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Cell therapies are increasingly recognized as a promising option to augment the limited
therapeutic arsenal available to fight ischemic stroke. During the last two decades,
cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment
paradigms and first clinical trials are currently underway to assess safety and feasibility in
patients. However, the strong and still unmet demand for novel stroke treatment options
and exciting findings reported from experimental studies may have drawn our attention
away from potential side effects related to cell therapies and the ways by which they
are commonly applied. This review summarizes common and less frequent adverse
events that have been discovered in preclinical and clinical investigations assessing cell
therapies for stroke. Such adverse events range from immunological and neoplastic
complications over seizures to cell clotting and cell-induced embolism. It also describes
potential complications of clinically applicable administration procedures, detrimental
interactions between therapeutic cells, and the pathophysiological environment that
they are placed into, as well as problems related to cell manufacturing. Virtually each
therapeutic intervention comes at a certain risk for complications. Side effects do therefore
not generally compromise the value of cell treatments for stroke, but underestimating
such complications might severely limit therapeutic safety and efficacy of cell treatment
protocols currently under development. On the other hand, a better understanding will
provide opportunities to further improve existing therapeutic strategies and might help to
define those circumstances, under which an optimal effect can be realized. Hence, the
review eventually discusses strategies and recommendations allowing us to prevent or at
least balance potential complications in order to ensure the maximum therapeutic benefit
at minimum risk for stroke patients.

Keywords: ischemic stroke, cell therapy, cell transplantation, translational research, clinical trial, side effect,
complication, safety
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Constraints and complications of cell therapies for stroke

Introduction

Therapeutic stem cell research represents one of the most vibrant
fields in regenerative medicine. Embryonic, fetal, and adult stem
cells are believed to exert multiple therapeutic actions. These
range from potential tissue regeneration over the support of
local endogenous repair attempts to the beneficial modulation of
systemic immune responses. The still ongoing discovery of this
tremendous therapeutic potential has fueled the imagination of
researchers and clinicians to develop novel therapeutic strategies
and to treat disorders, which have been considered untreatable
for decades. Among those, ischemic stroke plays a primary role.
Stroke is a worldwide predominant cause of death and acquired
disability in adulthood (1). The only currently available treatment
is thrombolysis, being restricted by a narrow time window (2)
and a number of contraindications (3). Together, these limita-
tions exclude the majority of patients from successful and causal
treatment. On the other hand, numerous scientific reports corrob-
orated the therapeutic benefit provided by stem cell populations
in stroke. This is exemplified by the improvement of neurofunc-
tional deficits (4), reduction of infarct volume, an extension of
the time windows for intervention (5, 6), pro-regenerative cerebral
reorganization (7), and potentially even limited tissue restoration
(8), as well as mitigation of post-stroke neuroinflammation (9).
Consequently, first early stage clinical studies are underway to
confirm safety and to collect evidence for the therapeutic benefit
of stem cell-based treatments in human stroke patients (10).

However, the well-founded enthusiasm for cell therapies and
the urgent need for novel therapeutic approaches seem to have
drawn our attention away from possible complications of stem
cell applications in stroke. Since each therapeutic intervention
comes at the risk of undesirable side effects, such side effects
would not generally compromise the overall value of stem
cell therapies. They could, however, significantly limit the
safety, efficacy, as well as successful translation of stem cell-
based experimental treatment concepts into clinically available
therapies. We therefore argue that potential side effects deserve
a closer and more thorough look. Moreover, some side effects
might be specific to stroke because important pathophysiological
aspects such as blood brain barrier (BBB) breakdown, perilesional
hyperexcitability, systemic immunodepression and others differ
from those in the other central nervous system (CNS) pathologies.
This review summarizes current preclinical and clinical evidence
for risks arising from therapeutic use of stem cell populations
and the means by which the therapies are commonly applied.
It also describes major translational hurdles, which arise from
undesirable interactions between the cell transplant and its local
pathophysiological environment.

Stem Cell Populations for Stroke
Treatment: An Overview

A broad variety of embryonic, fetal, and adult stem cells
(including mixed, stem cell-containing populations) have been
investigated regarding their therapeutic potential in stroke. The
effects exerted by the cells can in principle be discriminated into
two main classes: cell replacement and stimulation of endogenous
recovery and repair. A restorative capacity has been assumed

for more naive, pluri-, and multipotent stem cell populations,
characterized by a distinct proliferation and differentiation
potential. While this potential theoretically enables the cells to
directly repair and replace damaged brain tissue after stroke,
it is currently unclear whether this has a significant impact in
practice (11). Next to a possible restorative potential, most stem
cell populations are also believed to support endogenous repair
processes indirectly by the secretion of cytokines, growth factors,
and other messenger molecules. These can beneficially modulate
endogenous reorganization and response processes following
stroke and are assumed to represent the primary mode of action
for adult stem cell populations. Being commonly summarized
as so-called “bystander effects,” these processes can also exert a
systemic impact on the host organism.

Table 1 summarizes the most relevant cell populations being
currently under investigation as stroke therapeutics. Since sev-
eral hundred preclinical studies have been published so far,
the overview can only provide exemplary or key references.
Table 1 also indicates whether first clinical experience with the
respective cell populations has been collected using a scientific
approach. This includes company driven, registered clinical trials,
but excludes commercial single case treatments as occasionally
offered by private clinics.

Thus far, over 20 clinical studies have been published and more
than 20 phase I/II trials are ongoing (40). Several cell products
have been investigated, with mesenchymal stem cells (MSCs),
being the most common population applied. The intravenous
delivery route is used most often with a typical dose range from
1 x 10° to 1 x 107 cells/kg bodyweight. Each clinical trial is pre-
ceded by a safety assessment approved by the responsible regula-
tory body. Different national regulations exist, but requirements
are commonly less strict for early stage (phase I/II) clinical tri-
als and routinely rely on standard in vivo safety investigations
and aspects of cell manufacturing. Most studies do not report
adverse events apart from minor and unspecific ones including
transient fever, nausea, skin itching, or appetite loss (41), but
more serious adverse events have also been reported. While trends
toward favorable outcomes are reported, they must be interpreted
cautiously as early stage clinical trials are neither designed nor
powered to reliably detect efficacy. The detection of less frequent,
potentially more severe adverse events may likewise be masked by
the relatively low-statistical power of current early stage clinical
trials, restricting the occurrence of such events to a small number
of individual cases. Moreover, these trials often lack appropriate
control groups, which would allow a firm conclusion on potential
side effects. This assumption is supported by the increasing body
of evidence for potential cell therapy side effects from preclinical
investigation. Table 2 summarizes current clinical indications for
complications related to cell therapy. The Figure 1 illustrates
potential detrimental effects of cell therapies in relation to the
selected route of cell administration.

Complications Related to Intracerebral
Cell Transplantation

The human brain is highly susceptible for damage emerging
from surgical manipulation. Already minor structural defects
can provoke tremendous functional consequences, so balancing
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TABLE 1 | Overview on cell populations being investigated for stroke therapy.

