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circadian phenotype composition is 
a major predictor of diurnal physical 
performance in teams
Elise Facer-Childs and Roland Brandstaetter*

School of Biosciences, University of Birmingham, Birmingham, UK

Team performance is a complex phenomenon involving numerous influencing factors 
including physiology, psychology, and management. Biological rhythms and the impact 
of circadian phenotype have not been studied for their contribution to this array of factors 
so far despite our knowledge of the circadian regulation of key physiological processes 
involved in physical and mental performance. This study involved 216 individuals from 12 
different teams who were categorized into circadian phenotypes using the novel RBUB 
chronometric test. The composition of circadian phenotypes within each team was used 
to model predicted daily team performance profiles based on physical performance 
tests. Our results show that the composition of circadian phenotypes within teams is 
variable and unpredictable. Predicted physical peak performance ranged from 1:52 to 
8:59 p.m. with performance levels fluctuating by up to 14.88% over the course of the 
day. The major predictor for peak performance time in the course of a day in a team is 
the occurrence of late circadian phenotypes. We conclude that circadian phenotype is 
a performance indicator in teams that allows new insight and a better understanding 
of team performance variation in the course of a day as often observed in different 
groupings of individuals.

Keywords: circadian, physical, mental, performance, sleep

introduction

Whether it is in the sports world, the academic world, or the corporate world, the pressures on per-
sonal best and team performances in modern society are growing and understanding the influencing 
factors affecting optimal performance, which span from cognitive and physical abilities to expert 
skills, training, and experience (1–3), becomes increasingly important. Both physical and mental 
performances are of great significance to individuals and teams when trying to maximize produc-
tivity or optimize performance and positive links between physical and mental performance have 
been identified in a considerable number of studies (4–11). Various factors are involved in overall 
performance, including intensity of activity, duration, response time (12, 13), the effect of physical 
activity on executive cognitive function (13–18), and individual fitness, which have impacts on post-
exercise mental performance (19). Critical decision-making is also imperative to overall optimal 
performance. Macora and colleagues (20) described that a state of “mental fatigue” occurs after 
extended periods of cognitive processing and found that exercise tolerance could be affected by the 
state of mental fatigue, impairing physical performance. Interestingly, it was the perception of effort 
that was significantly different under a mental fatigued state, and not any physiological functions, 
such as cardiovascular mechanisms (20). It has, therefore, been proposed in the motivation intensity 

http://www.frontiersin.org/Neurology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2015.00208&domain=pdf&date_stamp=2015-10-01
http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://dx.doi.org/10.3389/fneur.2015.00208
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:r.brandstaetter@bham.ac.uk
http://dx.doi.org/10.3389/fneur.2015.00208
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00208/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00208/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00208/abstract
http://loop.frontiersin.org/people/144423/overview
http://loop.frontiersin.org/people/142060/overview


October 2015 | Volume 6 | Article 2082

Facer-Childs and Brandstaetter Circadian phenotype and team performance

Frontiers in Neurology | www.frontiersin.org

theory that perceived exertion and potential motivation influ-
ence performance (21). Further interactions between circadian 
processes and sleep homeostasis in human performance have 
been described in the two-process model of sleep regulation (22). 
Disturbances in these processes have been shown to affect neural 
activation and brain metabolism, ultimately influencing mental 
and physical performance (23). This model has been adapted to 
account for a buildup of sleep debt by McCauley and colleagues 
(24). In this model, the effect on performance is determined by 
the daily time spent awake and a recent study showed that physi-
cal performance strongly depends on time since awakening (25) 
supporting the view that this model requires further development 
and consideration of further sleep related parameters (23).

