
Cell Cycle

Faced with these contradictions, we and others have recently 
investigated the circadian clock-cell cycle connection by quantify-
ing the dynamics of the two oscillators in real time, in single live 
mammalian cells (23, 24). Both studies used the circadian clock 
reporter REV-ERBα:VENUS (4). For cell cycle, Bieler et al. scored 
timing of division. We added a cell cycle reporter system [fluo-
rescent ubiquitination-based cell cycle indicator, FUCCI; (25)] 
probing cell cycle progression. These fluorescent markers were 
used to quantitatively determine the properties of each oscillator 
in single NIH3T3 cells. Timelapse imaging combined to extensive 
statistical analysis and modeling exposed the dynamical properties 
of these biological oscillators (Figure 1A).

In cells where neither clock nor cell cycle was synchronized 
by external cues, they appear robustly coupled, with a 1:1 ratio 
between their respective periods, over a wide range of durations 
(18–27  h; Figures  1B,C). A clear shortening of the circadian 
period occurred in dividing cells compared to non-dividing cells 
thus revealing an influence of cell cycle on the clock. Mathematical 
analysis and stochastic modeling unambiguously showed that 
coupling rather than gating governs cell cycle and circadian 
interaction in NIH3T3 cells. It also revealed that the clock reporter 
reproducibly peaked about 5 h after cell division. This feature is 
termed as phase locking (Figure 1C). Changing cell cycle dura-
tion impacted on circadian cycles, but 1:1 locking was resilient to 
such changes (23, 24). Additionally, inhibition of the cell cycle at 
the G1/S or G2/M transitions lengthened circadian intervals and 
delayed division phase. Bieler et al. looked at the reverse interaction 
by changing circadian period. This did not affect cell cycle length 
but advanced division with respect to circadian phase. The authors 
thus proposed a unidirectional coupling from the cell cycle to the 
circadian clock (23).

The above experiments were performed in absence of external 
cues. However, in vivo cellular clocks are subjected to synchroniz-
ing messages (e.g., corticosteroids, temperature). We therefore 
investigated coupling after a 2 h treatment with dexamethasone, 
which resets the circadian clock. We observed two distinct dynami-
cal behaviors coexisting within the cell population. Whereas one 
sub-population kept a 1:1 phase locking, the ratio of cell cycle 
and clock periods was fixed to 3:2 in the other one (i.e., 3 cell 
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cycles for 2 clock cycles). Moreover, when projecting the timing of 
mitosis across the whole experiment, we observed a clear clustering 
of cell division suggesting that the cell cycle was synchronized 
by physiological cues via the circadian clock. We thus inferred a 
bidirectional coupling between the two oscillators, supported by 
mathematical modeling (24).

Although the team of Naef concluded to a unidirectional 
coupling whereas we concluded to a bidirectional coupling, both 
studies led us to reject the concept of “gating” of the cell cycle by the 
clock in mammalian cells, usually put forward without theoretical 
support (23, 24). In the end, it seems that the cell cycle is capable 
of impacting on the circadian clock and vice versa, the dominant 
influence being dependent on the environment of the cell.

Molecular Coupling Between Clock and 
Cell Cycle

Molecular mechanisms underlying progression of the clock and 
cell cycle have been extensively studied. Yet, little is known about 
candidates that could underlie coupling between the two oscillators.

influence from the Circadian Clock on  
the Cell Cycle
The molecular clock impacts on the cell cycle, by transcriptional 
control or direct protein–protein interactions. For instance, in 
G1, the CKI P21 is transcriptionally regulated by REV-ERBα and 
RORα/γ (26). At G1/S transition, NONO regulates the p16-Ink4A 
check-point gene in a PER-dependent fashion (27). Transcription 
of the WEE1 kinase (G2/M transition) is tightly controlled by the 
CLOCK:BMAL1 dimer (28).