Cell Cell Key Cell diameter Therapeutic effects Transplantation paradigms Adverse events reported Clinical
population source reference (volume) trial
Modality Route
Murine ESC Blastocysts (12, 13) 8um (270 um®) Neuronal and glial differentiation Allogeneic, Intraparenchymal ~ Tumor formation (higher following No
xenogeneic allogeneic transplantation)
Tissue overgrowth
Immunological response
Embryonic Derived from murine ESCs (12, 14) Not investigated Improved functional recovery Allogeneic, Intraparenchymal ~ Tumor formation reported No
NSCs Derived from human ESCs (15, 16) Neuronal and glial differentiation, xenogeneic Tissue overgrowth and secondary
integration host tissue injury
Derived from monkey (17) Glial scar reduction/modulation Immunological responses
ESCs Lesion size reduction
NSCs Human fetal brain (7,18) 16um Improved functional recovery Xenogeneic Intraparenchymal,  Strong immunological response Yes
specimen (usually 1st 2150 um®) Enhanced neuroplasticity intravenous Tissue overgrowth
trimester) Lesion size reduction Tumor/neoplasm formation
Neuronal and glial differentiation
Anti-apoptosis/neuroprotection Ectopic engraftment and tissue
overgrowth
Neural Subventricular zone (19, 20) 16um Improved functional recovery Allogeneic Intraparenchymal,  Strong host immunological Yes
precursor cells (rodents) 2150 um?3) Neuroprotection syngeneic intravenous responses
Glial scar reduction/modulation Tissue overgrowth
Enhanced endogenous
neurogenesis
Glial scar reduction/modulation
Anti-inflammation
Human Bone marrow 21) 156-18um Anti-apoptosis Xenogeneic, Intravenous Non-reported so far, but Yes
multipotent (1750-2150um°®)  Angiogenesis allogeneic immunological responses, clotting
adult progenitor Anti-inflammation phenomena/microembolism
cells (MAPC®) Glial scar reduction/modulation (although to a smaller extent than
Enhanced endogenous MSCs) cannot be excluded after
neurogenesis systemic administration
Dental pulp Dental pulp (22) Not investigated Improved functional recovery Xenogeneic Intraparenchymal Non-reported so far, but at least No
multipotent Neuronal differentiation abilities immunological responses may not
stem cells be excluded after systemic
administration
HUCB-NSC Cord blood (23) 15um Neuronal and astroglial Xenogeneic Intraparenchymal  Strong immunological responses, No
(1750 uma) differentiation only partially preventable by
Improved functional recovery (7?) immunosuppression
(Continued)
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TABLE 1 | Continued

Cell Cell Key Cell diameter Therapeutic effects Transplantation paradigms Adverse events reported Clinical
population source reference (volume) trial
Modality Route
MSCs Bone marrow (21, 24-26) 18 um Improved functional recovery Autologous, Intraparenchymal,  Microembolism Yes
Cord blood 27) (3050 um?) Neuronal and glial differentiation (?) allogeneic, intraarterial, Increased mortality in diabetic
Placenta Anti-inflammation/ xenogeneic intravenous, animals
Adipose tissue immunomodulation intrathecal, Neointima formation in the internal
Anti-apoptosis intranasal carotid artery (predominantly under
Angiogenesis diabetic conditions)
Neuroprotection Enhanced atherosclerosis
Glial scar reduction/modulation (predominantly under diabetic
(28) Enhanced endogenous conditions)
(29) neurogenesis
Hematopoietic BM-derived hematopoietic (80, 31) 6-10um Improved functional recovery Allogeneic Intraparenchymal,  Generally not well investigated, but Yes
stem/progenitor stem cells (115-520 um®) Neuronal and glial differentiation (?) syngeneic, intravenous probably comprising:
cells Peripheral blood (32) Anti-inflammation/ xenogeneic immunological responses and
Cord blood (8, 33) immunomodulation GvHD
Neuroprotection
Enhanced neuroplasticity
Enhanced endogenous
neurogenesis
Angiogenesis
MNC BM (34) 7 um (180 um®) Improved functional recovery Syngeneic, Intraparenchymal,  Immunological responses Yes
Cord blood (5, 33) Neuronal and glial differentiation (?) allogeneic, intraarterial,
Peripheral blood (35) Neuroprotection xenogeneic intravenous
Anti-inflammation/
immunomodulation
Lesion size reduction
iPS cells Diverse, often (foreskin), or (36, 37) Not Improved functional recovery Allogeneic, Intraparenchymal  Teratoma formation (particularly No
embryonic fibroblasts investigated, Neuronal and glial differentiation xenogeneic after stroke) and tissue overgrowth
probably similar Neuroprotection
to ESCs Lesion size reduction
Anti-inflammation/
immunomodulation
iN cells iPS-cell-derived neural (38, 39) Not investigated Neuronal and astroglial Xenogeneic Intraparenchymal ~ Teratoma formation (?) No

stem cells

differentiation
Improved functional recovery (?)
Lesion size reduction
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safety and efficacy aspects of candidate cell delivery procedures
is mandatory when translating an experimental treatment pro-
tocol into clinical application (67, 68). Therapies relying on cell
populations for which a restorative potential is described would
certainly benefit from cell deposition proximal to the lesion. It is
currently unclear, whether this also holds true for the more widely
anticipated bystander effects. Since these are believed to be exerted
by growth factors and cytokines, it is reasonable to speculate that
the therapeutic benefit may be increased when the cells are present
in the lesion vicinity. Hence, local cell delivery is a viable option
for clinical translation.

Intraparenchymal, stereotactically guided neurosurgical cell
delivery allows the spatially precise deposition of therapeutic
cells within or next to a lesion. It is also superior to other
delivery approaches regarding absolute cell numbers reaching
the brain (69). On the other hand, penetrating the cerebral
parenchyma, e.g., by using a cannula, comes at the risk of
inducing focal hemorrhage. For example, electrode deposition
for deep brain stimulation in Parkinson’s disease was reported
to cause such hemorrhages in about 3.1% of cases, with 1.4%
being symptomatic (70). This risk is relatively low and often
anticipated to be outweighed by the provided therapeutic benefit.
Intracerebral cell transplantation has hence been chosen for a
number of early stage clinical trials on stroke (45) and other
neurodegenerative diseases (71, 72). However, the risk associated
with an individual delivery may considerably accumulate when
(i) multifocal cell deposits to address a larger or multifocal
lesion(s) and/or (ii) repeated injections over a longer time course
are required to ensure the therapeutic benefit (73). Indeed,
complications related to the intraparenchymal cell implantation
procedure have been observed in clinical studies, including
headache, somnolence, and subdural hematoma (43, 46).

A possible alternative in such scenarios may be intraventric-
ular/intrathecal cell delivery, which can be achieved by a sin-
gle trajectory targeting lateral ventricles or by lumbar puncture
and intrathecal injection. Administered cells are subsequently
distributed along the ventricular walls, theoretically allowing a
more widespread dissemination throughout the CNS than intra-
parenchymal approaches. Although intrathecal cell application
methods have been predominantly used in experimental setups so
far, some clinical case studies have been reported (65, 74). How-
ever, the rapid exchange of cerebrospinal fluid and its flow being
generally directed toward the subarachnoid spaces including those
in the spine render a targeted engraftment of intrathecally trans-
planted cells uncertain. Headache is a complication frequently
reported after intrathecal cell transplantation (75). Intraventric-
ular delivery further comes with a potential risk of hydrocephalus
since the injected cells might adhere to the ventricular wall and
cause dysfunction of cerebrospinal fluid circulation. Moreover,
potential complications of intrathecal cell delivery, such as lum-
bosacral radiculopathies, causing pain and neurological deficits
have been reported (66). Hence, thorough assessment of safety and
efficacy profiles with respect to the desired mode of therapeutic
action of a particular cell population is pivotal.