A complex network of endogenously driven biological clocks 
regulates virtually all physiological and behavioral diurnal 
variations in humans. Circadian rhythmicity has been shown to 
contribute to the regulation of key physiological and cognitive 
processes involved in performance, including plasma levels of 
hormones, glucose tolerance, core body temperature, blood pres-
sure, and performance variables, such as reaction times, alertness, 
and memory speed (26–30). The master circadian oscillator, the 
hypothalamic suprachiasmatic nucleus (SCN), acts as an internal 
coordinator and synchronizer at the whole-organism level (31–
33). At the cellular level, circadian rhythm generation is based 
on interlocking molecular feedback loops and post-translational 
modifications, referred to as the transcriptional translational 
feedback loop (TTFL) (34). Individual circadian rhythms, i.e., 
whether individuals are “larks” or “owls” (35, 36), have strong 
impact on the individual performance (25). The differences 
between larks and owls, also called “morning/evening types” or 
“chronotypes” (35, 37), and referred to as circadian phenotypes 
(25) in this paper, are due to environmental influences, genetic 
variation, age, and gender. The combination of these factors 
results in disparities between individuals’ biological clocks and 
how they entrain to exogenous (environmental) cues, such as the 
environmental light/dark cycle and social factors (38).

In this paper, we are exploring the possible impact of indi-
vidual diurnal performance variation in interdependent group 
situations (e.g., sports teams) depending on the within-group 
composition of circadian phenotypes. We use a simple model 
considering individual diurnal performance variation of differ-
ent circadian phenotypes to predict team performance variability 
establishing circadian phenotype as an important performance 
indicator in teams.

experimental Procedures

Participants and chronometric Testing
Two hundred and sixteen individuals (114 females, 102 males, 
ages ranged from 16 to 35, average age of 21.5 ± 3.96 years), across 
12 sports teams including 5 field hockey teams and 7 football 
teams (Table  1) with standards ranging from regional club to 
international level participated in this study. Participants were 
recruited during training sessions and all team members asked 
to complete the RBUB chronometric test. In 9 out the 12 teams, 
100% of team members returned the completed chronometric 
test (teams 1, 3, 4, 5, 6, 7, 8, 11, and 12); in the remaining three 

teams, 82% (team 2), 91% (team 9), and 73% (team 10) of team 
members returned the completed chronometric test.

The chronometric questionnaire (RBUB chronometric test) 
(25) was developed to study sleep/wake-related circadian param-
eters as compared to training, competition, and performance 
variables. All data were collected according to the Human Ethics 
regulations of the University of Birmingham and all participants 
were informed that data collected were treated anonymously 
and held according to the Data protection Act 1998. The RBUB 
chronometric test (25) collects information on wake-up times, 
sleep-onset times, sleep-onset delays, sleep duration, alarm use, 
light exposure, food intake, exogenous schedules (work, training, 
competition, school and/or university timetables), sleep quality, 
daytime naps, periods of mental and physical high and low activ-
ity, energy drink consumption, alcohol consumption, caffeine 
consumption, and smoking. Completion of the chronometric 
test took athletes 10 min on average. For each individual, scores 
were allocated to wake-up times and sleep-onset times during 
weekdays, weekends, and free days, the time lag between weekday 
and weekend wake-up times, self-reported times of high (men-
tally and physically active) and low (tiredness, fatigue) activity 
periods and meal times. Masking factors, such as working hours, 
university timetables, and training schedules, were considered 
when allocating scores. Scores represented time in hours and 
were used to categorize into early (ECT), intermediate (ICT), and 
late (LCT) circadian phenotypes.

Modeling of Predicted Physical Performance 
rhythms
Predicted physical performance was calculated from previously 
collected performance-test results (25). Briefly, performance data 
from three different performance tests (BLEEP tests, sprints, and 
skills/accuracy tests) carried out at six different times of day 
between 07.00 and 22.00 h were analyzed separately for athletes of 
the three different circadian phenotypes, i.e., early (ECT), inter-
mediate (ICT), and late (LCT), and diurnal performance curves 
produced for each circadian phenotype showing significantly 

TaBle 1 | Details of composition, gender, total number of team players, 
and sport for each team.

Team  
number

Male/female 
(M/F)

sport number of participating 
team members (N)

T1 M Football 17

T2 M Football 9

T3 M Football 30

T4 F Football 32

T5 F Field hockey 25

T6 F Field hockey 30

T7 M Field hockey 22

T8 F Football 14

T9 M Field hockey 10

T10 F Field hockey 8

T11 F Football 14

T12 M Football 14

The teams studied included a total of 216 competition-level athletes across 12 different 
sports teams. There were six male teams and six female teams. Individual ages ranged 
from 16 to 35, average age being 21.5 with a SD of 3.96.
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different curve shapes and peak performance times in the course 
of a day (25).