At the post-translational level, CRY modulates CHK1/ATR 
(G1/S transition checkpoint) by interacting with TIMELESS (TIM) 
in a time-of-day-dependent manner. PER and TIM also regulate the 
G2/M transition via interactions with CHK2-ATM (12, 13, 29, 30).

Other clock-controlled cell cycle regulators include known 
oncogenes (c-Myc, Mdm2, and β-catenin), cyclins (CCND1, B, 
and A), and tumor suppressor p53. Many key cell cycle regulators, 
such as Cdk4, Itga6, Wnt3, LHx2, Tcf4, Sox 9, and Smad7 are also 
directly clock-regulated (31). This multitude of interactions gives 
a reasonable explanation why loss of coupling between clock and 
cell cycle may play a key role in carcinogenesis and abnormal 
growth in vivo (see below).

influence of the Cell Cycle on the Circadian 
Clock
Apart from transcription silencing occurring at mitosis (32), which 
is bound to influence the circadian feedback loops, molecular 
evidence of cell cycle-dependent control of the circadian clock 
is sparse. Nevertheless, DNA damage can phase advance cellular 
and behavioral circadian rhythms in a dose- and time-dependent 
manner. The underlying mechanism involves ATM-mediated 
damage signaling, possibly through interaction with the PER and 
TIM proteins (33).

More recently, an impact of the tumor suppressors P53 and 
promyelocytic leukemia (PML) proteins on circadian function was 
proposed: Per2 transcription is repressed by P53, which prevents 

binding of CLOCK:BMAL1. At the post translational level, PML 
physically interacts with PER2, and promotes its nuclear locali-
zation. These molecular connections are translated into altered 
circadian behavior (34, 35). As a whole, these results point to a 
global influence of cell cycle regulation on circadian function.

Among these molecular interactions, only p53 has been found 
to impact on clock and cell cycle in a bidirectional way. Thus, it 
may participate in coupling between the two oscillators, which 
remains to be confirmed.

Cellular Consequences of Coupling in 
Healthy Cells

A major impact of clock and cell cycle coupling on cell physiol-
ogy resides in timed mitoses. For instance, about 1/6th of human 
epidermal cells divide daily, mainly at night (36), which is 
determined by intrinsic Bmal1 expression (37). Rhythmicity in 
cell cycle parameters was also found in the hematopoietic and 
immune systems (spleen, thymus, bone marrow), gastro-intestinal 
tract (colon, liver), skin, and cornea of rodents and/or humans 
(38). DNA synthesis and mitosis rhythmicity seem impervious 
to ablation of adrenals, medulla, pituitary, or even SCN, although 
sometimes displaying altered characteristics (38–40). Hence, if 
systemic circadian cues are required to coordinate cell divisions in 
the whole organism, local clock/cell cycle coupling likely governs 
rhythmic mitosis at the cellular and tissue levels.

In line with this hypothesis, different populations of epidermal 
stem cells were found to express clock genes in opposite phases, 
which results in a differential propensity for activation. Specific 
disruption of the circadian clock in these cells led to premature 
epidermal aging, which confirms that local coupling is necessary 
to ensure tissue integrity (41).

Coupling even manifests itself in a post-mitotic tissue such as 
the adult brain, where quiescent neural progenitors in the hip-
pocampus show rhythmic proliferation. Per2 and Bmal1 play a 
critical role in this rhythmic neurogenesis, impacting on cognitive 
function. Mathematical modeling pointed to clock-driven p21 
expression as a trigger for cell cycle progression through regulation 
of the CCND/CDK4–6 complexes (42).

In the adult liver, only 1% of hepatocytes show rhythmic mitoses 
under normal conditions. After partial hepatectomy, however, most 
of the remaining hepatocytes enter cell cycle synchronously, in a 
clock-dependent manner, which will restore liver mass within few 
days. In arrhythmic Cry deficient mice, liver regeneration still occurs, 
although full recovery of liver mass is delayed (28). A more common 
situation requiring controlled cell division at an adult age is wound 
repair: after skin incision, wound healing defects were found in mice 
lacking NONO, a possible link between clock and cell cycle. (27).