A recently investigated, interesting delivery option to the brain
is intranasal cell administration (76). The proposed entry mecha-
nism is an active, retrograde migration along fibers of the olfac-
tory tract, which descent through the cribriform plate of the

ethmoid bone. Intranasal cell administration is considered as a
relatively safe way to target the rodent brain (77) and was found
efficient to treat neonatal hypoxic-ischemic injuries (24, 78). It
is less clear though whether the immunological barrier function
of intranasal mucous tissue and the relatively long migrations
distances in humans may compromise this option for clinical
application. Intranasal delivery remains experimental for the time
being, requiring more translational research on efficacy aspects,
especially in species exhibiting larger brains.

Adverse Events Following Systemic
Intravascular Cell Administration

Systemic intravascular transplantation procedures comprise
intravenous and intraarterial administration techniques. They are
relatively easy to perform and less invasive than local cell delivery
approaches. Therefore, intravascular application is believed to
come with a generally favorable risk profile including for those
patients being in a critical clinical condition. This is one of
the main reasons why most current cell transplantation trials
rely on systemic delivery techniques (79). Nevertheless, both
intravenous and intraarterial cell transplantations are associated
with a number of risks and complications. Those are evident in
autologous as well as non-autologous transplantation paradigms
and, importantly, are often underestimated due to the low level of
invasiveness of systemic transplantation procedures.

These complications can also impair the transplant itself. For
instance, non-autologous systemic stem cell transplantation can
ignite an instant immune response against the cells (80) causing a
loss of the graft or its functional impairment (this is discussed in
detail below). An additional reduction of therapeutic cell numbers
after systemic injection is caused by first passage cell loss in pul-
monary capillaries, spleen, liver, and kidneys (81, 82). This trap-
ping effect is believed to be the predominant cause for the overall
low cell concentrations reaching the lesion area in systemic autolo-
gous transplantation settings. Cell size and diameter (see Table 1)
are major determinants of vascular obstruction and complications
emerging thereof (83). Smaller cell populations, such as bone mar-
row mononuclear cells (BM MNCs), are filtered less extensively
than larger ones including neural stem cells (NSCs) or MSCs (84).

Pulmonary and splenic cell trapping may not be considered
problematic at the first glance. First, pulmonary passage of larger
cells can be increased by administration of strong vasodilators,
such as nitroprusside (85) or nitric oxide directly, for which a
beneficial effect on stroke has been described as well (86). Appli-
cation of vasodilators would require continuous monitoring of
blood pressure and in some cases methemoglobin, but would
be justifiable in an intensive care setting. Second, some adult
cell populations do not even need to enter the brain to exert
a therapeutic benefit (87). However, a considerable fraction of
transplanted cells usually becomes apoptotic before or during
the transplantation procedure (88). Endogenous scavenger and
clearance systems in the spleen remove blood-borne pathogens
and apoptotic cells from circulation (89). Splenic clearance of
circulating apoptotic cells helps to maintain self-tolerance and
represents a central anti-inflammatory mechanism (90, 91), both
of which can be considered beneficial after stroke (92). On the
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TABLE 2 | Current clinical trials investigating cell therapies for stroke including reported complications.

Study Design Patients Cell type Cell source Transplantation procedure Reported adverse events
Treated/ Time Route n Cell number/dose and
controls window further details
(42) Observer-blinded, 12/0 Predifferentiated Allogeneic 0.5-6years Intraparenchymal 1x 4 Patients: single trajectory None study-related reported
phase | neuronal cells NT2/D1 (2 x 108/3 deposits)
precursors 8 Patients: randomized either
(2 x 108/3 deposits) or three
trajectories (3 x 2 x 10° cells
in 3 x 3 deposits)
(43) Randomized, observer- 14/4 Predifferentiated Allogeneic 1-6years Intraparenchymal 1x 7 Patients: 5 x 108 cells in 25 Single seizure, syncopic
blinded, phase Il neuronal cells NT2/D1 deposits episode, subdural hematoma
precursors 7 Patients: 10 x 10° cells in No cell-related complication
25 deposits
(44) Randomized, observer- 5/25 MSC Autologous 5weeks Intravenous 2% 5 x 107 each (at 5 and None reported
blinded, phase I/l bone marrow 7 weeks)

(45) Open-label, phase | 5/0 Fetal lateral Xenogeneic 1.56-10years Intraparenchymal 1x 4 Patients: 1 x 107 cells per Temporary worsening of
ganglionic (porcine) trajectory (up to 5 each) motor deficits, seizures
eminence cells 1 Patient: 8 x 108 cells in one Trial terminated due to side

trajectory effects in 2 patients

(46) Open-label, phase | 5/0 MNC Autologous 1-10vyears Intraparenchymal 1x 1.4-5.5x 10 in 6-15 Headache, drowsiness,

bone marrow trajectories and 46-88 nausea, blood pressure
deposits increase, hyperglycemia,
fever, dysesthesia

(47) Open-label, phase | 6/0 MNC Autologous <90days Intraarterial 1x 1.25-5 x 108 None study-related reported

bone marrow

(48) Observer-blinded, 16/36 MSC Autologous 5 weeks Intravenous 2x 5 x 107 each (at 5 and None study-related reported

phase Il bone marrow 7 weeks)

(49) Open-label, phase | 6/0 MNC Autologous 2-3months Intraarterial 1x 1-5 x 108 Generalized seizure (2 of 6

bone marrow patients)

(50) Open-label, non- 6/6 MSC Autologous 3-12months  Intravenous 1x 5-6 x 107 None study-related reported

randomized, phase /Il bone marrow

(41) Open-label, phase | 12/0 MSC Autologous 36-133days Intravenous 1x 0.6-1.6 x 108 Mild fever, nausea, appetite

bone marrow loss, skin itching

(51) Open-label, phase | 10/0 MNC Autologous 24-72h Intravenous 1x 7-10 x 10° cells’kg None study-related reported

bone marrow

(52) Open-label, phase | 20/0 MNC Autologous 3-7 days Intraarterial 1x 22 x 10° None study-related reported

bone marrow

(53) Observer-blinded, 10/10 MNC Autologous 5-9days Intraarterial 1x 1.6 x 10° (average) Seizures (2 of 10 patients)

phase I/l bone marrow

(54) Open-label, phase | 11/0 MNC Autologous 7-30days Intravenous 1x 1.9-185 x 10° (average: One re-infarction (etiology not

bone marrow

8.0 x 109

clear)

(Continued)
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TABLE 2 | Continued