From the previously obtained BLEEP test results (25), rep-
resentative daily performance curves were generated for each 
circadian phenotype by using second-order polynomial non-
linear regressions generating 15-min time interval curve fits. Peak 
performance times were determined as time of day of maximum 
values of second-order polynomial non-linear regression curves 
and peak performance values as percentage of maximum per-
formance. The x/y data of these curve fits were then combined 
by averaging ECT, ICT, and LCT data to generate performance 
curves modeling predicted diurnal team performance curves 
according to the distribution of circadian phenotypes for each 
team. Second-order polynomial non-linear regressions were used 
as curve fits throughout the study to calculate performance values 
as a function of time of day as well as to determine peak per-
formance values. Kruskal–Wallis test was used to test differences 
of circadian and performance parameters between circadian 
phenotypes between teams and between different times of day 
for statistical significance. Dunn’s multiple comparison test was 
used to compare individual group mean values.

results

circadian Phenotyping
Following comprehensive analysis and consideration of specific 
sleep/wake-related criteria, including wake-up times on week-
days, weekends, and training-free days, sleep onset on weekdays, 
weekends, and training-free days, sleep durations, periods of 
high and low activity, sleep inertia, and meal times, as previously 
described (25), all participants could be categorized into “circadian 
phenotypes” (CT). In total, we identified 15% early circadian 
phenotypes (ECT; n = 32), 51% intermediate circadian phenotypes 
(ICT; n = 111), and 34% late circadian phenotypes (LCT; n = 73). 
The circadian phenotyping methodology proved consistent with 
relevant circadian parameters, such as wake-up times, sleep-onset 
times, and sleep durations (Figure 1). Average wake-up times dif-
fered significantly between circadian phenotypes (Kruskal–Wallis, 
p < 0.001) being 6.90 ± 0.11 h for ECTs on weekdays as compared 
to 7.55 ± 0.11 h on weekends, for ICTs 7.77 ± 0.08 h at weekdays 
and 9.29 ± 0.06 h on weekends, and for LCTs 8.98 ± 0.14 h on week-
days and 10.91 ± 0.10 h on weekends (Figures 1A,B). Significant 
differences were also seen in sleep-onset times (Kruskal–Wallis, 
p < 0.001) and sleep duration times (Kruskal–Wallis, p < 0.001). 
ECT sleep onset was 23.23 ± 0.13 h on weekdays and 23.84 ± 0.17 h 
on weekends, whilst ICT sleep onset was 23.53 ± 0.08 h on week-
days and 24.32 ±  0.10  h on weekends. LCT average sleep onset 
was 24.27 ± 0.13 h on weekdays and 01.66 ± 0.16 h on weekends 
(Figures  1C,D). ECTs slept for 7.66  ±  0.12  h on weekdays and 
7.70 ± 0.22 h on weekends, ICTs for an average of 8.24 ± 0.11 h on 
weekdays and 8.97 ± 0.12 h on weekends, and LCTs for 8.70 ± 0.17 h 
on weekdays and 9.25 ± 0.17 h on weekends (Figures 1E,F).

Team Distribution of circadian Phenotypes and 
Predicted Diurnal Physical Performance
The composition of circadian phenotypes was highly variable 
between the 12 teams (T1–T12). The most prominent differences in 

circadian phenotype composition were found between one female 
team (T10) made up of 75% ECTs and 25% ICTs (average age 
27.0 years) and one male team (T3) made up of 7% ECTs, 23% ICTs, 
and 70% LCTs (average age 19.9 years) (Figure 2). Overall, ECTs 
ranged from 0 (T2) to 75% (T10), ICTs from 23 (T3) to 89% (T2), 
and LCTs from 0 (T8, T10) to 70% (T3) (Figures 2A–L). Predicted 
diurnal peak performance times varied by 7.12 h between teams, 
with earliest peak performance found in T10 at 13.52 h and latest 
peak performance found in T3 at 20.59 h (Figures 2A–L). Several 
teams showed comparable performance peaks in the afternoon 
(T8 at 14.53 h, T2 at 15.05 h, T9 at 15.08 h, T5 at 15.23 h, and T6 

