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Brain injury is a major cause of long-term disability. The possibility exists for exogenously 
derived neural progenitor cells to repair damage resulting from brain injury, although 
more information is needed to successfully implement this promising therapy. To test 
the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neo-
cortex, we transplanted neural progenitor cell suspensions into normal and injured slice 
cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 
embryos were obtained from either the neocortex, including the ventricular zone (VZ) for 
excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of 
the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly 
into the wounded region. Transplanted cells migrated throughout the cortical plate 
with GE and mixed population donor cells predominately targeting the upper cortical 
layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In 
the injured neocortex, transplanted cells moved predominantly into the wounded area. 
NPCs derived from the GE tended to be immunoreactive for GABAergic markers while 
those derived from the neocortex were more strongly immunoreactive for other neuronal 
markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in  vitro acquired the 
electrophysiological characteristics of neurons, including action potential generation and 
reception of spontaneous synaptic activity. This suggests that transplanted cells differ-
entiate into neurons capable of functionally integrating with the host tissue. Together, our 
data suggest that transplantation of neural progenitor cells holds great potential as an 
emerging therapeutic intervention for restoring function lost to brain damage.

Keywords: neuronal migration, cerebral cortex, rat, development, interneuron

Abbreviations: aCSF, artificial cerebrospinal fluid; CMV, cytomegalovirus; E16, embryonic day 16; GE, ganglionic eminence; 
GFP, green fluorescent protein; MEM, minimum essential media; NPCs, neural progenitor cells; P0–P3, postnatal day 0–3; 
SVZ, subventricular zone; TBI, traumatic brain injury; VZ, ventricular zone.
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introduction

The cerebral cortex contains two predominant types of neu-
rons, pyramidal–excitatory neurons (~70–85%) and inhibitory 
interneurons (~15–30%) (1, 2). Pyramidal neurons send axons 
to other areas of the cortex and distant parts of the CNS, while 
interneurons modulate local circuits (3, 4). Proper neocortical 
function requires the appropriate balance between excitatory and 
inhibitory neurons. An imbalance may result after brain damage 
such as traumatic brain injury (TBI), stroke, hypoxia, or ischemia. 
An excitatory/inhibitory imbalance can lead to functional deficits 
and various disorders including cognitive and/or motor problems 
(5–7), sleep disorders (6, 8, 9), or epilepsy (10–13). Injuries to the 
brain can damage both neuronal types, but it may be possible to 
replace lost or damaged cells and restore physiological balance 
(11, 12, 14). For the replacement to be effective, the transplanted 
cells should reach and remain in the target site; once there, cells 
must differentiate and integrate into the endogenous circuitry to 
restore lost function (15–17). Several studies demonstrate that 
neural progenitor cells (NPCs) in the ventricular/subventricular 
zone (VZ/SVZ) proliferate and migrate to the site of damage 
(18–21). Transplantation of exogenous cells in the damaged 
region has also been explored. GABA-expressing interneurons, 
or neuronal and glial precursors transplanted directly into the 
lesion cavity-induced and -improved sensorimotor function (22, 
23). NPCs transplanted in the striatum also promote long-term 
functional recovery after TBI (24). Neocortical SVZ or embryonic 
neocortical cells transplanted in the lesion cavity remain close to 
the injection site but also differentiate into neurons that extend 
axons (15, 25). Several animal models of brain injury tested the 
ability of transplanted cells to repair the site of insult and suggest 
that cultured cells transplanted days after the injury differentiate, 
induce, and promote functional recovery (26–29).

To further clarify the ability of transplanted NPCs to integrate 
into host cortex and to investigate the cells most optimal to 
repopulate damaged neocortex, we used an organotypic culture 
model of brain injury. We compared two sources of NPCs (GE 
and neocortex) from embryonic rat brain for their ability to repair 
a model of damaged cortex. Our results show that both cell types 
have the capacity to differentiate into functional neurons and 
integrate into the host neuronal circuitry.

Materials and Methods

We used Sprague Dawley rats (Charles River, Wilmington, MA, 
USA) at either embryonic day 16 (E16) or postnatal day 0–3 
(P0–P3). All animal experiments were approved by the USUHS 
Institutional Animal Care and Use Committee (IACUC).

