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Autoimmune inflammation of the limbic gray matter structures of the human brain has
recently been identified as major cause of mesial temporal lobe epilepsy with interictal
temporal epileptiform activity and slowing of the electroencephalogram, progressive
memory disturbances, as well as a variety of other behavioral, emotional, and cognitive
changes. Magnetic resonance imaging exhibits volume and signal changes of the
amygdala and hippocampus, and specific anti-neuronal antibodies binding to either
intracellular or plasma membrane neuronal antigens can be detected in serum and
cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function
and integrity are increasingly becoming characterized, potentially contributing effects of
T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known
to directly interact with major histocompatibility complex class I-expressing neurons
in an antigen-specific manner. Here, we summarize current knowledge on how such
direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and
integrity on a single cell and network level and provide an overview on methods to further
corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro
studies.

Keywords: limbic encephalitis, cytotoxic CD8+ T cell, T cell–neuron interaction, future strategies, autoimmune
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Role of Neuronal Antigen-Reactive CD8+ T Cells in Limbic
Encephalitis – The Story So Far

Clinical Features of Limbic Encephalitis
Patients with limbic encephalitis (LE) (1–3) usually present with new onset mesial temporal
lobe seizures, progressive memory disturbance, and a variety of other behavioral, emotional, and
cognitive changes. Cerebrospinal fluid (CSF) exhibits inflammatory changes including lymphocytic
pleocytosis, elevated protein, as well as intrathecal immunoglobulin (Ig)G synthesis or oligoclonal
bands (OCB). The electroencephalogram (EEG) typically shows temporal epileptiform activity and
slowing. Magnetic resonance imaging (MRI) exhibits volume and signal changes of the amygdala
and hippocampus suggesting a sequence of acute inflammation followed by inflammation-driven
neurodegeneration (4–7). Moreover, serum and CSF may contain specific auto-antibodies binding
to either intracellular or plasmamembrane-boundneuronal antigens (8–10) illustrating the presence
of an adaptive neuron-directed autoimmune reaction.
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Putative Immunopathogenesis of Limbic
Encephalitis
Antigen-specific cellular and humoral immune responses directed
toward central nervous system (CNS) neurons are believed to
develop as a multi-step process (8, 11, 12). Soluble or cell-bound
neuronal antigens or epitopes resembling them are engulfed and
presented in the context of major histocompatibility complex
(MHC) II molecules to CD4+ T cells by professional antigen-
presenting cells (APCs) within secondary lymphatic organs (e.g.,
cervical lymph nodes). This in turn permits CD4+ T cells to
license APCs to cross-present these antigens in the context of
MHC Imolecules to naïve CD8+ T cells, which then become acti-
vated and acquire cytotoxic effector functions (cellular effectors).
Moreover, naïve B cells, which encounter, ingest, and present their
cognate antigen in the context of MHC II molecules to CD4+
T cells, are in turn activated and become antibody-secreting
plasma cells (humoral effectors). Following peripheral activation,
both antibody-secreting plasma cells and cytotoxic CD8+ T cells
(together with CD4+ T cells)may enter the CNS to attack neurons
and cause functional and structural impairment (9, 10, 13). In
general, both effector arms of the adaptive immune response may
be activated irrespective of the cellular localization of the neuronal
antigen or its antigenic epitope (plasma membrane vs. interior
cellular compartments).

In terms of relevant effector mechanisms, plasma cell-derived
antibodies bind to extracellular conformational epitopes of neu-
ronal plasma membrane antigens and specifically impact their
function, expression, and localization. Whether antibodies may
also bind to and impact the function of intracellular neuronal
antigens either by passive uptake into the neuron or by active
binding to intracellular antigens, which are transiently exposed
to the plasma membrane, is currently a matter of debate (14–
17). In contrast, cytotoxic CD8+ T cells usually recognize linear
peptides derived from antigens located in interior cell compart-
ments following theirMHC I-bound presentation on the neuronal
surface (13). Whether peptides derived from neuronal surface
membrane antigens are also presented to cytotoxic CD8+ T cells
in the context of MHC I molecules is unclear at present (12).

