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Identification of optimal treatment strategies to improve recovery is limited by the incom-
plete understanding of the neurobiological principles of recovery. Motor cortex (M1) reor-
ganization of the lesioned hemisphere (ipsilesional M1) plays a major role in post-stroke 
motor recovery and is a primary target for rehabilitation therapy. Reorganization of M1 in 
the hemisphere contralateral to the stroke (contralesional M1) may, however, serve as an 
additional source of cortical reorganization and related recovery. The extent and outcome 
of such reorganization depends on many factors, including lesion size and time since 
stroke. In the chronic phase post-stroke, contralesional M1 seems to interfere with motor 
function of the paretic limb in a subset of patients, possibly through abnormally increased 
inhibition of lesioned M1 by the contralesional M1. In such patients, decreasing contrale-
sional M1 excitability by cortical stimulation results in improved performance of the paretic 
limb. However, emerging evidence suggests a potentially supportive role of contralesional 
M1. After infarction of M1 or its corticospinal projections, there is abnormally increased 
excitatory neural activity and activation in contralesional M1 that correlates with favorable 
motor recovery. Decreasing contralesional M1 excitability in these patients may result 
in deterioration of paretic limb performance. In animal stroke models, reorganizational 
changes in contralesional M1 depend on the lesion size and rehabilitation treatment and 
include long-term changes in neurotransmitter systems, dendritic growth, and synapse 
formation. While there is, therefore, some evidence that activity in contralesional M1 will 
impact the extent of motor function of the paretic limb in the subacute and chronic phase 
post-stroke and may serve as a new target for rehabilitation treatment strategies, the pre-
cise factors that specifically influence its role in the recovery process remain to be defined.

Keywords: transcranial magnetic stimulation, motor cortex reorganization, neurorehabilitation of motor function, 
motor stroke recovery, functional magnetic resonance image

introduction

With the introduction of relatively sophisticated neuroimaging techniques, such as positron emission 
tomography (PET) and functional and structural magnetic resonance imaging (MRI), and novel 
electrophysiological techniques, such as transcranial magnetic stimulation (TMS), studying the 
underlying mechanisms of motor recovery after stroke in humans have become increasingly feasible. 
In 1991, Chollet et al. (1) reported for the first time the activation of bilateral sensorimotor cortices in 
stroke patients moving their affected hand and suggested that ipsilateral motor projection may play 
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a role in recovery. This claim was further substantiated in 1993 by 
Carr et al. (2) who used TMS of the primary motor cortex (M1) 
to probe the functional integrity of the corticospinal tract (CST) 
after stroke. He reported that, in patients with poor motor out-
come, TMS applied to the motor cortex of the hemisphere affected 
by stroke (ipsilesional M1) did not produce detectable motor-
evoked potentials (MEPs), indicating disrupted function of the 
CST. However, when TMS was applied to the motor cortex of the 
hemisphere spared by the stroke (contralesional M1), MEPs were 
detected in both the hands. These findings suggested abnormal 
corticospinal projections from the contralesional M1 to muscles 
of the affected hand (see below for more detailed discussion).

In the following years, the role of the contralesional M1 in 
motor recovery after stroke and its potential as new target for 
rehabilitation efforts have been a topic of intense research efforts 
in humans and animal stroke models (3–5). As this field moved 
forward, it became apparent that several factors may impact the 
role of contralesional M1 in the control of the paretic hand move-
ments and that even in healthy intact brain the ipsilateral M1 
(corresponding to the contralesional M1 in paretic hand move-
ments) is active in the control of strictly unilateral hand move-
ment (6–11). In the context of the incomplete understanding of 
the ipsilateral M1 in motor control, the interpretation of findings 
pertaining to the role of contralesional M1 (corresponding to the 
ipsilateral M1 in intact human) in motor recovery after stroke 
remains problematic.

In this review, the evidence for contralesional M1 activity in 
recovery of hand function after stroke will be discussed. In the 
first part of this review, I will summarize the advances in our 
understanding of motor control of hand movements as they per-
tain to a better understanding of contralesional M1 function in 
motor recovery of hand movements. There is emerging evidence 
that ipsilateral M1 (corresponding to contralesional M1 in stroke 
patients) is active even in healthy subjects, depending on age and 
motor task demands (11–14). Motor task-dependent activity of 
ipsilateral M1 and the interaction between M1s may contribute 
to the contradicting data in contralesional M1 in stroke patients, 
where stroke-related motor impairment impacts the demand of a 
given motor task. In the second part of the review, I will discuss 
data available from animal stroke models and humans after 
stroke pertaining to the role of contralesional M1 reorganiza-
tion in post-stroke recovery. Finally, I will discuss in which way 
neurorehabilitation science can leverage on the knowledge of 
contralesional M1 reorganization to develop new and effective 
rehabilitation treatment strategies.

ipsilateral M1 and interhemispheric 
interaction in the Control of Hand 
Movements in intact Man

