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Introduction

Mild traumatic brain injury (mTBI) continues to be a major public health issue among our active
military, veterans, and society at large. The Centers for Disease Control and Prevention (CDC)
estimates that ~1.5million people annually survive a TBI and ~230,000 require in-patient treatment.
To fully gauge the efficacy of emerging therapeutic drug candidates for the treatment of mTBI,
reliable biomarkers have to be identified for early detection of brain injury and subsequent prediction
of the outcome. Guidelines about the use of high-resolution neuroimaging techniques in the
treatment and management of mTBI recognized the substantial contribution of magnetic resonance
imaging (MRI), positron emission tomography (PET), computed tomography (CT), and 2-photon
imaging for their sensitivity in visualizing white matter (WM) tracts and sensorimotor circuits (1–
3). MRI imaging, with its increased sensitivity to visualize WM tracts and sensorimotor circuits, the
cerebellum, and extra-motor pathology and pathways, thus, is a favored approach in the search for
biomarkers. The power of cutting edge imaging methodologies, in combination with collaboration
and data sharing among numerous centers, is recognized in neurodegenerative research. Such a
multicenter, collaborative approach for the study of neuroimaging biomarkers for mTBI has the
prospect to generate data sets large enough to judge the feasibility of MRI as an outcome measure
for different treatment strategies. A comparison of spatiotemporal resolution and penetration depth
of various neuroimaging methods compared to MRI is shown in Figure 1.

The main goal is to formulate guidelines on MRI imaging protocols for studies of mTBI focused
on four broader research goals.

1. Optimize matching of patients to available therapies for personalized mTBI treatments.
2. Develop effective mTBI patients outcome measures for drug treatments.
3. Design one-to-one personalized novel therapeutic strategies on individual basis.
4. Identify promising intervention strategies and execute it for armed forces patients and

civilians.

Diffusion Tensor Imaging
Diffusion tensor imaging (DTI) is a MRI method that is susceptible to the direction of water
movement. It has the most sensitive and predictive MRI metric in TBI and can be used to detect
pathology within neuronal WM tracts (1, 9). In mTBI, this technique effectively differentiates
patients with mTBI from control patients, regardless of severity and time frame following injury,
and reveals neuropathological patterns that were previously only observed in histological studies
post-mortem. Specific to mTBI, the fractional anisotropy component of DTI has yielded the most
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FIGURE 1 | Comparison of spatial and temporal resolution and
penetration depth of different neuroimaging techniques used in
clinical and laboratory setting to investigate mild TBI,
moderate/severe TBI, and blast injury. Illustration of functional
neuroimaging and neurophysiological techniques showing comparison of

spatiotemporal resolution and penetration depth of neurometabolic optical
techniques. The x-axis (time in seconds to day or size of
object/animal/patients) and the y-axis (distance in millimeters) are scaled
logarithmically. Penetration depths are color-coded from non-invasive to
invasive, ranging from blue to red color [modified from Ref. (4–8)].

reliable results. In a study examining 30war veteranswith a history
of mTBI, with a subgroup of 13 showing impaired neuropsycho-
logical performance, evaluated as executive function (EF) mea-
sure, DTI detected WM differences that correlated with reduced
EF performance (10). Damage to tracts ofWM causes freer move-
ment of water molecules in these areas, resulting in a decrease in
the fractional anisotropy value which can function as a measure
for the extent of injury. DTI biomarker findings provide novel
information about brain-behavior relations that could never be
gleaned from just the neuropsychological data, since group aver-
aging neuropsychological test findings may obscure those with
mTBI. However, DTI has so far proved inconsistent in the diagno-
sis of soldiers with blast-relatedmTBI and there is no consensus on
the idealmethod because of the small numbers of patients studied.
Human study conducted on 63 US military personnel within
90 days of blast-related mTBI, all had normal CT, but 18 patients
had abnormalities on DTI consistent with diffuse axonal injury
(11). A new mode of MRI, called super-resolution track diffusion
imaging, produces high-resolution fiber tracking and might have
application in the detection of subtle abnormalities after mTBI
(12). While showing great potential as a clinical biomarker or for
predicting mTBI outcomes, further long-term studies are needed
to understand the true value of DTI in this field.