Thus, crosstalk between the clock and cell cycle oscillators is 
required for timed and optimal organization of cell proliferation 
both in healthy tissue and in times of challenge such as regeneration.

importance of Coupling in Times of 
Challenge: From Healthy Cells to Pathology

A major interest of the interplay between the clock and cell cycle 
is that a dysfunction of either system can lead to diseases such as 
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FiGuRe 1 | image acquisition, fluorescence quantification, period, 
and phase dynamics in non-synchronized niH3T3-ReveRBα: 
venuS_FuCCi cells. (A) Time series of a representative single cycle  
for the various fluorescent reporters and respective quantified traces:  
from top to bottom: Cell Cycle_G1 (red) = CDT1:mKO2, Cell Cycle_ 
S/G2/M (blue) = GEMININ:E2CRIMSON, Circadian Clock (green) =  
REVERBα:VENUS, Merge = fluorescent channels combined with the 
corresponding brightfield image. Arrows point to tracked cell nuclei.  
Images are 2.5 h apart. Traces at the bottom have been plotted from 

measured intensities extracted from tracking with the LineageTracker plugin 
for ImageJ. (B) Histograms showing distribution of periods for both the clock 
(green) and cell cycle (red) in the whole population. In non-synchronized 
cells, mean clock period (19.4 ± 0.5 h) is not significantly different from 
mean cell cycle period: (18.6 ± 0.6 h). (C) Phase histograms for the same 
cells. Gray histogram and trace show random background densities. 
Colored histogram and trace show the observed phase of the clock at 
division. We observe a preferred clock phase for performing cell division 
(phase locking).

cancer. Among the hallmarks of cancer, genome instability and 
mutations in cell cycle genes are a recurring enabling factor (43). 
Indeed, mutation in Cyclin, Cdk, or Cki genes was found in 90% of 

human cancers (44). However, evidence is increasing that cancer 
cells also display a deregulation of the circadian clockwork, which 
may promote abnormal proliferation (31).
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Circadian Disruption and Cell Cycle  
Deregulation
Although mutations in clock genes are frequent in human 
cancer cells, it is unclear whether it may be a primary cause of 
cancer development. Per2 mutant mice display tumor-prone 
phenotypes and deregulation of various cyclins, proto-
oncogenes, and tumor suppressors (45). On the other hand, 
Cry1/Cry2 KO mice do not show increased cancer development 
after γ-irradiation (46). Thus, deregulation of the core clock 
cannot fully account for the observed phenotype in Per2 mutant 
mice. Additionally, mutation of Bmal1 or Clock does not lead to 
enhanced cancer development (47, 48). These results are subject 
to debate, as a more recent study showed that Per1−/−Per2−/−, 
Cry1−/−Cry2−/−, and Bmal1−/+ mice have increased spontaneous 
and radiation-induced tumor development (49). So it remains 
unclear whether a mutation in clock genes is by itself sufficient 
to trigger cancer development. These observed cancer-prone 
phenotypes might be due to a non-circadian function of  
these genes.

If clock gene mutations do not induce cancer per se, systemic 
environmental disruption of the circadian function may impact 
on cancer development and cell proliferation. Constant light 
exposure or ablation of the pineal gland results in perturbation 
of endocrine rhythms and increase carcinogenesis in liver and 
mammary glands of rodents (50, 51). In line with these results, 
circadian disruption following SCN lesions or chronic jetlag 
increases proliferation of implanted Glasgow osteosarcoma or 
pancreatic adenocarcinoma (52, 53). Chronic jetlag also promotes 
tumor development in the liver of mice exposed to the hepatic 
carcinogen diethylnitrosamine (54).