Organotypic cultures and Brain injury
P0–P3 rats were anesthetized with 50 mg/kg of euthasol. When 
animals were unresponsive to painful stimuli, the skin and skull 
were incised, the brain removed, and placed in oxygenated ice-
cold artificial cerebrospinal fluid (aCSF) containing H2O; and in 
mM; 124 NaCl; 26 NaHCO3; 10 glucose; 1.2 NaH2PO; 3.2 KCl; 
1.2 MgSO4; 2.4 CaCl2. Coronal slices (500 μm) were cut using a 
manual tissue chopper (Stoelting Co., Wood Dale, IL, USA) and 

placed on a 0.4  μm culture plate insert (Millicell-CM 30  mm, 
Millipore, Billerica, MA, USA) in a 6-well plate with enough 
media to form a meniscus above the slice. The media consisted 
of MEM with Earle’s salts without l-glutamine (Invitrogen, 
Carlsbad, CA, USA) and supplemented with 10% normal horse 
serum (Invitrogen), 0.001% Gentamycin, and l-glutamine 
(2  mM). Slices were then separated into normal and wounded 
groups. To simulate an injury in the cortical organotypic cultures, 
we used a scalpel to cut through the thickness of the cortical plate. 
Rat neural progenitor cells (see below) were transplanted onto 
the surface of the slice 6–8 h later either in the SVZ/VZ or in the 
injury. The slices were maintained in the incubator (5% CO2, 95% 
O2, 37˚C) for 5–7 days to allow transplanted cells to migrate or 
settle into the slice and integrate the host tissue.

cell suspension Preparation
Embryos were taken from timed pregnant rats on embryonic 
day 16 (E16), the brains were removed and placed into ice-cold 
aCSF under aseptic conditions. The rostral and caudal poles were 
removed and the meninges peeled away and the cortical plate 
and ganglionic eminence (GE) separately dissected and placed 
in oxygenated ice-cold aCSF. The GE was removed from the sur-
rounding tissue, while the cortical wall was dissected to remove 
the developing cortical plate and retain the VZ, SVZ, and part 
of the IZ (intermediate zone). The tissues were then transferred 
to two separate 15-ml centrifuge tubes containing phosphate 
buffered saline (PBS) without calcium and magnesium (Quality 
Biological, Gaithersburg, MD, USA) plus 0.6% glucose (EMD, 
Gibbstown, NJ, USA); each tube contained either neocortical or 
GE tissue. The solution plus tissue was mechanically triturated 
with a series of 9-inch fire polished Pasteur pipettes to form a 
single cell suspension. Cell density was determined and cells pre-
pared for labeling, transfection, and transplantation. Cell viability 
was tested using trypan blue exclusion; we also tested the viability 
after labeling the cells (see below). Only cell suspensions with 
viability of 75% or greater were used. Cells were then maintained 
in three different groups: the neocortex alone, the GE alone, or a 
mixed population of both cortical and GE cells.

cell suspension labeling
After cell counting, we added 5 μl of Vybrant CM-DiI (Invitrogen) 
to 1 million cells suspended in 1 ml of warm PBS without calcium 
and magnesium, with 0.6% glucose. Cells were then incubated 
for 15 min at 37°C and mixed every 3–5 min to distribute the dye 
evenly. After incubation cells were spun at 1000 rpm for 10 min 
and washed several times using warm PBS plus 0.6% glucose, to 
remove the excess dye. After washing, the cells were resuspended 
into a small volume of PBS to have a final concentration of 
105cells/μl. The use of CMDiI is justified by our previous work 
using similar techniques. We observed previously that this dye 
does not leak into the tissue upon transplantation of dead labeled 
cells, and we did not observe any subsequent movement of either 
dead cells or fluorescent particles moving away from the injection 
site (30).

We also used transfection to identify the transplanted cells, after 
quantification and viability testing. A cohort of cells was trans-
fected with plasmid DNA expressing GFP under a CMV promoter, 
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TaBle 2 | Total number of transplanted cells counted in the injured and 
uninjured regions of cortical plate.

cell 
source

no. of 
slices

Total number  
of counted 

cells

cell distribution

injured area  
of the cortex

Uninjured area 
of the cortex

iZ

GE 14 20727 8574 7868 4285
Cortical 16 23034 7923 7761 7350
Mixed 16 22371 9104 8764 4503

All transplanted cell were labeled with CMDiI.
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using a calcium phosphate method (31). To do this, a calcium–
DNA precipitate was added to the cell suspension for 1.5 h. The 
precipitate was removed and cells washed with transfection media 
(Neurobasal (Invitrogen) plus in mM, 10 MgCl2, 10 HEPES and 
pen/strep at 1:100) before transplanting as described below.

cell Transplantation
Prior to transplantation, organotypic cultures were placed in an 
incubator for 4–6 h. One hundred nanoliters of cell suspension 
(105 cells/μl) were injected onto a specific region of the culture, 
using a controlled nanoliter injector (WPI, Sarasota, FL, USA) 
and a pulled micropipette of ~30 μm tip size. For cultures without 
an injury, cells were transplanted into the VZ/SVZ only, while in 
the injured cultures, cells were transplanted into the VZ/SVZ or 
into the wounded region. After injection, the pipette remained 
in place for 1–2 min to allow the cells to settle on the surface of 
the slice. Cultures were then returned to the incubator for 2 h 
to ensure adherence, before adding more media to adjust the 
meniscus above the slice. The cultures were maintained every 
2–3 days by removing half of the media, which was replaced by 
the same amount of fresh media.