Study Design Patients Cell type Cell source Transplantation procedure Reported adverse events
Treated/ Time Route n Cell number/dose and
controls window further details
(50) Non-randomized, 20 (6 versus MSC (n=6), Autologous 0.25-2years  Intravenous 1x 5-6 x 107 None study-related reported
phase I/Il 14)/20 MNC (n=14) bone marrow
(55) Open-label, phase | 4/0 MSC Allogeneic 0.5-2months  Intraarterial 2 x 107 None reported
umbilical cord
(56) Observer-blinded, phase 60/40 MNC Autologous 5-7 days Lesion cavity 1x 2.5-22.2 x 10° (in 3.5 ml) Fever, chest pain in 1 case,
I/l (hemorrhagic stroke) bone marrow unspecified pulmonary tumor
in 1 case
(57) Open-label, 12 (5 versus MNC Autologous 19-89 days Intravenous 1x 1-5 x 108 Seizures in 5 of 5 patients in
non-randomized, phase | 7)/0 bone marrow (n=>5) intravenous group
Intraarterial Seizures in 2 of 7 patients in
(h=7) intraarterial group
Neurological worsening after
seizures in 1 case
(58) Open-label, phase | 8/0 CcD34+ Autologous 1-7 years Intrathecal 4-5x 0.8-3.3 x 107 (per injection, None reported
bone marrow 1 week interval)
(59) Open-label, 5/0 cD34t Autologous <7 days Intraarterial 1x <1.0x 108 Non-study-related reported
non-randomized, phase | bone marrow
(60) Single-blinded, 15/15 CD34+ Autologous 0.6-5years Intraparenchymal 1x 3-8 x 108 None reported
randomized phase Il peripheral blood
61) Blinded, randomized, 85/35 MNC Autologous 18.5days Intravenous 1x 2.8 x 108 None reported
phase Il bone marrow (mean)
62) Open-label, phase I/1l 24/0 MNC Autologous 40.5months  Intrathecal 1x 1 x 10%/kg None reported
bone marrow (mean)
(63) (Public Randomized, double 140 Targeted Multipotent Adult bone 24-48h Intravenous 1x Dose selection in 8/8 Overall lower frequency of
presentation) blind, phase Il 65/61 Finally adult progenitor marrow patients: high (1.2 x 10°% and life-threatening events and
evaluated cells (MAPC®) low dose (4 x 10%) less pulmonary complications
paradigms, all evaluated in cell-treated patients
patients in the cell therapy
group received high-dose
treatment
(64) Individual treatment 1/0 Neural stem Allogeneic fetal “Chronic” Intraparenchymal N/A “Multiple injections” Local ectopic tissue
attempt (ataxia cells tissue and CSF space overgrowth/teratoma
telangiectasia) formation requiring surgical
intervention
(65) Individual treatment 1/0 Neural Autologous cord 6 months Intrathecal 1% 12 % 10° cells/0.5 ml Fever
attempt (global hypoxia) progenitors blood (ventricular)
(66) Individual treatment 1/0 Neural stem Unclear, “Chronic” Intrathecal N/A “Multiple injections” Severe inflammatory
attempt cells probably polyradiculopathy
allogeneic
(Continued)
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TABLE 2 | Continued

Study Design

Patients

Treated/
controls

Cell type

Cell source

Transplantation procedure

Time
window

Route

n

Cell number/dose and
further details

Reported adverse events

NCT01678534 20 MSC 1 !

Randomized, controlled,
double blind, phase I

NCT01151124  Open-label, phase |

NCT02117635 Open-label, phase Il

NCT00875654  Randomized,
open-label, phase Il

NCT01714167  Non-randomized,
open-label, phase |

NCT01716481  Randomized,
open-label, phase lll

NCT01962233  Open-label, phase |

NCT01297413  Non-randomized,
open-label, phase /1l

NCT02290483 Open-label, controlled,
randomized, phase |I

NCT01468064  Double-blinded,
randomized, controlled,
phase Il

NCT01832428 Open-label, phase I/1l

NCT01673932  Open-label, randomized,
phase |

NCT01461720  Single-blinded,
non-randomized,
phase Il

NCT02378947  Double-blinded,
randomized, phase /Il

NCT01501773  Open-label, randomized,
phase Il

NCT00950521  Open-label, randomized,

phase Il

12

up to 62
(two-stage)

30

30

60

10

35

76

90

50

12

50

18

120

30

Neural
stem/progenitor

cells (CTX)

Neural
stem/progenitor
cells (CTX)
MSC

MSC

MSC
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other hand, this system is also responsible for the clearance of
neutrophils and its overload with excess amounts of transplanted
cells could lead to increased levels of circulating neutrophils and
deterioration of stroke outcome (88).

Microembolism is another important and detrimental com-
plication, which has been reported after both intravenous and
intraarterial cell delivery. Given its utmost relevance for systemic
cell transplantation strategies in stroke, this complex complication
is to be discussed in detail.

Microembolism After Systemic
Stem Cell Injection

Intravenous transplantation approaches often cause pulmonary
cell microembolism, particularly when injecting larger cells.
Embolus formation from transplanted MSCs in the lungs of small
(93) and large animals (94) has been described for more than a
decade. Originally being discussed as an undesired side effect,
primarily compromising the number of therapeutic cells being
available at the therapeutic target, pulmonary microemboli have
been increasingly recognized as an important safety concern. In
their seminal study, Lee and colleagues showed that intravenous
delivery of commonly used therapeutic MSC doses (2 x 10° per
animal) was lethal in 10% of transplanted mice (95). Higher
MSC doses (3 x 10° per subject) caused 80% fatalities from severe
pulmonary dysfunction within minutes with the effect mainly
being attributed to the PODXL*"/CD49f°" MSC subfraction that
represents matured progenitors (95). Surface integrin expression
and consequently the risk for pulmonary entrapment further
depends on the donor age (82), which might require an individ-
ual risk assessment in autologous cell therapies. Importantly, it
has been shown that the number of MSCs clotting pulmonary
capillaries is not effectively diminished when infusing lower MSC
concentrations or after blocking surface integrins (96).

Targeted intraarterial cell delivery, for example, into the inter-
nal carotids or the M1 branch of the middle cerebral artery,
is often discussed as viable alternative circumventing potential
drawbacks of intravenous cell administration. The approach is
further believed to deliver significantly larger amounts of cells
to the desired location (97). Nevertheless, microembolism upon
intraarterial cell delivery has been reported in accordance to
the situation observed in the venous branch. The vessel block-
age can occur already at the precapillary level, resulting in a
massive and immediate blood flow drop in the arteriole and
downstream capillaries (98). This local hypoxic-ischemic envi-
ronment is believed not only to cause a loss of around 85% of
transplanted cells in the long run but also to provide additional
hypoxic-ischemic stress to the surrounding areas. This is obvi-
ously detrimental in tissues with a high-oxygen consumption and
nutritional demand, such as the myocardium. It can ultimately
result in additional, macroscopic ischemic myocardial damage
(99). Of note, the administration of stem cell populations, such as
MSC, can further trigger the procoagulatory cascade via surface
expression of tissue factor (100). This in turn causes thromboem-
bolism aggravating mechanical vascular obstruction and closing
the loop to immunological complications of intravascular stem
cell applications, which are discussed below.
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FIGURE 1 | Cell administration routes and related complications.
The figure depicts common routes investigated for cell and stem cell
transplantation following stroke and potentially associated
complications. The frequency of such complications can hardly be
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estimated from the available data in humans and may vary significantly
between the individual elements. Please note that not all cell
populations exhibit the same risk profile. For details, please consult
Tables 1 and 2.