Indeed, several findings suggest a pathogenic role of cytotoxic
CD8+ T cells for neuronal damage in different forms of LE are
as follows (18, 19): (i) neuronal damage often correlates with the
number of CD8+ T cells, (ii) CD8+ T cells are found in close spa-
tial proximity to neurons within the CNS, (iii) CD8+ T cells show
an activated phenotype with substantial expression of the effector
molecules (e.g., perforin and granzymes) in cytotoxic granules
with a polar orientation toward neuronal cell membranes, (iv)
some CD8+ T cells stain positive for CD107 indicating recent
exocytosis of cytotoxic granules (i.e., degranulation), (v) neurons
exhibit substantial cell surface expression of MHC I molecules
allowing for cognate antigen-recognition by CD8+ T cells, and
(vi) CD8+ T cells exhibit a restricted T cell receptor (TCR)
repertoire (i.e., oligoclonal expansions), suggesting that they have
expanded from a few precursors locally responding to distinct
antigen epitopes in the CNS.

Hence, ongoing studies focus on the hypothesis that the
encephalitides with antibodies against intracellular antigens [e.g.,
glutamic acid decarboxylase (GAD)] show neurodegeneration

FIGURE 1 | Antibody- and T cell-mediated neurotoxicity. After their
peripheral activation, antibody-releasing plasma (blue) and activated CD8+

T cells (green) cross the blood–brain barrier and migrate into the brain
parenchyma. Both effector arms of the adaptive immune system may
selectively attack either inhibitory GABAergic interneurons (orange) or
excitatory glutamatergic principal neurons (yellow) at synaptic as well as
extra-synaptic sites. While plasma cell-derived antibodies may bind to
neuronal surface antigens [e.g., GABA receptors (blue) or glutamate receptors
(pink)], pathogenic CD8+ T cells recognize peptides derived from intracellular
antigens (e.g., GAD in inhibitory interneurons or Hu in excitatory principal
neurons) presented in the context of a MHC I molecule on the neuronal
surface membrane. Both antibody- and T cell-mediated attacks finally cause
neuronal dysfunction and degeneration. Abbreviations: GABA, γ-amino
butyric acid; GAD, glutamic acid decarboxylase; MHC, major
histocompatibility complex.

mediated by T cells, while encephalitides with antibodies against
surface antigens [e.g., γ-amino butyric acid (GABA) receptor] are
antibody mediated (Figure 1) (18, 20). These findings indicate
that substances increasing GABA signaling may prevent tissue
damage and seizures (21).

In contrast to antibodies, CD8+ T cells cannot directly impact
the function or expression of their cognate antigens. Instead, cyto-
toxic T cells recognize their specific antigen only when presented
on MHC I molecules on the surface of respective neuronal sub-
types. This enables them to contribute to neuronal dysfunction
and cell death by antigen-dependent release of effector molecules
(13), as discussed below. Mouse data suggest that neuronal vul-
nerability against CD8+ T cell attacks might vary owing to their
propensity to upregulate MHC class I molecules in response to
inflammatory IFN-γ release (22). Moreover, catecholaminergic
neurons in mice and humans have been shown to be particu-
larly susceptible to T cell-mediated cytotoxic attacks (23). Thus,
cellular immune responses may be restricted to distinct neu-
ronal populations and networks due to their differential anti-
gen expression pattern and capability of MHC I-mediated anti-
gen presentation (22, 23). Moreover, distinct neuronal popula-
tions may take up soluble protein antigens released from other
neural cell populations, process and present them in the con-
text of MHC I molecules, thereby triggering a CD8+ T cell
attack (23).
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Effector Mechanisms During CD8+ T Cell–Neuron
Interactions In Vitro
It has generally been presumed that the CNS is an immune-
privileged organ, and that MHC I molecules are not expressed on
neurons (24). However, CD8+ T cell-derived IFN-γ has recently
been shown to cause immediate loss of dendrites and synapses, i.e.,
deafferentiation of neurons followed by delayed loss of neuronal
somata in CNS gray matter areas (25). Reduced synaptic input
through neuronal deafferentiation together with proinflamma-
tory cytokine release may, in turn, reduce neuronal electrical
activity below a critical threshold. Consequently, MHC I expres-
sion (22, 23) and endogenous or even exogenous antigen presen-
tation are promoted and may thus render neurons susceptible for
an antigen-dependent CD8+ T cell attack (26, 27). Consistently,
it has recently been shown that MHC I expression per se in turn
exerts profound effects on neuronal long-term plasticity in mice
(28–33).