electrophysiological recordings
Only transfected cells transplanted into injured slices were used 
for the electrophysiological studies. After 7 days in culture, slices 
were transferred to a submersion style recording chamber; and 
perfused with room temperature, aCSF continuously bubbled 
with 95/5% O2/CO2. The aCSF contained (in mM): 126 NaCl, 
3 KCl, 1.25 NaH2PO4, 2 MgSO4, 26 NaHCO3, 2 CaCl2, and 10 
d-glucose. Whole cell recordings used an Axopatch 200B or 
Multiclamp 700B amplifier, digitized by a Digidata 1322A, and 
stored on a PC running pClamp version 9 software (Molecular 
Devices, Sunnyvale, CA, USA). The intracellular solution was 
composed of (in mM): 130  K-Gluconate, 15 KCl, 5 HEPES, 1 
EGTA, 4 Mg–ATP, and 0.3 Na–GTP. In a subset of recordings, 
0.2% Neurobiotin™ Tracer (Vector Laboratories, Burlingame, 
CA, USA) was included in the intracellular solution to allow 
post  hoc visualization of recorded cells. Whole cell recordings 
took place in the vicinity of the injured region. Cells without any 
GFP in the injury site and away from it were recorded to serve as 
a control for electrophysiological characterization.

immunohistochemical analysis
After 5–7 days, cultures were fixed in 4% phosphate buffered para-
formaldehyde overnight. Tissue was washed in 0.1M PBS pH 7.4 
three times and subsequently blocked for 2 h in PBS normal goat 
serum with 0.1% Triton-X. The primary antibody was prepared 

in the blocking solution and applied in the following dilutions: 
anti-GFAP 1:500 (Abcam, Cambridge, MA, USA), anti-GABA 
1:500, anti-TUJ1 1:100 and anti-MAP2abc 1:100 (Sigma-Aldrich, 
St. Louis, MO, USA), and Milli-Mark Pan Neuronal Marker 1:25 
(Millipore) for 2 h at room temperature on a shaker and then left 
for 24–48 h at 4°C. The appropriate secondary antibody 1:500, 
Alexa 488 or Alexa 546 (Invitrogen) was applied for 2 h and each 
tissue section washed three times with PBS. Each section was 
incubated in a 2 μg/ml solution of bisbenzimide for 5 min to label 
nuclei. The sections were then mounted in Vectashield mounting 
medium for fluorescence (Vector Laboratories) or Mowiol 4-88 
(Sigma-Aldrich) and coverslipped. To visualize cells that were 
injected with Neurobiotin each recorded slice was fixed with 4% 
buffered paraformaldehyde at 4˚C overnight in the dark. The slice 
was then immunoreacted with an avidin–rhodamine conjugate 
(Vector laboratories) and mounted with proLong gold antifade 
reagent with DAPI (Invitrogen).

Quantification and statistical analysis
Numbers of cultures used are presented in Tables  1 and 2. To 
assess the distribution of cells migrating away from the transplant 
site in the VZ/SVZ, we counted cells that (1) migrated away from 
the injection site for at least 200 μm, and (2) were labeled with 
CMDiI (cell body alone or cell body with at least one process). 
To delineate the area of migration, bisbenzimide images were 
used to visualize the cortical plate and the intermediate zone. 
The cortical plate was subdivided in three equal subdivisions cor-
responding to upper, middle, and lower regions. The hemisphere 
of each organotypic culture was also divided into lateral, middle, 
and medial regions to assess the mediolateral distribution of 
transplanted cells. Adobe Photoshop and Image J (NIH, USA) 
were used to analyze the images. To compare across slices, the cell 
count in different regions or in different layers was expressed as 
the percent of the total number of migrated cells. Cells injected 
directly into the injury were not quantified as they remained in 

TaBle 1 | Total number of cells counted in each layer and region of the cortical plate after transplantation into organotypic cultures.

cell source no. of  
slices

Total number of 
counted cells

regional distribution of counted cells

U M l cP iZ Medial Middle lateral

GE 11 23556 8632 7219 4804 20655 2901 6522 8475 8559
cortical 11 21657 4911 5342 5555 15808 5849 5863 7546 8248
Mixed 10 20386 7430 6055 4344 17829 2557 5261 6814 8311

The transplanted cells were identified by CMDiI label.
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place without showing any migration pattern. Statistical analysis 
for each group used an ANOVA (two way) and the Holm–Sidak 
post hoc-test for multiple comparisons.

results

An example of an organotypic culture containing a lesion can 
be seen in Figure  1A. For analysis, the slice was divided into 
medial, middle, and lateral regions (Figure 1B). The immature 
cortical plate was divided into upper, middle, and lower lay-
ers (Figure  1Bʹ). The approximate sites of transplantation are 
indicated by an arrow (Figures 1A,Aʹ,Bʹ). Cells obtained acutely 
from E16 rat embryos (Figures 1C,Cʹ) were transplanted into the 
VZ/SVZ of a neocortical slice in control and injured cultures as 
indicated by the arrows in Figures 1A–Bʹ.