In accordance to the situation in the heart, the induction of
focal cerebral ischemic injury has been reported after intraarterial
MSC injection to the brain. Cui and coworkers showed immediate,
sometimes transient cerebral blood flow (CBF) decreases after
injection of allogeneic BM-derived MSC into rats with frequency
and extent correlating to the number of infused cells (25). The CBF
drops were extensive enough to cause cerebral microinfarcts as
determined by magnetic resonance imaging and histology when
0.5 x 10° or more cells were administrated. Infusion of higher cell
numbers also tended to coincide with reduced functional perfor-
mance, but the results were not statistically significant apart from
a clearly compromised locomotor activity. This was potentially
due to the variable lesion pattern caused by intraarterial MSC
injection and the resulting heterogeneous functional impairment,
both requiring very large samples sizes to reach adequate statistical

power. On the other hand, injection of 0.1-0.25 x 10° cells was
reported safe (25, 101).

A cell diameter of around 15-16 um, resulting in volumes
between approximately 1750 and 2150 um? (if simplistically con-
sidering the cell body to resemble a sphere), appears as a critical
threshold for the occurrence of intravascular embolism (84). This
diameter is, for example, observed in BM-derived multipotent
adult progenitor cells (MAPCs), whereas most MSC population
are significantly larger (18 um and more). This assumption is
corroborated by results from a recent phase IIb clinical trial on
MAPCs by Athersys Inc., enrolling 65 patients to the cell treatment
group. Although some evidence for limited pulmonary trapping
was observed preclinically (84), intravenous MAPC injection (up
to 1.2 x 10 cells per patient) did not increase, but even reduced
the frequency of pulmonary complications (mainly pneumonia)
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in treated patients (see Table 2). One may assume that the
therapeutic benefits have outweighed potential complications of
pulmonary MAPC trapping in this scenario.

Recent evidence indicates that infusion velocity and the type
of administered cells also play a role in cell-prone vascular
occlusion, particularly after intraarterial administration. In rats,
low-infusion speeds (<0.1 ml/min) seem to facilitate cell clot-
ting and lead to a higher incidence of vascular obstruction.
Surprisingly, relatively high-infusion speeds (0.3 to >1 ml/min)
also result in secondary ischemic lesions for so far unclear rea-
sons. Infusion velocities around 0.17-0.2 ml/min resulted in best
safety profiles in Sprague-Dawley and Wistar rats, even allowing
administration of up to 1 x 10° MSCs without safety restriction
(25, 102). Interestingly, there was no safety profile difference
between application techniques targeting the external or common
carotid artery, but this does not necessarily translate to human
patients (102). When cells of similar diameters, i.e., 15m, are
transplanted, some authors report intracapillary trapping and
obstruction [Ref. (84) for NSCs, MSCs and, less pronounced, for
MAPCs], whereas others do not [Ref. (102) for glial-restricted
precursor cells, GRPs]. The precise reasons behind this still have
to be elucidated, but differences in soma rigidity might pro-
vide a potential explanation. Early stem and progenitor, and
also tumor cells present a less rigid cytoskeleton and increased
deformability (103, 104), which may in turn facilitate capillary
transition.

Safety of intravascular cell infusion seems to be a complex
function determined by the targeted circulation compartment,
cell type, size, and infusion speed. A few clinical cases of cell-borne
embolism have been reported, although not in stroke patients yet.
Diffusion weighted MRI revealed small, focal, and asymptomatic
lesions 1 day after intraarterial injection of MSCs to patients suf-
fering from multiple system atrophy (92). Pulmonary embolism
has also been described after intravenous infusion of adipose
tissue-derived stem cells (105) and is even speculated to have
caused a fatality (100) in a recent clinical study. This clearly calls
for additional safety investigations including both clinical and ani-
mal studies. It should be realized that preclinical research on safety
aspects is complicated even further by significant interspecies
differences in vessel diameter, rheology, coagulation, and platelet
function, potentially preventing a direct transfer from rodent data
to human subjects. Large animal models (106-108) might provide
some benefits in the translational process, but a careful consid-
eration of human anatomy and stroke pathophysiology remains
essential when designing clinical studies.

Neoplasms, Tissue Overgrowth,
and Ectopic Cell Engraftment

The generation of functional brain tissue and particularly of the
human neocortex during embryo- and fetogenesis is a complex
and very well controlled process (109). Although our knowledge
about its precise orchestration remains limited (110), it is well
known that the process is highly susceptible to even minor exter-
nal disturbances (111). On the other hand, there is a strict spa-
tial and temporal limitation of structured postnatal neurogenesis
(112). The intracerebral transplantation of multi- and pluripotent

stem cell populations in an attempt to restore the lesioned brain,
but without providing the biochemical and anatomical environ-
ment required for structured neuro- and gliogenesis therefore
comes at the risk of uncontrolled proliferation emerging from the
graft. The landmark paper by Erdé and coworkers describes for
the first time the generation of aggressively growing neoplastic
formations resembling primitive neural structures after stereotac-
tic transplantation of allogeneic embryonic stem cells (ESCs) into
the mouse brain (12). The initial enthusiasm fueled by positive
results from experimental cell therapies for stroke was further
damped when teratoma and, occasionally, teratocarcinoma for-
mation were reported for many other pluri- and multipotent cell
populations including induced pluripotent stem (iPS) cells (36).
The phenomenon has been observed in numerous mammalian
species and in both allo- and xenograft paradigms. Teratoma
formation is thought to originate from two distinct precondi-
tions (15). It first requires the presence of extensively mitotic,
insufficiently linage-committed cells within the transplant. More-
over, the post-ischemic environment itself is thought to provide
a ground for teratoma formation due to the strong expression of
antiapoptotic messengers (113) as well as proliferation-promoting
cytokines including basic fibroblast growth factor (114), brain-
derived neurotrophic factor (115), nerve growth factor (116),
and vascular endothelial growth factor (117). Teratoma formation
has not been reported following the transplantation of highly
migratory, lineage-restricted GRPs so far.

Another important safety concern particularly after intracere-
bral cell transplantation is extensive growth from the graft at
the expense of the local host tissue, but without generation of
germ cell tumors. In this scenario, a continuous proliferation of
mitotic neural progenitor cells results in the extensive genera-
tion of immature neurons, which excludes the neuropathologi-
cal classification of such tumors as teratomas. Importantly, this
phenomenon is independent from the local, growth-permissive
post-ischemic environment. It rather seems to emerge from exten-
sive intrinsic proliferation activity within the graft (15) and may
resemble a proliferation peak as physiologically observed during
mammalian CNS development (118). Pathophysiological sequelae
of graft overgrowth include compression of local brain tissue
and capillaries leading to extensive multifocal necrosis. Strategies
to prevent the formation of neoplastic structures comprise the
application of thorough cell selection protocols (119) and neu-
ronal predifferentiation toward immature, but postmitotic cells
(120) prior to transplantation. A more recent approach is the
application of transdifferentiation technologies, which allow the
direct creation of neurons from somatic cells (121).