FigUre 1 | relevant sleep/wake parameters validate circadian 
phenotyping. (a) Average wake-up time on weekdays. (B) Average 
wake-up time at weekends. (c) Average sleep onset on weekdays. (D) 
Average sleep onset at weekends. (e) Average sleep duration during 
weekdays. (F) Average sleep duration weekends. White boxes represent 
early circadian phenotypes (ECT), light gray boxes represent intermediate 
circadian phenotypes (ICT), late circadian phenotypes are shown in dark gray 
(LCT). Boxplots show 25th–75th percentile. Whiskers and outliers are plotted 
by the Tukey method and the mean is shown within the box as a +. 
Statistical analysis was carried out using Kruskal–Wallis non-parametric tests 
combined with Dunn’s multiple comparison test. ns, not significant, 
**p < 0.01, ***p < 0.001.
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FigUre 2 | Variability of within-team circadian phenotype composition determines predicted diurnal performance curves and peak performance 
times. Each team (T1–T12) is represented by a pie chart showing the composition of circadian phenotypes and a graph showing predicted performance over the 
course of a day calculated from performance tests conducted at six different times of day (25). Peak performance times are indicated by the dotted vertical lines and 
shown in the top left hand corner of each graph. Early circadian phenotypes (ECT) are shown in white, intermediate circadian phenotypes (ICT) in gray and late 
circadian phenotypes (LCT) in black. (a) T1. (B) T2. (c) T3. (D) T4. (e) T5. (F) T6. (g) T7. (h) T8. (i) T9. (J) T10. (K) T11. (l) T12.
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FigUre 3 | Team performance undergoes significant changes in the course of a day within teams. Boxplots represent predicted team performance levels 
of T1 (a) to T12 (l). (M) = morning, i.e., 07.00–10.00 h, light gray bars; (A) = afternoon, i.e., 13.00–16.00 h, dark gray bars; (E) = evening, i.e., 19.00–22.00 h, black 
bars. Tukey boxplots show 25th–75th percentile; mean values are shown within the box as a +. Statistical analysis was carried out using Kruskal–Wallis non-
parametric tests combined with Dunn’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001.
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at 15.38 h), while others showed their performance peaks signifi-
cantly later, i.e., early evening (T1 at 18.26 h, T4 and T7 at 18.41 h) 
(Figures  2A–L). Further analysis showed a highly significant 
correlation between the number of LCTs and predicted team peak 
performance time with peak performance time being later in the 
day with increasing numbers of LCTs (Spearman non-parametric 
correlation, p < 0.001), while there was no significant correlation 

between the number of ECTs and ICTs and predicted team peak 
performance time (p = 0.06 and p = 0.25, respectively).

Diurnal Performance Variation Within and 
Between Teams
When analyzing performance during morning (M  =  07.00–
10.00  h), afternoon (A  =  13.00–16.00  h), and evening 
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FigUre 4 | Between-team performance differences are most 
pronounced in the morning and afternoon. (a) Average predicted team 
performance in the morning ([M] = 07.00 and 10.00 h performance tests),  
(B) average predicted team performance in the afternoon ([A] = 13.00 and 
16.00 h performance tests), and (c) average predicted team performance in 
the evening ([E ] = 19.00 and 22.00 h performance tests). Bars represent 
mean values + SE of predicted team performance levels based on the 
composition of circadian phenotypes within each team. Statistical analysis 
was carried out using Kruskal–Wallis non-parametric tests combined with 
Dunn’s multiple comparison test. ***p < 0.001. Predicted performance 
represents percentage of maximum performance attained. Dunn’s multiple 
comparison test results are shown in Table S1 in Supplementary Material.
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(E = 19.00–22.00 h) within teams, our model predicts significant 
differences in performance levels between at least two of the 
three different times of day in all teams and significant differ-
ences between all three times of day in five (42%) of the teams. In 
seven (58%) of the teams, performance values were highest in the 
afternoon, while performance levels peaked in the evening in five 
teams (Figures 3A–L). T3, T4, T5, T6, and T7 showed significant 
differences in peak performance between M/A, A/E, and M/E 
(Kruskal–Wallis, p < 0.001). T1, T2, T11, and T12 showed signifi-
cant differences between M/A and M/E whilst significant differ-
ences were seen between M/A, between A/E in T10, and between 
M/A in T9 (Kruskal–Wallis, p < 0.001). The largest performance 
variation over the course of the day was 14.88% in T3 with predicted 
performance values of 80.83 ± 0.92% of maximum performance in 
the morning, 89.97 ± 0.41% in the afternoon, and 95.71 ± 0.50% in 
the evening (Kruskal–Wallis, p < 0.001) (Figures 3A–L).