FigUre 1 | Model of injury and transplantation. (a) is an organotypic culture obtained on postnatal day 1 (P1), that also sustained an injury. The arrow is the 
approximate site of a transplant into the SVZ/VZ. (a′) shows the boxed area in (a) and contains a higher power view of the injury outlined by arrowheads; the arrow 
points to the deep end of the lesion. (B) is an organotypic culture obtained at P1 without injury. For analysis, the neocortex was divided into regions designated as 
medial, middle, and lateral. (B′) is a higher magnification of the boxed in region in (B) and delineates laminar distinctions in the cortical plate used to define the 
positions of the transplanted migrating cells. The arrow in (a′) represents the approximate site of cells injected into a lesion and the arrow head in (B′) represents the 
approximate site of cells injected into the VZ/SVZ of a slice with no lesion. (c) is a coronal section of E16 brain, (c′) is higher magnification of the boxed in region in 
(c) and represents the developing cortical wall. This is the region used for preparing the cell suspension made from the embryonic neocortex. The circle in C 
encloses the site used for preparing the GE cell suspension. CP: cortical plate, U: upper layer, M: middle layer, L: lower layer, IZ: intermediate zone, SVZ, 
subventricular zone; VZ, ventricular zone; LV, lateral ventricle. Scale bar = 500 μm (a–c), 100 μm (a′–c′).

Migration Pattern of cells Transplanted into the 
VZ/sVZ of control slices
After the slices were placed in culture, they received transplants 
of acutely derived cell suspensions obtained from the neocortex 
alone, the GE alone, or a mixed population of neocortex and GE. 
Based on the count of viable transplanted cells and the number 
of transplanted cells, we approximated the number of cells that 
migrated away from the injection site. About 20% of the total 
amount of transplanted cells migrated away from an injection 
suggesting a similar viability percentage. In normal uninjured 
slices, each cell population moved into the cortical plate and 
migrated extensively into medial, middle, and lateral parts of the 
slices (Figures 2A–C; also see Table 1). After reaching their des-
tination, the transplanted cells acquired different morphologies 
and displayed multiple processes and neuron-like morphologies 
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FigUre 2 | examples of cells migrating after transplantation into 
normal cultures. (a–c) are examples of different slices that received 
injections of acute cell suspensions obtained from the GE (a,B) or the 
neocortex (c). All populations of transplanted cells (ganglionic eminence, 
mixed, or neocortical) showed similar distributions throughout the cortex. (D) 
shows morphologies acquired by the transplanted cells. Scale bar = 500 μm 
(a), 100 μm (B–c), 10 μm (D).

FigUre 3 | The distribution of transplanted cells in normal cultures. 
(a) shows the mediolateral distribution of cells transplanted into normal cortex 
after 7 days in culture. Significantly fewer cells reached lateral portions of the 
cortical slice compared with transplanted cells migrating into the middle and 
medial regions of the slice. (B) illustrates the distribution of cells that migrated 
away from the injection site. The bars to the right of the vertical line show that 
of the cells migrating away from the injection site, a greater percentage 
reached the cortical plate (CP) than those remaining in the intermediate zone 
(IZ). Significantly fewer cells obtained from the neocortex alone, however, 
reached the cortical plate compared with cells obtained from the GE or the 
mixed population (*p < 0.01). The bars to the left of the vertical line show the 
distribution of cells that reached the cortical plate and moved into the upper 
(U), middle (M), or lower (L) cortical layers. Of the cells that reach the cortical 
plate, fewer cells resided in the lower layers of the cortical plate (#p < 0.05). 
Compared with the GE and mixed populations, a significantly smaller 
percentage of neocortically derived cells reached the upper layers 
(*p < 0.001) and a greater percentage of cells remained in the lower layers 
(*p < 0.001). See Table 1 for the numbers of cells in each group. (Two-way 
ANOVA followed by the Holm–Sidak pairwise comparison, error bars = SEM).
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(Figure 2D). All of the transplanted cell types (neocortical, GE, 
and mixed) distributed similarly in the different regions of the 
host slice. When we quantified the medial to lateral distribu-
tion of transplanted cells, we observed that cells of all groups 
migrated in greater numbers toward the medial portions of the 
host cortical slice, whereas fewer cells moved into lateral regions 
(Figure 3A; Table 1). More cells derived from any source moved 
into the middle and medial regions of the CP (Figure 3A). Most 
of the migrating cells moved through the intermediate zone into 
the cortical plate (Figure 3B). More cells derived from the GE and 
mixed cell population, however, reached the cortical plate than 
those derived from the neocortex, leaving a greater percentage of 
neocortically derived cells in the intermediate zone (Figure 3B; 
Table 1). In the CP, GE cells are in great number located into 
the upper layer while neocortical cells are preferentially in the 
middle and lower layers. These results suggest that: (i) all popu-
lations of transplanted cells (GE-derived, neocortical-derived, 
and mixed) migrate preferentially toward the middle and medial 
CP, (ii) GE-derived cells migrate more efficiently than cortical 