After encountering such neurons that present cognate antigens
in the context of MHC I molecules, CD8+ T cells arrest and
undergo stable long-term interactions (13, 34). TCR-signaling
upon recognition of the appropriate antigen in the context of
MHC I molecules leads to redistribution and accumulation of
cytoskeletal, adhesion, co-stimulatory, and signal transduction
molecules of the CD8+ T cell toward the cell–cell interface,
resulting in the formation of the immunological synapse (18, 35).
Similar to those formed by CD4+ T cells, the synapses formed by
cytotoxic T cells during killing of their target consists of a ring of
adhesion proteins surrounding a central core containing the TCR
and downstream signaling proteins. However, synapses in CD8+
cells additionally possess a secretory domain for the exocytosis
of effector molecules and reveal a shorter lifespan compared to
CD4+ cell synapses (35).

CD8+ T cell-mediated cytotoxicity is predominantly mediated
via two largely independent pathways (36, 37): (i) Granule cyto-
toxicity occurs by release of perforin together with a variety of
granzymes. Perforin alone can lead to rapid necrosis of the target
cell within minutes through the formation of large unselective
transmembrane pores leading to rapid swelling and rupture of the
cell membrane (38). Alternatively, perforin mediates the traffick-
ing of granzymes into the target cell promoting apoptosis within
a few hours. The exact mechanisms remain somewhat elusive
(38, 39). (ii) Target cell apoptosis may also occur through the
ligation of cell death receptors [e.g., FasL/Fas; (40)]. Together, Fas-
induced apoptosis and the perforin pathway are the two main
mechanisms by which cytotoxic T lymphocytes induce cell death
in cells expressing foreign antigens (41).

The use of either the FasL–Fas or the perforin–granzyme path-
way of CD8+ T cells depends on the strength of the antigen-signal
delivered to the CD8+ T cell [i.e., the number of peptide (p)MHC
I (pMHCI) complexes and the affinity of theTCR complex includ-
ing co-receptors to the pMHC I complex]. This eventually results
in different intracellular Ca2+ signals in T cells. Weak antigen-
signals favor killing via the FasL–Fas pathway, whereas strong
antigen-signals promote killing via perforin–granzyme exocytosis
(42–44). Notably, 1–3 pMHC I-complexes per neuron are shown
to be sufficient to elicit a cytotoxic T cell response when the
TCR–pMHC I-affinity is high (44, 45). However, in case of low

TCR–pMHC I-affinity, several thousand pMHC I complexes per
target cell are needed to elicit an equal response (46).

Impact of CD8+ T Cells on Neuronal Excitability
and Neuronal Network Activity
Besides the induction of cell death, effector molecules of cyto-
toxic CD8+ T cells are capable of disturbing electrical signaling
in excitable target cells. The impact of these molecules on the
electrical excitability has been extensively studied in ventricular
cardiomyocytes but not neurons (47, 48).