Morning (M), afternoon (A), and evening (E) comparison 
between teams predicts highly significant differences (Kruskal–
Wallis, p  <  0.001) with clear differences in variability between 
the different times of day (Figure 4). Kruskal–Wallis and Dunn’s 
post-test allowed 66 possible combinations of analyses between 
the teams; for both morning (M) and afternoon (A) performance, 
20 out of the 66 possible team comparisons were significantly dif-
ferent, while for evening (E) performance, 12 out of 66 possible 
team comparisons differed significantly (Figures 4A–C; Table S1 
in Supplementary Material).

impact of age and gender on Predicted 
Performance
A higher percentage of males were LCT (45%) as compared to 
females (24%), whilst the percentage of ECTs was similar for 
both males and females (12 and 17%, respectively). Average 
age for ECTs was 24.16 ±  0.97, for ICTs 21.36 ±  0.35, and for 
LCTs 20.51 ± 0.36 showing a significant increase of ECTs with 
age (Kruskal–Wallis, p  <  0.001). Analysis of age vs. circadian 
phenotype composition within teams showed that the significant 
increase of ECTs with age was caused by a significant positive 
correlation between increasing age and increasing percentage of 
ECTs (p =  0.0239) in males only (Figures 5A–F). Age did not 
correlate with predicted peak performance times (Figures 5G–I).

self-reported Mental and Physical  
Performance
Through the analysis of the chronometric tests, self-reported high 
mental and physical activity frequency curves overlap considerably 
in each of the circadian phenotypes. Highest percentage of ECTs 
reported highest mental activity at X = 12 (90.48%) and highest 
physical performance at X = 12 (80.95%). ICT curves were similar 
with highest mental performance at X = 13 (72.73%) and physical 
at X = 13 (69.70%). LCT curves were delayed as compared to ECTs 
and ICTs with highest mental performance at X = 14 (81.25%) and 
highest physical at X = 16 (68.75%) (Figures 6A–C).

Discussion

A detailed understanding of factors contributing to performance 
is a major goal for researchers, coaches, and managers in the 

sports world and the corporate world. Advances in technology 
have allowed detailed analysis of physiological and cognitive 
performance variables, such as heart rate (39, 40), distance 
covered (41–43), direction of runs (44, 45), body temperature 
(46), maximal oxygen uptake (47), and cognitive abilities (23, 
48–52). When exploring requirements for appropriate perfor-
mance evaluation in teams, strategy, coordination, psychology, 
and skills have to be considered as well as comprehensive 
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FigUre 5 | age and gender are negligible predictors of circadian phenotype composition and peak performance times. (a) Male teams average age vs. 
percentage of ECTs. (B) Male teams average age vs. percentage of ICTs. (c) Male teams average age vs. percentage of LCTs. (D) Female teams average age vs. 
percentage of ECTs. (e) Female teams average age vs. percentage of ICTs. (F) Female teams average age vs. percentage of LCTs. (g) Age vs. predicted peak 
performance for all teams. (h) Age vs. predicted peak performance in male teams. (i) Age vs. predicted peak performance in female teams. Statistical analysis was 
carried out using linear regression analysis; ns, not significant, *p < 0.05. Early circadian phenotypes are labeled as ECT, intermediate circadian phenotypes as ICT 
and late circadian phenotypes as LCT; male teams, ♂; female teams, ♀.
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performance indicators, both at the level of the individual and 
the team (53, 54).