cells, and (iii) the migration of  neocortically derived cells is 
improved when transplanted together with GE-derived cells.

Migration Pattern of cells Transplanted into the 
VZ/sVZ of injured cultures
To study the effect of an injury on the ability of NPCs to migrate 
into and populate host cortex, mechanical damage was made 
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FigUre 4 | Transplanted cell distribution in injured cultures. (a) shows examples of transfected GFP cell entering or in the injured area. An arrowhead points 
to a cell seeming to extend processes within the injured area. (B) is a graph of the distribution of CMDiI labeled cells transplanted into the SVZ of an injured culture 
that migrated into both injured and the non-injured regions of host slice. Significantly more cells migrated into the injured region (#p < 0.001) compared to the areas 
of no injury. Fewer neocortical cells reached the injured area compared to GE and mixed (*p < 0.05) cell populations. More of the neocortically derived cells 
remained in the IZ compared with the other two populations (*p < 0.05). (Two-way ANOVA followed by a post hoc pairwise comparison, Holm–Sidak, error 
bars = SEM). (c,D) Cells transplanted in the injury remained in place and did not show any migration. (D) is a higher powered image of the boxed in region in B. 
[Scale bar (a) = 100 μm; (c) = 500 μm; (D) = 20 μm]. IZ, intermediate zone; GE, cells derived from the ganglionic eminence; Ctx, cells derived from the embryonic 
neocortex; Mix, cells derived from a mixed population of GE and neocortically derived cells.
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through the thickness of the neocortex in organotypic cultures; 
cells were transplanted into the VZ/SVZ as shown in Figure 1A. 
Transplants of all cell types into the VZ/SVZ demonstrated 
a targeted migration toward the lesioned zone (Figure  4A). 
Migrating cells also populated the area of the non-lesioned neo-
cortex, but to a lesser extent. Cells derived from the neocortex 
were less efficient in migration compared to GE-derived and the 
mixed cell population in that more cells tended to remain in the 
IZ and distribute throughout the host slice (Table 2; Figure 4B). 
When cells were transplanted directly into the lesioned zone, 
they remained in that region, showing little signs of migration 
or moving away from the lesion site (Figures 4C,D). This was 
true for all transplanted cell types (derived from the neocortex 

alone, from the GE alone, or the mixed cell population), which 
all remained in the lesion.

Phenotype of Transplanted cells
To further characterize the phenotype of the transplanted cells, 
the organotypic culture slices were fixed at day 5 or 7 post trans-
plantation and immunoreacted for neuronal and glial markers. 
The distinct morphologies of the transplanted cells, as shown 
in Figure 2D, suggests that they were differentiating into well-
defined neural cell types. To more completely assign a phenotype 
to the transplanted cells, we used a battery of markers to further 
characterize their identity. In addition, the NPCs transplanted 
from different embryonic sources might differentiate into distinct 
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FigUre 5 | Phenotype of transplanted cells. The transplanted cells acquired different phenotypes as shown by immunoreactivity against different neuronal and 
glial markers. The cells shown in (a–c) derive from the GE and are GABA+. Cells shown in (D–i) derive from the neocortex, and the cells shown in (J–l) are a mixed 
population of transplanted cells; the cells in (D–l) and (P–r) are immunoreactive for neuronal markers, MAP2 in (D–i), Milli-Mark in (J–l), and TUJ in (P–r). The cells 
in (M–O) show GFAP+ cells (green) in the host slice and a transplanted cell from the GE labeled with CMDiI (red), which is not GFAP immunoreactive. (D–F) is a 
transfected GFP+ (green) cell and (g–i) are CMDiI+ (red). (J–K) are CMDiI+ (red) and Milli-Mark+ (green). Scale bar = [(a–c,g–i,P–r) 10 μm] and [(D–F,J–O) 50 μm].
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neuronal types. We used several neural markers: GABA, MAP2, 
β-tubulin III (TUJ-1), Milli-Mark, and GFAP (Figure  5). The 
labeled transplanted cells showed immunoreactivity for multiple 
markers, suggesting they differentiated into a variety of cell types. 
Figure  5 demonstrates transplanted cells labeled with CMDiI 
or GFP and immunoreactive for neuronal (Figures 5A–L,P–R) 
or glial markers (Figures  5M–O). Figures  5A–C shows a cell 
labeled with CMDiI displaying a migratory morphology immu-
noreactive against GABA. The images in Figures 5D–L illustrate 
examples of labeled transplanted cells reactive for other neuronal 
markers, including MAP2 (D–F and G–I), Milli-Mark (J–L) and 
TUJ (P–R). Figures 5M–O shows an example of a CMDiI labeled 
cell surrounded by GFAP immunoreactive cells, demonstrating 
that many GFAP+ cells occurred in each organotypic slice, but 
very few of the transplanted cells were GFAP+. Figure 6 shows 
the percent of transplanted cells immunoreactive for all mark-
ers across experiments and also illustrates the fraction of cells 
from each source that displayed immunoreactivity out of the 