Within minutes, purified perforin or lytic granules exposed
to ventricular cardiomyocytes cause membrane depolarization as
well as changes in amplitude and duration of action potentials.
These effects are mediated by perforin per se and cannot be
induced by granzymes alone (49, 50). Perforin monomers assem-
ble to form large, unselective voltage-independent polyperforin
channels in the target cell membrane (49, 50). This allows large
non-selective ion fluxes over the plasmamembrane, as also shown
in lipid bilayermembranes and other intact cells (51, 52). After 2 h,
affected cells exhibit an intracellular Ca2+ concentration in the
micromolar range compared to low-nanomolar concentrations
under physiological resting conditions. This is most likely due to
transmembrane Ca2+ entry through perforin pores rather than
through voltage-gated Ca2+ channels or by Ca2+ release from
intracellular stores (53). Most importantly, these ion fluxes lead to
the abolishment of transmembrane electrochemical ion gradients,
an intracellular Ca2+ overload, and finally result in total electrical
silence and collapse of the target cell.

Similarly, exposition with activating anti-Fas-receptor antibod-
ies as well as conjugation with perforin-deficient CD8+ T cells
also induced pronounced perturbation of electrical signaling in
ventricular cardiomyocytes. The cells’ resting membrane poten-
tials depolarize and their action potential amplitudes are reduced.
Notably, the action potential duration is prolonged, a finding in
marked contrast to the effects of perforin (54). Fas-receptor acti-
vation results in generation of 1,4,5-inositol-trisphosphate (IP3),
which in turn triggers the release of Ca2+ from intracellular stores.
Fas activation further causes a pronounced attenuation of tran-
sient outward K+ currents and an enhancement of L-type Ca2+

currents, and thus, prolongs the action potential duration. Elec-
trophysiological effects of Fas-receptor activation can be mim-
icked by intracellular application of IP3 and can be abrogated by
blocking phospholipase C, the IP3 receptor channel or store deple-
tion (47, 54). Together, similar to perforin, Fas activation results
in an intracellular Ca2+ overload of ventricular cardiomyocytes
within a few hours.

In neurons, Ca2+ overload is associated with long-lasting
changes in neuronal Ca2+ homeostasis and disturbed functioning
of several Ca2+-dependent proteins (55–58). Furthermore, pro-
vided that most of the subcellular elements required for CD8+
T cell-mediated impairment of electrical excitability in cardiomy-
ocytes are also present in neurons (59), it seems conceivable to
assume that similar mechanisms will also lead to perturbation
of neuronal excitability and Ca2+ homeostasis upon direct and
indirect CD8+ T cell-neuron interactions.

In a previous study from our group, we used whole-cell patch
clamp recordings and Ca2+ imaging from MHC I-expressing,
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ovalbumin (OVA)–peptide loaded cultured hippocampal neurons
(60). Thereby, we demonstrated an immediate increase of the
whole-cell membrane conductance upon direct cell–cell contact
with activated antigen-specific CD8+ T cells leading to an impair-
ment of electrical signaling (silencing). This was due to shunting
of the membrane capacitance following insertion of CD8+ T cell-
derived channel-forming perforin, which was paralleled by an
increase of intracellular Ca2+ levels. Thus, perforin-dependent
neuronal silencing is an immediate consequence of MHC I-
restricted interaction ofCD8+ Tcells with cultured neuronsmuch
like the effects observed in cardiomyocytes (13, 60).

Importantly, an increase of the intracellular Ca2+ concentra-
tion could not only be detected in the neuron directly engaged
with the CD8+ T cell but also in neighboring neurons with-
out direct T cell contact (60). The nature of this “spill over-
mechanism” explaining the intracellular Ca2+ accumulation in
neighboring neurons has not been studied in detail. Possible
mechanisms include that either membrane depolarization or
Ca2+ accumulation causes intense synaptic signaling within the
network of cultured neurons. However, glutamate toxicity is
unlikely because glutamate could not be detected in culture
supernatants after granule-induced cytotoxicity (61). Thus, these
in vitro data indicate that only spatially confined trans-synaptic
neuronal excitotoxicity involving activation of the respective
ionotropic glutamate receptors might further promote neuronal
damage. Alternatively, spatially non-confined release of cyto-
toxic effector molecules from the CD8+ T cell in contact with
the neuron could also explain collateral effects in surrounding
neurons (13).