The latter finding is of particular interest when consider-
ing cancer development in humans. As already mentioned, 
circadian alterations at the molecular level have been found in 
numerous human cancers. At the epidemiological level, studies 
involving shift workers have associated circadian disruption 
with an increased risk of cancer development (31). Since 2007, 
the International Agency for Research on Cancer even listed 
“shiftwork that involves circadian disruption” as a “probable 
carcinogen.”

Cell Cycle Deregulation and Cancer Lead to 
Circadian Disruption
Many human cancer cell lines (including breast, prostate, colon, 
liver, and lung), which by definition show abnormal cell cycle 
progression and proliferation, also display abnormal circadian 
gene expression (31). In the context of bidirectional interaction 
between the clock and cell cycle oscillators, it is tricky to decipher 
which alteration is the cause or consequence. If mutations in cell 
cycle genes are the primary element, it will in turn impact on the 
circadian clock. Another possibility is that cell cycle and circadian 
functions will be synergistically disrupted as a consequence of 
their coupling.

At the physiological level, recent studies have explored 
circadian rhythmicity in metastatic colorectal or breast can-
cer patients (rest activity and/or salivary cortisol rhythms). 
All studies concluded to large disparities in behavioral and 

endocrine rhythmicity in these patients, ranging from robust 
to absent rhythms. Interestingly, the outcome of the disease 
in patients with damped or abnormal circadian rhythmicity 
is generally unfavorable, independently of other prognostic 
factors (38).

Circadian Lifestyle and Slowing Down Tumor 
Progression: Perspectives of Coupling
Temporal restricted feeding (RF), also known as meal timing, 
powerfully entrains peripheral clocks (55). It is also capable 
of restoring circadian rhythms in peripheral tissues of other-
wise arrhythmic mice (56). Tumor cells often show abnormal 
circadian rhythms in LD and ad  libitum feeding conditions, 
but they are not blind to cyclic metabolic cues. Two studies 
tested the impact of RF on growth rate of implanted Glasgow 
osteosarcoma or P03 pancreatic adenocarcinoma in mice 
(57, 58). At the physiological level, this treatment increased 
the amplitude of body temperature rhythms, known to be a 
powerful circadian synchronizer (59, 60). Interestingly, tumor 
size was significantly reduced and survival was prolonged in 
mice submitted to RF. Thus, reinforcement of host’s circadian 
rhythms may lead to improved host-mediated tumor control or 
alteration of the tumor circadian clock, which in the end slows 
down tumor progression.

Looking at this data with the newly discovered bidirectional 
coupling between clock and cell cycle, we would like to put 
forward the possibility that the cell cycle may be synchronized/
slowed down through coupling with the circadian clock. Hence, 
it would be possible to use a known circadian synchronizer such 
as timed feeding or high-amplitude temperature cycles to re-
entrain or reinforce the circadian clock in tumor cells. These cells 
tend to proliferate at a high rate, with periods shorter than 24 h. 
Entraining the circadian clock in these cells could slow down cell 
cycle, through coupling between the two oscillators. This would, 
in the end, delay tumor progression.

Conclusion and Perspectives

In mammals, the circadian and cell cycle oscillators were 
long considered as two completely independent entities, or 
were at best regarded as a circadian clock gating cell cycle 
progression. These views are seriously challenged by the 
recently established bidirectionality of clock and cell cycle 
interactions. At the moment, only P53 has been identified as 
capable of impinging on both clock and cell cycle, but its role 
in coupling needs to be confirmed. Given the complexity of 
these oscillatory circuits, additional candidates likely exist, 
but remain to be found.

In terms of physiology, the consequences of coupling in 
healthy cells are obvious. But coupling becomes critical when 
considering a pathology such as cancer, where circadian and 
cell cycle phenomena are intertwined. The benefits of chrono-
therapeutics for cancer treatment is well established (38). They 
are a consequence of circadian fluctuations in toxicity and 
efficacy of cancer drugs (and drug metabolism in general). 
Considering that reinforcing the circadian clock through a 
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