Voxel Based Morphometry
Voxel based morphometry (VBM) is a high-resolution neu-
roimaging analysis technique that detects differences in brain

anatomy between an averaged brain image template and high-
resolution three-dimensional T1-weighted MRI scans of study
subjects with an automated analysis of gray or WM volume.
For Alzheimer’s and Huntington’s disease, VBM analysis of MRI
images is the predominant method to monitor progression of
degeneration. In mild and severe TBI, VBM has been consistently
sensitive to somatosensory and cerebral changes, demonstrating
the pathological similarities of mTBI with dementia. However,
lack of longitudinal MRI studies and contradictory results of
sensory atrophy put the question marks on sensitivity of VBM to
disease progression in mTBI (1). In a meta-analysis of 39 studies
of hippocampal volumes in adults,Woon and colleagues described
reduced hippocampal volume after psychological trauma, which
was worse when PTSD was present after blast-related injury (13).

Functional MRI
Functional MRI (fMRI) utilizes benefit of susceptibility variations
among oxygenated and deoxygenated blood and measures the
rate of blood flow indirectly. Blood oxygenation level dependent
(BOLD) signal with a sensitivity of few seconds correlates with
alterations in neuronal activity and provides confirmation for
global changes in cortical activity as a reliable feature of mTBI,
concussion, and blast-related TBI pathology. Blood flow aber-
rations, particularly in the frontal lobes, highlighted after the
studies of working memory in mTBI and sTBI. To study working
memory in mTBI patients with normal structural scans, 12 mTBI
patients [Glasgow coma score (GCS) of 13–15, duration of loss
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of consciousness (LOC) ∼30min] were tested during 6–35 days
post mTBI. In comparison to control subjects, mTBI patients had
difficulty in concentrating and doing routine job but there was no
difference in anxiety levels or depression. While mTBI patients
had poor reaction time and attention deficits (neuropsycholog-
ical measures), mTBI patients perform equally well compared
to control subjects for other measures e.g., EFs and memory.
mTBI patients were asked to perform the “n-back” task related
to working memory, where mTBI patients memory were tested
through the presentation of a chain of letters. mTBI patients
were asked to distinguish whether a letter presented represented
an object letter presented visually a minute before, or whether
the letter heard matched the letter seen two letters preceding
during the 1-back and 2-back condition, respectively. Patients
and control subjects show activated bilateral frontal and parietal
regions, but the pattern is different in control subjects where
there is increase in activation from 0-back to 1-back compared
to mTBI patients, showing increases in activation from 1-back
to 2-back (14–16). Four football players having concussion (no
LOC but transient confusion) and exposed to mTBI, fMRI study
shows no reliable change in test scores for sensory coordination
and working memory within 1-week post injury (17). Compared
to control subjects, concussed players 1-week post mTBI showed
increased activation in motor and premotor cortex, superior and
inferior parietal regions, and bilateral cerebellar regions. Although
these studiesmeet some of the criteria e.g., sensitivity, validity, and
functional correlates, further studies are needed to provide answer
for difficulty in controlling mood and susceptibility. In spite of
these issues, fMRI has offered a number of promising results to
date in mTBI patients.

Application of resting-state functional MRI (rs-fMRI) to
patients with mTBI suggests that reduced inter-hemispheric hem-
orrhage and functional connectivity between motor and sensory
cortices is a feature of early symptoms and might be used as a
biomarker for detection of mTBI disease (18). Use of rs-fMRI for
mTBI patients suggests that reduced inter-hemispheric hemor-
rhage and decreases in functional connectivity betweenmotor and
sensory cortices are a characteristic features of mTBI and can be
used as an early biomarker for diagnosis.

Magnetic Resonance Spectroscopy
Magnetic resonance spectroscopy (MRS) technique is used to
evaluate the metabolic condition of the brain non-invasively after
mTBI using positively charged proton-based cerebral metabolites
presented as a ratio with creatine or choline. While DTI examines
anatomy after injury, MRS measures brain metabolism, in partic-
ular, the relative amounts of specific metabolites in brain tissue
shown to be perturbed following mTBI, such asN-acetylaspartate
(NAA, a marker of network integrity), ATP, lactate, choline,
and glutamate in patients after mTBI, concussion, and blast
injury (19, 20). MRS is also useful in observing cellular reaction
to drugs interventions and detecting alterations in high-energy
metabolites such as phosphates dysregulated after mTBI. MRS
with strength 3T and above is able to separate neurochemical’s
peaks, e.g., glutamate and GABA, and consider as a prominent
biomarker for pathogenesis of mTBI. There are several barriers
that need to be conquered to do high-quality MRS imaging, e.g.,
lack of acquisition standardization (single-voxel vs. multivoxel

sampling), interpretation of individual studies, and generaliza-
tion to clinical practice, undersized mTBI patients study, subject
selection factor, etc.