Moreover, CD8+ (and CD4+) T cells have been shown to
release glutamate thatmay contribute to effects on remote neurons
within a distinct network (62, 63). Also, cytokines are released
from CD8+ T cells and might affect the excitability and via-
bility of neuronal networks. Thus, INF-γ has been shown to
enhance glutamate excitotoxicity by direct intracellular trans-
signaling between its INF-γ and AMPA/kainate receptors (64).
TNF-α is shown to have an intrinsic ion channel-forming activity.
Similar to polyperforin molecules, TNF-α trimers form largely
unselective, high-conductance ion channels that may insert into
lipid bilayer or cell membranes promoted under low pH val-
ues (65–67). Moreover, other inflammatory mediators are also
likely to contribute to the perturbation of excitability and struc-
ture of neuronal networks [e.g., IFN-α and IL-1β in hypothala-
mic slice preparations, intraventricular IL-2 injections; reviewed
in Ref. (68)].

These findings suggest a profound disturbance of neuronal
function in close vicinity to as well as remote from the site of direct
CD8+ T cell–neuron interaction and thus a significant impact of
CD8+ T cells on structure and function of distinct neuronal net-
works (60). Significant limitations of this study, however, include
that it was performed using neurons loaded with non-limiting
amounts of exogenous OVA peptides following IFN-γ-induced
MHC I expression. Moreover, CD8+ T cells had a transgenic
TCR specific for the respective OVA–peptide and were strongly
pre-activated in culture before experimentation.

These limitations have been partially overcome by the use of
virus-infected neurons incubatedwith virus-specific CD8+ Tcells
isolated from brains of infected rodents (34). In this experimental

setting, CD8+ T cells caused an immediate profound increase
of neuronal network activity in multi-electrode recordings (34),
suggesting that depending on the experimental conditions, direct
CD8+ T cell–neuron interactions may effectively modulate elec-
trical signaling within neuronal networks.

However, as most of these findings have been obtained from
in vitro studies, the in vivo relevance of these results awaits
demonstration.

Lack of Tools for the Study of CD8+

T Cell-Neuron Interactions and Potential
Methods of Resolution
Despite the clear evidence for a pathogenic role of CD8+ T cells
in autoimmune inflammation of the limbic gray matter struc-
tures constituting LE and other conditions, it has been difficult
to develop an adequate in vivo model of autoimmune CD8+ T
cell-mediated CNS inflammation directed against an endogenous
neuronal antigen in rodents. In adoptive transfer experiments
with myelin-reactive encephalitogenic CD8+ T cells, analogous
to those performed with encephalitogenic CD4+ T cells, it was
extremely difficult to induce clinically apparent disease in rodents.
For example, transfer of very high numbers (3× 107, correspond-
ing to about 10% of the endogenous CD8+ T cell population)
of in vitro pre-activated hemagglutinin (HA)-specific CD8+ T
cells induces experimental autoimmune encephalitis (EAE) in less
than half of recipient mice expressing HA as a neo-self antigen
in oligodendrocytes (69). In another EAE-model employing TCR-
transgenicmyelin basic protein (MBP)-specific CD8+ T cells, dis-
ease induction requires transfer of 2× 107 pre-activated cells (70).
In contrast, as few as 1× 105 MBP-specific CD4+ T cells suffice to
induce EAE in mice (71), indicating that the pathogenic potency
of activated CNS–antigen reactive CD4+ T cells exceeds that of
their CD8+ counterparts by more than two orders of magnitude.
Similarly, strong tolerance also exists for CD8+ T cell reactions
toward endogenous neuronal antigens (72, 73). This is most likely
to be distinct but poorly understood central and peripheral (74)
as well as CNS-specific (75) tolerance mechanisms (13). These
physiological mechanisms might establish a strict regulation of
such immune responses given their strong destructive potential,
especially in target organs with limited regenerative capacity, such
as the CNS.