total number of cells that were transplanted. Transplants derived 
from the GE were more likely to differentiate into GABAergic 
cells than neocortically derived cells. All populations of cells 
demonstrated very low reactivity for GFAP, suggesting that very 
few of the transplanted cells differentiate into astrocytes. The 
numbers of cells counted and used to produce Figure 6 can be 
seen in Table 3.

Transplant integration and Functional analysis
To optimize our electrophysiological analysis, whole cell 
recordings were taken from GFP positive transplanted as well 
as concomitant host cells, which were not labeled, after up to 
7 days in culture. These experiments revealed that transplanted 
cells had significantly more depolarized resting potentials than 
host cells (Table  4, −30  ±  3  mV, n  =  11 versus −52  ±  8  mV, 
n = 4; p = 0.048) with 5 out of 16 transplant and 1 of 5 host cells 
firing action potentials spontaneously at rest (Figures  7C,D). 
Transplanted cells tended to have lower cell capacitances (18 ± 3 
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FigUre 6 | Transplanted cells immunoreactive for different markers. 
This graph represents the percentage of the total number of transplanted 
cells labeled with CMDiI that were counted for each marker, which were also 
double labeled for a specific antibody. The total number of counted cells for 
each marker can be seen in Table 2. In general, similar numbers of 
transplanted cells from derived from each source (GE, Ctx, Mixed) were 
immunoreactive for the neuronal markers, Tuj1 (TUJ) and Milli-Mark. 
GE-derived cells were more likely to differentiate into cells immunoreactive for 
GABA, while neocortically derived cells are more immunoreactive for MAP2 
(*p < 0.01). Very few transplanted cells from any source are immunoreactive 
for GFAP (#p > 0.05). We used a two-way ANOVA followed by pairwise 
comparisons with the Holm–Sidak test, error bars = SEM.

TaBle 4 | Passive cell membrane properties of recorded neurons.

resting potential cell capacitance  
(pF)

Membrane 
resistance (MΩ)

gFP non-gFP gFP non-gFP gFP non-gFP

Average −30 −52 18 30 1600 620
SEM 3 8 2 6 340 75
n 11 3 16 4 16 4

TaBle 3 | Total number of transplanted cells double-labeled with cMDii 
and another marker for analysis of distinctions in immunoreactivity of 
cells obtained from different sources.

cell type no. of 
slices

Total number of double labeled cells

gaBa gFaP MaP TUJ MilliMark

GE 41 901 64 330 988 699
Cortical 37 255 86 611 672 543
Mixed 42 894 65 720 833 648
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pF, n =  16 versus 30 ±  6 pF, n =  5; p =  0.11) and resistances 
(1580  ±  340  MΩ versus 620  ±  70  MΩ; p  =  0.18) (Table  4). 
Most of the transplanted cells acquired electrophysiological 
characteristics of neurons with properties that reflected their 
comparatively immature age. Spontaneous synaptic inputs were 
present in 60% of the transplanted neurons examined (9 of 15) 
(Figure  7C) and, in 11 cells tested, 10 (91%) showed synaptic 
activity evoked by electrical stimulation of the cortex outside the 
transplant location (Figure 7D). Figure 7A shows an example 
of a cell stimulated by activating a cortical region some distance 

away; increasing the current also increased the frequency of fir-
ing. Figure 7B shows a similar cell demonstrating synaptic inputs 
after being stimulated from some distance away in the neocortex 
(e.g., inset in Figure 7A). After recordings, cells were immuno-
reacted with an avidin conjugate demonstrating their extended 
processes as seen in Figures 7E–G. These observations suggest 
that transplanted cells acquire neuronal phenotypes and integrate 
into the host tissue, highlighting their therapeutic potential.