Uncontrolled growth from transplanted cells is not restricted to
the side of graft implantation. It has been shown that therapeutic
stem cell populations exhibit an expressive migration capacity,
which allows them to reach ischemic foci even if located in the
contralateral hemisphere (16, 122). Under so far undetermined
conditions, transplanted cells can also utilize their migration
capabilities to repopulate unlesioned, remote locations. Extensive
migration of locally administered NSCs along the spinal cord
and within the CSF space was shown to result in numerous
ectopic engraftments containing proliferating cells as well as post-
mitotic neurons and glia across the CNS (123). The biological
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and functional consequences of such ectopic colonies are cur-
rently unclear. Nevertheless, they represent a safety concern since
uncontrolled, ectopic proliferation, comes at the risk for tissue
overgrowth including disseminated host tissue compression, or
potentially even more aggressive tumor formation.

Ectopic survival and proliferation of systemically engrafted
stem cells has been described occasionally. For example, allo-
geneic and autologous MSCs have been reported to survive fol-
lowing intravenous administration and sublethal irradiation in
a baboon model. Cells have been identified in the gut, kid-
ney, thymus, liver, and skin after up to 21 months (124), but
neoplasm formation was not reported. A clinical case reported
donor-derived glioneuronal neoplasm after intracerebellar and
intrathecal injection of human fetal NSCs in a commercial stem
cell transplantation center not meeting Western standards (64).
The risk of such tumor formation is most likely reduced or even
absent when using adult stem cells and particularly allogeneic
populations as well as systemic delivery since the majority of them
will be eventually rejected by the host’s immune system. However,
long-term culture can cause chromosomal alteration (125, 126)
and clonal growth in neonatal and adult stem cells (127), so the
potential induction of neoplasms from an adult cell graft has to
be monitored carefully. Moreover, donor cell-derived leukemia
has been reported after systemic transplantation of allogeneic
hematopoietic stem cell (128) and umbilical cord blood (129) in
some patients with hematological diseases. The particular reasons
for this rare phenomenon remain for further investigation and
it is unclear whether this is of relevance for cell transplantation
approaches after stroke.

Interestingly, ectopic cell engraftment has also been described
following intranasal delivery. Luciferase-expressing (F3-effluc-
positive) immortalized human NSCs were intranasally admin-
istered to immunocompromised BALB/c nude mice. Serial
bioluminescence imaging (BLI) was conducted to monitor cere-
bral engraftment non-invasively (130). BLI signals were obtained
from the brain of about one-third of transplanted animals, but
concomitantly observed in the lungs of about 45% of all cell-
treated mice. Despite a transient disappearance, strong biolumi-
nescence signals were found emerging from the lungs 2 weeks
after transplantation. Post-mortem histopathological investiga-
tion revealed that the signals originated from F3-effluc-positive
pulmonary tumors. Nevertheless, such severe complications can
be considered unlikely in immunocompetent recipients given the
immunological barrier function of the airway mucous tissue after
intranasal delivery, as well as instant, blood-mediated inflamma-
tory reactions (131) or other mechanisms of systemic graft rejec-
tion, and, finally, continuous immunosurveillance and adaptive
immune responses (132) in most tissues. It therefore seems logical
that very few papers report a highly limited ectopic engraftment
and long-term survival outside the CNS after transplantation into
immunocompetent hosts (133). However, should cell therapies
become a routine procedure in the future, they will likely rely
on allogeneic transplants for logistic reasons and may therefore
require concomitant immunosuppression, which, together with
the commonly observed post-stroke immunodepression (134),
may theoretically open a small window for such ectopic engraft-
ment to materialize.

Immunological Consequences
of Cell Therapies

The transplantation of foreign cells, namely, from allogeneic or
xenogeneic sources can induce the two prototypes of immune
responses: graft rejection and graft-versus-host disease (GvHD).
Both occur because of major histocompatibility complex molecule
(MHC) mismatches between transplanted and endogenous cells.
Graft rejection is induced by circulating antibodies and T
cells recognizing foreign MHC molecules (135). The risk for
immunological rejection can be reduced either by matching the
MHC types as clinically practiced in allogeneic hematopoietic
stem cell transplantation, by immunosuppressive treatment, or
by using cells with low expression of MHC-I molecules (i.e.,
low immunogenicity) as it is described for several stem cell
populations (136, 137). However, the latter advantage could be
limited by recipient natural killer (NK) cells that detect and kill
cells without MHC-I expression (138). It is still controversially
discussed whether MHC-I'" stem cells are protected from NK cell
lysis by concurrent low expression of co-stimulatory molecules,
such as NKG2D ligands (139, 140). However, when cells graft
within an inflammatory environment, such as the ischemic brain
tissue, they may upregulate MHC-I (136, 141, 142) and thus
secondarily increase their risk for rejection (140). Even though
allogeneic and syngeneic cells exhibit the same MHC molecules
as the recipient, they are not entirely protected from being
rejected. Genetic engineering to express therapeutically relevant
proteins, function-determining transcription factors or reporter
molecules (143, 144) may increase immunogenicity and the risk
for rejection. This aspect is especially relevant for the emerging
field of iPS cells (145, 146) and may require careful screening
of cell lots prior to clinical use (147). Graft rejection generally
implies a reduction or even a complete loss of therapeutic effects,
either by a loss of transplanted cells (139, 148) or their functional
impairment (149). To the best of our knowledge, it is yet unknown
whether the immunological process of cell rejection itself may
additionally harm recipient tissue, especially after intracerebral
transplantation with relatively large cell depots.

In contrast to graft rejection, GVHD only occurs when trans-
planted MHC-mismatched cells contain leukocytes or cells with
leukocyte function. Symptoms of GvHD not only concern primar-
ily the mucosa, skin, and liver (150) but may also affect the brain
(151). In the stroke field, this is solely relevant for umbilical cord
blood cell transplantation (152, 153), since BM MNCs are mainly
used autologously (51, 61).

One of the most frequently used cell type in stroke studies,
MSC, exhibit strong immunomodulatory properties that are even
used to treat therapy-resistant GvHD (154, 155). The mecha-
nisms of MSC-induced immunosuppression are not completely
understood, but rely on the expression of anti-inflammatory
mediators, such as IL-10, TGF-f, and prostaglandin E2, and of co-
stimulatory molecules, such as programed death ligands and Fas
ligand [reviewed by Ma et al. (156)]. These immunosuppressive
properties seem to be one important mechanism for the thera-
peutic efficacy of MSCs (9). In contrast, MSC-induced systemic
immunosuppression could also be extremely harmful after stroke
by amplifying the post-stroke immune deficiency syndrome and
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hence the risk for infections (134, 157). This hypothesis was not
confirmed by a recent mouse study (158), but was discussed as
reason for early death in a clinical GvHD trial (157). Further
investigations should address that issue to ensure safety in clinical
MSC transplantation after stroke.

One important advantage of cell therapies over one-target
pharmacological approaches is the capacity of certain cells to
home toward the injured tissue and to simultaneously manipulate
a variety of pathophysiological processes. However, this is a
positivistic view, since the interaction between the cell graft
and the inflammatory niche is far from being understood. For
example, it has been described that MSCs and NSCs express toll-
like receptors (TLRs) and that TLR-signaling affects important
cell functions including differentiation, proliferation, and
migration (159-162). However, after stroke, the ischemic tissue
is flooded with damage-associated molecular patterns (DAMPs),
which activate several TLRs and drive post-stroke inflammation
(163). In vitro studies revealed that the activation of the TLR4
pathway causes an increased secretion of pro-inflammatory
mediators both by MSCs (164, 165) and NSCs (166). The sole
co-cultivation of MSCs with macrophages also induced a pro-
inflammatory MSC phenotype secreting large amounts of IL-6
and different chemotactic cytokines that could attract leukocytes
(167). Consequently, it is plausible that transplanted cells, which
reach the ischemic brain, could further amplify detrimental
inflammation and thus contribute to brain damage. A better
understanding of the impact of the microenvironment on the
function of transplanted cells is necessary to dissect harmful and
beneficial immune effects of transplanted cells.