However, in case of distinct foreign neuronal antigens, CD8+ T
cell–neuron interactions could be studied in vivo without requir-
ing the break of strong self-tolerance to endogenous neuronal
antigens (25, 34, 76).

Non-neuronal cells play a central role for the maintenance
and functionality of neurons and networks in the CNS and may
become targets of auto-reactive CNS-invading CD8+ T cells.
For instance, in addition to neurons, astrocytes have been iden-
tified as targets for CD8+ T cells in Rasmussen’s encephalitis
(RE) (77), a paradigmatic model of CD8+ T cell-driven neu-
rodegeneration and epilepsy (78).Moreover, intracellular antigens
expressed in oligodendrocytes have been described as targets of
cerebral autoimmunity in CV2-antibody-associated encephalitis
(79–81). In the context of several other inflammation-driven
neurodegenerative diseases, it has already been shown that
death of non-neuronal cells promotes subsequent neuronal loss
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[e.g., dying of oligodendrocytes promotes axonal degeneration
in multiple sclerosis, Ref. (82)]. Further, it has been shown that
cytotoxic effector CD8+ T cells selectively directed toward an
oligodendrocyte-related neo-self-antigen are capable of inducing
caspase-dependent apoptosis upon recognition of their cognate
antigen, which is accompanied by simultaneous apoptosis of gray
matter neurons (83, 84). Hence, impairment of neuronal structure
and function may also occur as a collateral effect of an attack by
CNS-invasive CD8+ T cells.

Methodological Repertoire for the Study of
Neuronal Effects of CD8+ T Cell Attacks:
Possible Solutions to Pending Problems

Compared to other disease entities research in the field of LE
pathogenesis is still in its early stages. Meanwhile, pathogenic
effects of plasma cell-derived antibodies on neuronal function and
integrity are increasingly becoming characterized (85–90), poten-
tially contributing effects of T cell-mediated immunemechanisms
are highly likely to be of pivotal importance but remain poorly
understood.

In this respect, the following issues are of primary importance:
(i) how do cytotoxic CD8+ T cells influence the functionality of
neurons or neuronal networks?; (ii) it remains to be demonstrated
that an attack of cytotoxic CD8+ T cells is a conclusivemechanism
to provoke pathological hyperexcitability in a neuronal network
that finally leads to temporal lobe epileptic seizures; and (iii) are
non-neuronal cells affected by the immune attack in a way that
involves collateral neuronal damage?

Very recently, a new mouse model for anti-NMDA encephalitis
was described in which patient CSF (containing NMDA recep-
tor specific auto-antibodies) was delivered directly into mouse
brains via osmotic pumps thereby inducing behavioral and mem-
ory deficits in mice (86). However, the establishment of an ani-
mal model specifically reflecting LE-specific pathophysiology,
namely, primary CNS-specific and CD8+ T cell-driven autoim-
munity against neuronal targets, is still one of the most press-
ing tasks in LE research. Indeed, it has been demonstrated that
several weeks following intrahippocampal kainate administration
accompanied by acute symptomatic seizures, mainly CD8+ T
cells accumulate in the parenchyma of lesioned hippocampi and
seem to strongly modulate neuronal degeneration and reorga-
nization leading to an attenuated neuronal network excitability
and generation of spontaneous epileptic seizures implying a pro-
found impact of secondary adaptive neuron-directed immunity
on epileptogenesis in this model (91, 92). However, to date, no
animal model exists, in which a primary CD8+ T cell response
targets distinct neuronal populations based on an antigen-specific
direct interaction. Such a disease model, however, would give
insights into pathophysiological mechanisms in vivo and ex vivo
as well as it would be beneficial for any kind of treatment studies
addressing primarily immune-mediated epilepsies. Despite the
lack of an adequate LE animal model, antigen-directed CD8+
T cell-mediated neuronal attacks can be mimicked in different
experimental settings. For instance, in vitro activated MHC I-
restricted, OVA-reactive T cells from OT-I mice (93) can be used
in combination with neurons/neuronal tissue from NSE-OVA

mice expressing OVA as a neuronal auto-antigen under control
of the neuron-specific enolase promoter (94).