Discussion

Organotypic slices remain viable for relatively long periods of 
time and maintain the structure and anatomical relationships 
within the neocortex. The rate of cell death is low and cell prolif-
eration and migration under appropriate conditions correspond 
to migration occurring in  vivo (32–34). Organotypic cultures 
also offer the advantage of preserving the synaptic and anatomi-
cal organization of in vivo neuronal circuitry (35). In this study, 
we used an organotypic slice paradigm to evaluate the ability of 
NPCs obtained from different sources to repair the injured cor-
tex. After brain damage, the loss of both excitatory and inhibitory 
neurons can lead to an imbalance of cortical responses. To repair 
the injured neocortex with select combinations of excitatory and 
inhibitory cells, we transplanted NPCs from different sources and 
phenotypes into separate host sites to determine their ability to 
repopulate and integrate into the host cortex.

in intact cortex, ge-Derived neurons Migrate 
More efficiently Than cortically Derived neurons
The neocortex contains cells that originate from the GE as well as 
cells generated in the neocortical VZ/SVZ. Cells originating from 
the GE migrate tangentially to the neocortical targets, thus trave-
ling a longer distance than cells originating from the neocortical 
VZ/SVZ, which travel a shorter radial distance (4). GE-derived 
cells differentiate into GABAergic interneurons, which are inhibi-
tory, while neocortically derived cells tend to differentiate into 
projection neurons, which are excitatory (3, 4). We used both cell 
types here to evaluate the ability of each cell phenotype to migrate 
into and populate the neocortex.

In the uninjured cultures, all donor types of NPCs transplanted 
into the VZ/SVZ migrated toward, and reached the cortical plate. 
This suggests that the transplanted cells were responding to cues 
that regulate cell migration and positioning. Known cues include 
reelin (36–38), netrins (39), and the chemokine SDF-1 (40). The 
GE-derived cells moved into the upper layers of the cortical 
plate, while fewer of the neocortically derived NPCs reach this 
destination and tended instead to accumulate in the lower corti-
cal plate. Migrating interneurons receive cues from cortical plate 
projection neurons, which could easily provide information to 
our transplanted interneurons (41). The projection neurons may 
not provide the same cues to themselves, i.e., the neocortically 
derived neurons, which could explain their failure to migrate 
into the upper cortical layers. In addition, interneurons follow 
different routes of migration toward their final resting place in 
the cortical plate (41, 42), which may contribute to their mobility 
when transplanted into organotypic cultures. Some of our trans-
planted GE-derived cells may have been heading for the marginal 
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FigUre 7 | electrophysiological recordings. (a) is the Current–frequency relationship of a GFP+ transplanted neuron. The recorded cell showed a linear 
increase in firing frequency as a function of depolarizing current. The inset in the graph shows the response of the cell to a 14pA depolarization. Note the lack of 
spike frequency adaptation, a characteristic of fast spiking interneurons. (B) Intracortical stimulation evoked postsynaptic currents in the same neuron. The black 
trace is the average of 10 individual sweeps (each sweep overlaid in gray). The prolonged barrage of PSPs impinging upon the cell suggests that the transplanted 
neuron had become integrated into the host circuitry. The image of the brain drawing above shows a schematic representation of the position of a stimulating 
electrode and site of recording of a labeled cell. (c) Percentage of GFP cells that demonstrated spontaneous synaptic inputs (n = 15), and (D) percentage of GFP 
cells that showed synaptic activity after electrical stimulation (n = 11). (e–g) An Avidin–Rhodamine reaction cell recording, (e) shows GFP, (F) shows the Neurobiotin 
reaction and (g) merge of the two. Scale bar: 20 μm.
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zone (future layer 1), which is one of their normal migratory 
routes, resulting in more cells in the upper layers. GE-derived 
neurons also migrate more quickly than those originating from 
the neocortex, which would facilitate their ability to reach a more 
distant target (3, 4, 43).

Neocortically derived neurons migrate radially and rely on 
the physical support of the radial glial cells to attain their target 
within the cortical plate (44–46). At P0–P3, although radial glia 
begin to disappear or differentiate into astrocytes, much of the 
radial glial scaffold remains in place (47, 48). Since neocortical 
neurons generated on E16 in rat embryos normally reside pre-
dominantly in the lower layers (4, 44–46, 49), the transplanted 
cells derived from the neocortex may migrate into their normal 
lower layer target site and remain there. The GE-derived cells, 
however, may typically be more mobile and have the capability 
to move into multiple cortical sites. When the neocortically 
derived cells are mixed with the GE derived cells, the mixed 
population showed a more extensive migration. Although we 
did not specifically investigate why this happens, it may be that 
GE-derived cells provide signals to cortically derived neurons. 
One of the substances that customarily provide migratory cues 
is a gradient of GABA itself (50–52). As the GE-derived cells are 
GABAergic, they might provide a source of GABA, facilitating the 
migration of cortically derived neurons toward their target. We 
do not know why the transplanted NPCs predominantly main-
tained their phenotype of origin. Clearly, the total environment 
must play a role in determining their ultimate destiny since the 
entire population of transplanted cells from each group did not 
become either GABA immunoreactive (presumptive inhibitory) 
or MAP2 immunoreactive (presumptive excitatory). We also did 
not test other markers that may have revealed subtle distinctions 
within the population of transplanted cells. Although the NPCs 
appear to contain the necessary programing to generate specific 
neuronal subtypes (53), their ultimate destination and degree of 
integration is also influenced by exogenous environmental cues.