Recent evidence indicates that stroke is significantly
determined by thromboinflammatory mechanisms. For instance,
regulatory T cells strongly interact with platelets and activated
brain endothelial cells to form microvascular thrombosis in the
acute stage of stroke. Ablation of regulatory T cells, however,
successfully restored CBF and ameliorate functional outcome
(168). It is imaginable that the transplantation of cells with
strong homing and transmigration capabilities may also support
thromboinflammation and thus contribute to brain damage. In
fact, live imaging of MSCs homing toward inflammatory foci
revealed that almost 50% of intravenously injected MSCs form
intravascular clusters with platelets and neutrophils at the site of
inflammation (169). Activation of TLR pathways further causes
an upregulation of VCAM-1 and ICAM-1 on the surface of MSCs
(164). Adhering and transmigrating MSCs at the ischemic brain
endothelium may thus act as toeholds for adjacent leukocytes
and exacerbate thromboinflammation. Although the literature
indicates that seemingly few intravenously transplanted cells
reach the ischemic brain as discussed above, this potential adverse
mechanism should be kept in mind when cells were engineered
to improve homing and transmigration.

Seizures

Given the potential complications of seizures, they are among
the more severe adverse events to expect. Moreover, seizures
represent a safety concern since they must be controlled by
antiepileptics, although such medication can impair the recovery
process following stroke (170). The post-ischemic brain is

susceptible to various stimuli potentially inducing seizures. For
instance, it is well known from animal studies that the excitability
of perilesional cortical neurons is increased because of altered
glutamate and GABA signaling (171, 172). In line with this,
early seizures are observed in 2-9% of patients after stroke (173,
174). Interestingly, a recent study reported that two patients
out of seven after intraarterial administration and all patients
(five out of five) after intravenous administration of autologous
BM MNCs suffered seizures (57). This is far above the seizure
frequency that one would expect to occur spontaneously. Partial
or generalized seizures were also observed in other clinical studies
(43, 49, 53). A potential causal link between cell transplantation
and increased seizure frequency has not been established, but is
known that seizures represent a relatively common complication
of cell treatments for non-neurological conditions (175). Seizures
accounted for about half of the CNS-related complications of
hematopoietic stem cell therapy in pediatric patients suffering
from hematological malignancies (176), but it is challenging to
clearly discriminate cause and effect from these observations.
Establishing a causal relationship between increased seizure
frequency and therapy attempts using adult stem cell populations
following stroke is also impaired by the small number of patients
enrolled to these early phase trials studies, some of which are
non-randomized, uncontrolled phase I studies.

It is easier to speculate about a potential pathomechanism
leading to higher seizure frequencies after administration of cells
with neurogenic properties. Neurons emerging from ectopic stem
cell colonies were shown to send axons into the host CNS after
local transplantation to a site of severe traumatic spinal cord injury
(123).It could be speculated that local circuit integration may pave
the way for seizures, which could also become evident in stroke,
although a physiological integration of graft-derived neurons is
principally possible upon stroke (14). When transplanting less
potent, adult cells populations or relying on systemic administra-
tion, seizures may be a sequel of cerebral microembolism (intraar-
terial approach) or potentially systemic immune responses. Of
note, virtually no preclinical research report is available reporting
on seizures as a potential adverse event in animals receiving cell
therapy in stroke, potentially due to the difficulties to detect
other than generalized seizures in laboratory rodents. Another
factor potentially contributing to this is the relatively short post-
stroke surveillance times (between 2 weeks and 1 month), which
may be too short to observe seizures, at least those arising from
disorganized neuronal cell engraftment. Finally, the stroke model
used may play a role as well. Post-stroke epileptogenesis has been
observed in the Rose bengal photothrombosis model, but not in
the filament model (177).

The Role of Common Comorbidities
and Drug-Cell Interactions

Current knowledge suggests that the translational failure in the
development of novel treatment strategies for stroke is partly
due to the inability of most animal models to adequately reflect
the complex pathophysiological situation in humans (178). This
particularly accounts for factors including age and polypharma-
cology as well as for comorbidities, such as hypertension and
diabetes (179). The presence of such factors is believed to have
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impaired the therapeutic efficacy of virtually all neuroprotective
drug candidates developed in the past. The currently emerging
field of cell therapies might therefore face similar challenges.

Diabetes represents one of the most important and most fre-
quent diseases leading to cerebrovascular disorders in Western
societies, but experimental studies in diabetic subjects are rela-
tively rare. Chen and coworkers investigated the effect of bone
marrow-derived MSCs, intravenously administered 24 h after a
2h transient middle cerebral artery occlusion in streptozotocin-
induced type 1 diabetes rats (180). The applied cell transplantation
protocol was repeatedly shown to beneficially influence stroke
outcome by this and other groups. However, MSC therapy sur-
prisingly increased the mortality without affecting lesion volume
or functional outcome in diabetic rats. This was explained by an
increased BBB opening leading to a higher incidence of hemor-
rhagic transformation. MSC treatment also induced narrowing of
cerebral arterioles (up to the level of vascular occlusion), neoin-
tima formation in the internal carotid artery, and further facili-
tated atherosclerotic transformation of cerebral vessel walls. The
postulated cause was an increased expression of angiogenin in the
treatment group, which can aggravate microvascular pathologies
particularly in diabetics (181). These findings indicate that the
importance of comorbidities not only as an efficacy-limiting factor
for cell therapies in stroke but also as being highly important for
safety considerations.

Another interesting aspect is the possibility of interaction
between a pharmaceutical drug and administered therapeutic
cells. Given the wide spectrum of medication, a stroke patient
typically receives before and after the event, it comes as a surprise
that beneficial or detrimental interaction has only been rarely
investigated so far. Most of the data being available on drug-cell
interactions are not primarily focused to discover such interplays,
but to tests whether or not the combination treatment exerts an
additional benefit. For instance, during the investigation of such
combination therapy, a potential detrimental interaction between
granulocyte colony-stimulating factor (G-CSF) and BM MNCs
has been discovered (88). This was based on the unfortunate tim-
ing of the BM MNCs injection, falling together with the moderate,
G-CSF-induced granulocyte peak around 48 h after stroke. Block-
ing the splenic scavenger system for apoptotic cells by admin-
istered BM MNCs as discussed above prevented the removal of
apoptotic granulocytes from the circulation, providing a systemic
pro-inflammatory bias increasing the numbers of granulocytes in
the lesioned hemisphere. This ultimately abolished the beneficial
effects provided by G-CSEF. The combination was also inefficient
in a study using normotensive, but senescent animals (182) as well
as after replacing BM MNC with MSCs (183).