Our group published one of the first in vitro studies focusing
on immediate electrophysiological consequences on a single neu-
ron upon direct antigen-directed CD8+ T cell attack. Real-time
patch clamp recordings from OVA-loaded cultured hippocampal
neurons (s. above) were performed during an attack from an
OVA-directed activated CD8+ T cell. Analyses of different basic
electrophysiological parameters showed that the cytotoxic attack
against OVA-presenting neurons led to cellular shrinking and
significant reduction of the membrane resistance compared to
recordings with control peptide. Increased neuronal membrane
conductance during antigen-directed T cell–neuron interaction
was attributable to incorporation of perforin into the neuronal
surface membrane. Impairment of electrical signaling paralleled
by Ca2+ overload occurred within minutes. However, antigen-
dependent apoptosis was not necessarily dependent on perforin
and granzymes indicating other, so far unknown CD8+ T cell-
mediated mechanisms promoting cell death (60).

Besides our sparse knowledge about consequences on single
neuron functions due to direct immune cell attacks, we can
only speculate on changes on the network level. At this point,
an early imaging technique, whose widespread usage has been
limited due to the sophisticated technical effort necessary to run
successful experiments (95), may prove useful. It makes use of
living brain slices loaded with voltage-sensitive dyes that change
their fluorescent properties upon alterations of the membrane
potential. Upon a defined depolarizing stimulus, the strength and
the spreading of a network response can be visualized with high-
temporal–spatial resolution. Conclusions can be drawn about the
network’s functionality and intra-connectivity (96). An alternative
in vitro technique to record network activity uses multi-electrode
arrays, which offer the capability of recording and stimulating
at multiple sites simultaneously (97). This technique has already
been used to investigate pharmacologically induced epileptiform
network activity (98). However, to obtain insights into immune
attack-induced changes of neuronal functioning in vivo, electro-
physiological recordings from freely behaving animals need to
be done. This advanced technique permits the observation of
cross-talk between single or multiple neurons in interconnected
brain areas in combination with different behavioral contexts
[e.g., Ref. (99)].

Further classical electrophysiological techniques may be suit-
able and informative. Long-term plasticitymeasurements in living
hippocampal slices from rodents could reveal direct neuronal
effects of a cellular immune response on synaptic plasticity as a
basis for learning and memory processes. Especially, since mem-
ory disturbances are one of the prominent LE symptoms, this
technique can be used to approach this aspect of the disease.

Conclusion

In recent years, an ever increasing number of endogenous neu-
ronal plasma membrane auto-antigens have been identified as
targets of specific auto-antibodies in LE and other autoimmune
encephalitides. Pathogenic effects of auto-antibodies on neuronal
excitability and integrity are increasingly becoming recognized
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on the single cell, network, and systems level. Auto-reactive
T cells have been suggested to target neurons in autoimmune
encephalitides associated with antibodies to endogenous intracel-
lular neuronal antigens. However, the consequences of such direct
T cell–neuron interactions remain poorly understood.

CD8+ T cell-derived IFN-γ may first contribute to neuronal
MHC I up-regulation and antigen presentation. By a variety of
molecularmechanisms, neuron-directed CD8+ T cell attacksmay
immediately modulate neuronal excitability and network activity
over a wide range of functional states and trigger acute symp-
tomatic seizures as well as neuropsychiatric symptoms. Subse-
quent inflammation-driven neuronal degeneration together with
thus far poorly defined processes of neuronal reorganization may
permanently alter structure and excitability in distinct neuronal

networks targeted due to their specific antigen expression pattern
and thus promoting chronic spontaneous seizures and epilepsy
together with other neuropsychiatric symptoms. To corroborate
these largely speculative mechanisms, effects of T cell–neuron
interactions need to be studied on single cell, network, and
systems level ideally in a suitable animal model using advance
electrophysiological and imaging methods.
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