Limitations, Conclusion, and Future
Directions

The intent of this brief prospective was an update on high-
resolution neuroimaging biomarkers for mTBI that could provide
the basis for a sensitive, objective metric to enhance detection
of mTBI sequelae. This could form the basis for improved and
complementary research protocols for studies of brain injury and
concussion, and aid the design for investigations of neuropsy-
chological outcome. While specifics like severity or progression
are important for future treatments, in my view, an accurate
diagnosis ofmTBI is the firstmost important criteria. By obtaining
pre-injury exposure studies, and by more accurately identifying
pre-mortem and studying disease progression, we can establish
further insight into the effects of mTBI and improved thera-
peutic approaches for cure. One of the key potential uses for
neuroimaging data is the prediction of recovery after brain injury.
The application of novel MRI methods, e.g., DTI, VBM, MRS,
and fMRI, has been extensively reported in diagnosis of stroke
pathology, but so far there is limited use of this technology in
patients having brain trauma and concussions. From a clinical
perspective, before neuroimaging methods apply, demographic
information (age/sex), date of injury, ethnic origin, family his-
tory, date of symptoms onset, date of diagnosis by experts, and
other variables (e.g., merging structural and functional imaging
studies) are very important for valid analysis of the imaging
data.

While this prospective highlights the merit of potential neu-
roimaging biomarkers of mTBI, neuroimaging remains an expen-
sive study method and cost of neuroimaging is a legitimate con-
cern for low income patients. Another legitimate concern is that
the brainmay adapt tomild injury, and therefore, positive imaging
results would possibly reflect an abnormality to which the brain
has already adapted and recircuited without apparent ill effect.
A recent study demonstrated in their prospective cohort of those
who sustain mTBI, a prior concussion distinctly and significantly
prolonged symptoms and put forward the concept of “recovered”
mTBI even in the presence of a lesion (21). This is a serious
issue for clinicians and researchers to contemplate before they
would conclude that “no injury” had occurred based on neu-
ropsychological and behavioral findings alone, and that there were
“no untoward” effects of mTBI. Restoration of neural function is
likely the norm following mTBI, but contemporary neuroimaging
methods might identify residual indicators of neuropathology in
subsets of individuals with mTBI.

Nevertheless, neuroimaging provides biomarkers of underlying
structural and physiological abnormalities in TBI, concussion,
and blast-related injury, and these pathological changes occur
in regions and within neural systems that plausibly give rise
to the common types of neurobehavioral and neurocognitive
sequelae associated with mTBI that need to be incorporated into
neuropsychological outcome studies. The major focus of neu-
roimaging studies should be to identify pathology potentially
related to residual impairments in cognitive and/or behavioral

Frontiers in Neurology | www.frontiersin.org July 2015 | Volume 6 | Article 1483

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Jaiswal Neuroimaging biomarker for mild TBI

functioning post-mTBI. The use of various MRI techniques in
clinical settings and connecting structure and function by com-
bining rsfMRI with DTI and VBM might advance sensitivity and
specificity to diagnose mTBI and concussed patients as demon-
strated earlier where mTBI patients in which the combination of
cortical, GM/WM, and hippocampal DTI, VBM, fMRI, and MRS
resulted in 75% for all four indices and 90% for first two indices
(1–3, 22). Accord is slowly arriving about essential and desirable
protocols for MRI for forthcoming studies of mTBI with high
aims for collaborative multi-center longitudinal studies. The use
of neuroimaging based biomarkers for mTBI has a broad range
of potential use that includes whole brain system biology, brain
area specific, and connectomics study, which might lead to the

discovery of multiple therapeutics and efficient clinical trials with
the hope of translating findings into a better future for patients.
Furthermore, use of neuroimaging as a diagnostic (biomarker)
tools for detection of functional, morphometric, and chemical
changes might leads to the evaluation of therapeutics measures,
e.g., drugs effects measures, behavioral correlates, etc. (23–25).
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