Tools for evaluating team performance incorporate both 
cognitive and behavioral processes that individuals invest toward 
similar or shared goals. It is important that when analyzing team 
performance, both individual and team goals are considered (55). 
To optimize team effectiveness and performance, there is a need 
to understand individual and team learning. Individuals’ percep-
tion of reality has been shown to be a predictor of performance, 
also known as mental models (56). If roles, goals, and tactics 
are similar between individuals then team mental models could 

predict team performance. In competing sports teams, optimal 
performance as a team with each team member delivering their 
personal best performance and playing an equally important role 
in achieving a common goal is a general principle. Very recently, 
Dijkstra et al. suggested a health management and coaching model 
for the optimization of performance (57). Comparable to other 
theoretical approaches to performance optimization, this model 
does not consider individual variations of sleep/wake rhythms, 
circadian rhythms of physiology, or the relevance of time of day in 
training efficiency (26, 27, 58, 59), while disruptions of circadian 
rhythmicity can lead to sleep disorders, cognitive impairments, 
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and ultimately have impact on both individual and team perfor-
mance (60, 61). For example, traveling across time zones can have 
detrimental effects on both physical and mental performance 
(62–64). There has been increasing research on using chronobio-
logical knowledge to readjust circadian misalignment, thereby 
improving performance, mood, and quality of sleep (61).

Our simulation of competition at different times of day 
(Figure 3) revealed T10 as the physically strongest team in the 

morning and afternoon but weakest team in the evening, while 
T3 was the strongest team in the evening and weakest team in 
the morning and afternoon. These data suggest that teams with 
a large proportion of late types are disadvantaged in morning 
competitions, while teams with either large proportions of early 
types or large proportions of intermediate types are disadvan-
taged in evening competitions. The strong link between physical 
performance and perceived mental performance may further 
contribute to these diurnal performance variations (20, 21).

With this paper, we establish the importance of circadian 
phenotype and individual diurnal performance variation as 
considerable performance indicators in groups of individuals 
or teams. Our results show that both, predicted performance 
levels as well as peak performance times in the course of a day, 
are influenced by the circadian phenotype distribution within 
a team suggesting that it is the number of late circadian phe-
notypes that has the strongest influence on peak performance 
of a team in the course of a day. Age and gender, however, are 
only weak predictors of circadian phenotype despite a higher 
percentage of early circadian phenotypes found in females and 
an increasing percentage of early phenotypes with increasing 
age in males. This supports previous studies that have reported 
more ECTs in females and older age groups and more LCTs in 
males and younger age groups (65–67); other studies, however, 
suggested that morningness/eveningness preference is largely 
independent of gender, indicating that it is a stable characteris-
tic that may be better explained by endogenous factors (68), and 
that sleep disturbances between different chronotypes were not 
influenced by age or gender (69). Consistent with these reports, 
age did not correlate with the differences in peak performances 
in our study, while all performance parameters differed sig-
nificantly with circadian phenotype distribution within teams. 
In our study, age did not have an effect on performance in the 
course of a day.

Circadian phenotype distribution within a team is not related 
to age and is not predictable; this is supported by our results show-
ing an exclusively male team with an average age of 17.23 years 
and an exclusively female team with average age 27.71  years 
showing highly similar circadian phenotype composition and, as 
a consequence, very similar performance curves regardless of the 
age and gender differences (Figure 2, T1 and T11).

Our model of predicted performance shows, for the first 
time, how varied team performance can be, both mental and 
physical, in the course of a day depending on the composition of 
circadian phenotypes with a 7-h difference in peak performance 
times between the teams studied. Our novel tools, including a 
chronometric test specifically designed for the analysis of circa-
dian phenotypes and performance analysis at different times of 
day, could help teams to have a “circadian advantage” over other 
teams due to detailed knowledge about peak performance and 
times and peak performance levels of individual team members 
and the team as a whole. The need to understand the biological 
clocks and to develop new strategies and techniques to enhance 
performance taking into account circadian influences has been 
shown in various studies (70–74). Knowledge into team composi-
tions of circadian phenotypes could allow better preparation for 

FigUre 6 | subjective mental and physical performance are strongly 
linked. Frequency plots show both self-reported high mental and physical 
performance depending on time of day. Subjective physical performance is 
shown by the solid black line and subjective mental performance by the 
stippled line. X-axes = time of day in hours. Y-axes = percentage of total 
sample (%). (a) ECTs. (B) ICTs. (c) LCTs.
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