Apart from potential detrimental effects exerted by cell thera-
pies, the pathophysiological environment in turn can compromise
the efficacy of administered cells. This is especially relevant since
stroke is a disease of the elderly population, in which endogenous
recovery processes and therapeutic interventions are likely to be
impaired by comorbidities and co-existing risk factors (184). A
prominent aspect is a subtle pro-inflammatory status of the aging
brain, making it susceptible to ischemic damage and both accel-
erating and aggravating post-stroke neuroinflammation. This sit-
uation severely limits therapeutic efficacy of cell treatments and

should be considered in preclinical research (185). Moreover,
the complex environment in a comorbid patient population may
trigger unintended or detrimental responses that have not been
observed to that extend in animal models. Implications of this
situation for the translational process, in principle applying to all
forms of experimental therapies, have recently been reviewed by
Hermann and Chopp (186). In particular, three highly relevant
scenarios have been pointed out: an effect being beneficial in an
otherwise healthy model organism may (i) provoke an ambiguous
response or (i) be even detrimental in the pathophysiological
context, and (iii) the desired therapeutic effect could interfere
with the response to another treatment (e.g., parallel medication).
For example, a recent study revealed such interference between
MSCs and dexamethasone when conjointly applied as an anti-
inflammatory treatment (187). Here, the MSC-induced reduction
of T cell proliferation was reversed in a dose-dependent manner
by dexamethasone, which also reversed the positive impact of
MSC transplantation in an animal model of liver fibrosis. More-
over, some drug classes, such as neuroleptics, have been shown to
impair post-stroke recovery (188) and may therefore also interfere
with cell-based effects on functional recovery. On the other side, a
thorough investigation of drug—cell interactions can pave the way
to therapeutic utilization of potential synergistic effects, providing
an add-on benefit as exemplified by some recent investigations
(189, 190). Since the field is both highly complex and severely
underinvestigated particularly with respect to those drug classes
commonly given to stroke patients (e.g., antihypertensive, antidi-
abetics, thrombolytics, and anticoagulants), further preclinical
research on these aspects is highly necessary.

Problems Related to Improper Cell
Product Manufacturing

Application of therapeutic cells in the clinical environment
demands cell production wunder conditions of Good
Manufacturing Practice (GMP). Moreover, therapeutic cell
products are subject to the advanced therapy medicinal cell
product (ATMP) legal framework of the European Medicines
Agency (EMA) or similar regulations, such as supervised by
the Office of Cellular, Tissue and Gene Therapies of the Food
and Drug Administration (FDA) in the United States. The strict
regulatory control of therapeutic cell production is intended to
enhance safety of novel cell products for patients by excluding
the presence of viral contaminants, mycoplasma, endotoxins,
or xenogeneic supplements. This makes adverse events related
to the manufacturing process very unlikely. Nevertheless, some
countries have issued less strict regulations, which may increase
the risk for manufacturing-related complications. Indeed, some
adverse events reported after cell therapy are related to improper
cell product manufacturing. For example, dimethylsulfoxide
(DMSO), a cytotoxic cryoprotectant frequently used in protocols
for laboratory- and GMP-grade cryopreservation of cells, is
occasionally found in the cell suspension. DMSO has been
reported to cause allergy reactions (191), while aseptic meningitis
has been reported after intrathecal administration of DMSO-
containing suspensions (75). More severe complications like
transient encephalopathy, stroke, and myocardial infarction have
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also been reported, which might be due to the vasospasm effect
of DMSO after systemic infusion (192). Complications related to
cell production or the application of unsafe cellular preparations
represents a severe safety concern in destinations of stem cell
tourism (193). The highly inappropriate systematic investigation
and follow-up of these cases by dubious private stem cell therapy
providers subjects any quantitative statement or risk estimation
to speculation, but it is unfortunately undoubted that such cases
exist. An efficient way to prevent these is public education (194).
This is also important since commercial exploitation and causing
harm to patients being desperately in seek for a cure will for sure
compromise the scientific efforts of serious stem cell researchers
and clinicians and may even bring down the entire field.

Conclusion and Recommendations

Each therapy causes side effects and adverse events. Hence, it does
not come as a surprise that complications have also been reported
for cell therapies upon stroke. Although a final conclusive state-
ment would clearly be premature, the risk for severe adverse events
in human patients seems to be relatively low considering the data
derived from clinical trials that have been conducted so far. Even if
present more frequently, side effects would not generally comprise
the value provided by cell therapies in stroke as long as they are
controllable and outweighed by the benefit provided to patients.
Importantly, a number of severe and potentially devastating com-
plications including secondary brain infarction after intraarterial
cell delivery and teratoma formation following transplantation
of more naive stem cell populations have been detected by care-
fully conducted preclinical safety studies. This has restricted the
incidence of severe complications to a small number of patients,
many of whom have fallen victim to dubious commercial cell
transplantation services. On the other side, a better understanding
of potential risks will facilitate the translational process for stem
cell therapies in stroke and will make this translation safer by
providing the community with a reasonable chance to work out
protocols circumventing such complications. A sound awareness
of potential side effects and limitations of cell therapies for stroke
may even inform new concepts about how these therapies can be
further amended regarding their efficacy or at least help to define
the particular conditions, which come with the highest chances to
see therapeutic success. Weighting these aspects, we recommend
considering the following points during translational stem cell
research in stroke:

e The STAIR and STEPS expert community guidelines should
be consulted and followed to maximize the value of research
projects.

e Non-invasive monitoring techniques and detailed post-mortem
histological investigations should be applied whenever possible
to reduce the risk of leaving potential complications of stem cell
therapies undetected in preclinical experiments.

e Special attention should be given on potentially altered effects
of cell therapies in the pathophysiological context, presence of
comorbidities, and an aged population.

e Multicenter preclinical investigations could help to target
complex pathological conditions (e.g., polypharmacy, comor-
bidities) under which potential side effects may materialize.

Efficacy of a particular approach should be confirmed before
moving on to clinical investigations.

o Careful safety assessments are particularly warranted for exper-
imental tandem treatments reported in preclinical literature, for
example, combining cell transplantation with pharmacological
therapies.

e Large animal experiments help to define optimal routes of cell
administration, the exploration of novel, imaging-based clinical
monitoring protocols, and should be considered for long-term
safety assessments.

e Potential systemic effects (e.g., immunological responses,
ectopic cell engraftment, and proliferation) must be taken into
consideration when assessing system effects of both local and
systemic cell applications.

e During the design of a clinical trial, the human anatomy
(patho-)physiology should be considered when interpreting
results from preclinical studies and deriving implications
thereof.

e Adverse events should be carefully documented and reported,
even if considered non-study related or indifferent between
treatment and control groups.

e Clinical trials should be planned in such a way that they utilize
available non-invasive monitoring techniques to the optimal
benefit as well as frequent and long enough to ensure the
detection of potential rare or late complications.

In light of the concerns and complications discussed in this
review as well as the recommendations listed above, more pre-
clinical and, later on, clinical safety studies should be conducted
to maximize the potential benefits of cell therapies for stroke
patients while reducing related risks. Moreover, we have to exploit
all option to minimize the possibility of leaving potential compli-
cations undetected particularly in early stage clinical trials. A con-
servative study design focusing on additional safety rather than
accessory efficacy endpoints appears imperative in this context.
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