nPcs are attracted Toward the site of injury
Several studies report that transplanted cells migrate into, or 
remain in, an area of lesion (54–58). To replace cell populations 
missing after brain damage, transplanted cells have been inserted 
into multiple sites including the lateral ventricle (54), the VZ/
SVZ (24), the injured region (16, 22, 54, 55, 59), or near the vicin-
ity of the injury (15, 23). All of these sites have varying levels 
of success in terms of cell survivability and integration into the 
host tissue (17, 30, 54, 60). We tested two sites of transplantation 
in the current study: the VZ/SVZ and the injury site. We found 
that NPCs transplanted into the VZ/SVZ of injured organotypic 
cultures migrate extensively toward the injury. If the transplanted 
migrating cells rely on environmental cues to reach their final 
destination, these findings suggest that the lesioned zone con-
tains greater attractive cues than those in the surrounding intact 
neocortex. A number of other studies report that transplanted 
NPCs show targeted migration to the area of brain damage and 
become integrated into the host (54, 55, 58, 61), Most of these 
studies transplant cells into brains injured by stroke or examined 
a more targeted lesion, such as the substantia nigra in Parkinson’s 
Disease, but it appears that analogous patterns operate in our 

brain injury model. We also observed that NPCs transplanted 
directly into the injury site remain in place. Presumably, these 
cells stay because they respond to attractive signals within the 
injury site. The most likely attractive cues are chemokines and 
cytokines (62, 63). Although an injury can be considered as a 
hostile environment, released inflammatory molecules, such as 
stromal cell-derived factor α1 (SDF1), attract neural stem cells 
causing the injury environment to retain the transplanted cells 
(63). Chemokine expression is upregulated in regions of injury 
(64). In experiments using mice with chemokine receptors or 
monocyte chemoattractant protein knocked out, targeted migra-
tion of transplanted cells after induced inflammation in the hip-
pocampus was diminished (62). A similar finding was observed 
after middle cerebral artery occlusion in mice with either the 
receptor or monocyte chemoattractant protein eliminated; 
infusion of monocyte chemoattractant protein also induced 
migration of cells to the site of infusion (64). Although we did 
not specifically assess the presence of chemokines or cytokines in 
our experiments, it is likely that they were present and attracted 
or retained the transplanted NPCs.

Transplanted cells Differentiate into neurons 
and integrate into host neocortex
Transplanted NPCs tend to acquire a neuronal phenotype when 
placed into an injured cortex as reported by others, while very 
few cells tend to differentiate into astrocytes (28, 58, 65, 66). In 
the current experiments, this was true for all transplanted cells 
whether they were headed for the injured region or not. The cells 
derived from the GE were GABA immunoreactive in significantly 
higher percentages than the neocortically derived or mixed 
population, suggesting that the transplanted NPCs retained their 
phenotype after placement in a novel environment and migra-
tion into the host cortical plate. Similarly, the cells obtained from 
the neocortical VZ were MAP2 immunoreactive in significantly 
greater numbers than GABAergic, suggesting that this popula-
tion tended to differentiate into projection neurons. In support 
of this idea, Götz et al. reported that neocortically derived cells 
differentiated more into glutamatergic (excitatory) neurons than 
GABAergic (inhibitory) neurons (67). Approximately, 20–30% of 
transplanted cells were positive for antibodies against neuronal 
markers, while very few grafted cells were immunopositive for 
GFAP. We did not test for the presence of other glial cells, includ-
ing oligodendrocytes or microglia, and these could account for 
some of the non-immunoreactive cells (24, 61). They could also 
be immunoreactive for numerous specific neural markers for 
which we did not test. We previously demonstrated that NPCs 
harvested from relatively mature mouse embryos (embryonic 
days 14–16) and transplanted into neocortical slices are capable 
of expressing proteins associated with specific neocortical layers 
as Cux1, ER81, and RORβ (68). We are also aware that young 
brains are much more permissive and more likely to encourage 
migration and survival after transplantation (69–71). It will also 
be important to study transplant efficacy in adult tissue where 
the degree of engraftment of stem cells tends to be diminished. 
Overall, our findings are highly supportive of the idea that the 
source of NPCs is significant and that the transplanted cells retain 
their identity in the host cerebral cortex.
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