The Contribution of ipsilateral M1 and its 
Corticospinal Connections in the Control of 
Hand Movements
In fMRI studies of unilateral hand motor performance in intact 
man, strictly contralateral M1 activation was demonstrated by 
some investigators (15, 16) while bilateral M1 activation was 

observed by others (6, 11, 17–19). Increased ipsilateral M1 
was demonstrated in tasks with higher accuracy or complexity 
demands (6–8, 11, 17, 20). However, the interpretation of these 
neuroimaging data was limited by measuring qualitatively dif-
ferent movements where the tasks were not being matched for 
their kinematics (e.g., force, amplitude, and frequency) and by 
lacking the verification of a strictly unilateral execution of the 
motor task during the acquisition of imaging data. Measuring 
unilateral performance is important as without it, the presence 
of bilateral upper extremity activity with increasing difficulty of 
the task referred to as “mirror movements” cannot be ruled out 
and may contribute to observed bilateral M1 activation. In our 
recent study of healthy middle-aged people (n = 13, 10 females, 
age 55.4 ± 10.9 years), subjects performed a pointing task with 
a joy stick. By decreasing the size of the target, the demand 
on accuracy was parametrically increased while participating 
muscle groups and movement kinematic were kept the same. 
Unilateral performance was verified with electromyographic 
(EMG) recording from upper extremity muscles. As illustrated 
in Figure 1, performance of the pointing task (collapsed across 
different target sizes) resulted in extensive activation of bilateral 
sensorimotor cortex in the precentral and postcentral gyri/
sulci (Figure 1, red). This contrasts with activation arising from 
the qualitatively different finger tapping task (Figure  1, green/
yellow), which resulted in activation restricted to contralateral 
sensorimotor areas and the corresponding ipsilateral cerebellum. 
Of note is that ipsilateral M1 activation in the pointing task is 
largely anterior to the activation arising from the tapping task 
executed by the contralateral hand.

While there is evidence for ipsilateral corticospinal projec-
tions in humans, evidence for the control of the hand move-
ments via ipsilateral corticospinal connections is weak. In intact 
humans, stimulation of M1 using TMS elicits MEPs in ipsilateral 
hand muscles but these are difficult to obtain and require 
high stimulation intensity and pre-innervations of the target 
muscle (21). In non-human primates, recording of ipsilateral 
M1 neurons during upper limb movements demonstrate that 
cells in iM1 are modulated by the task but that the timing of 
this activity is best correlated with weak muscle activity in the 
contralateral non-moving arm (22). Alternatively, task-related 
effects in the ipsilateral M1 could be mediated by corticoreticu-
lospinal connections. In contrast to corticospinal connection, 
corticoreticulospinal projections are bilateral and are thought to 
be involved in the execution of selective finger movements (23). 
The involvement of this pathway is supported by TMS-derived 
evidence of longer latencies of MEPs elicited in the ipsilateral 
hand muscles (21). One could also argue that this M1 area may 
be concerned with the integration of afferent input from other 
motor areas. Recent evidence of bilateral M1 projections from 
posterior parietal (24, 25) and dorsal premotor areas, likely con-
veying some task-related information such as visuospatial and 
motor planning information, support a more indirect effect and 
the notion that M1 functions at a higher level in motor control by 
integrating afferent information and then generating a descend-
ing motor command that defines the spatiotemporal form of the 
movement (26). A higher level role for M1 in motor control is 
also supported by the results of a recent repetitive TMS (rTMS) 
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study where low-frequency rTMS applied to left M1 improved 
performance in both hands for the task with the highest demand 
on precision while performance remained unchanged for the 
tasks with lower demands (14).

interhemispheric interaction in the Control of 
Hand Movements in intact Humans
In addition to the corticospinal projections and ipsilateral 
corticocortico connections, motor areas of the two hemispheres 
are interconnected to each other and interact in the execution of 
motor tasks. Improved performance after transiently inhibiting 
the ipsilateral M1 by means of low-frequency rTMS (14, 27, 28) 
could indicate that there may be a need for suppression of task 
performance related ipsilateral M1 excitatory activity. Because the 
relationship between the two primary motor cortices is impacted 
by stroke (4, 5, 29) and topic of great interest in neuromodulation 
treatment approaches targeting the contralesional M1 (3), this 
topic will be reviewed for the intact brain.

The main structure connecting the motor areas is the corpus 
callosum. Connections between primary motor areas are less 

FiGURe 1 | Motor demand-dependent activation of motor cortices using a pointing task: pointing and finger tapping tasks related brain activation: 
Activity related to the pointing task (collapsed across XL, L, and M targets) is indicated in red. Activation related to right- and left-handed finger tapping is 
indicated in green, with overlap between finger tapping and pointing task performance shown in yellow. Note that while there was extensive bilateral activation for 
the pointing task, M1 activation in the finger tapping tasks was only seen contralateral to the performing hand, so that the left hemisphere is solely due to 
right-handed finger tapping (with left hemisphere yellow areas show overlap between right-handed finger tapping and right-handed pointing task performance) and 
the right hemisphere activity is solely due to left-handed finger tapping (yellow colors in the right hemisphere show overlap between activity due to the right-handed 
targeting task and left-handed finger tapping task, outlined with a yellow border for ease of visualization). Significant activation related to increasing motor demand 
(M targets > L targets) is indicated in blue (overlap between this region and left-handed finger tapping shown in cyan, outlined for clarity). All activations are shown 
overlaid on the Colin27 template in standard space, thresholded at a corrected p < 0.05 (uncorrected threshold p < 0.005 and cluster size >2360 mm3). Increased 
color intensity corresponds to higher estimates of percent signal change. Cuts in the three-dimensional rendering are shown at x = 0, y = −15, and z = 35. The right 
hemisphere is depicted in the upper panel. The right (R) and left (L) side of the brain are indicated in the lower panel. Numerical labels above each slice show slice 
coordinates in the x dimension (sagittal sections) or z dimension (axial sections) (11).

abundant than premotor areas and primarily excitatory [for 
detailed review, see Ref. (5)]. Interhemispheric inhibition (IHI) 
can be demonstrated with TMS by applying a conditioning 
stimulus (CS) to one M1 and a test stimulus (TS) to the homo-
topic area of the other M1 (30) (Figure 2). The CS inhibits the 
size of the MEP produced by the TS. The amount of inhibition is 
expressed as a percentage of the mean MEP amplitude evoked by 
a single TS. While resting IHI is measured with the subject at rest, 
active IHI is measured during movement preparation. In healthy 
subjects executing a hand motor task, the inhibitory effect of one 
M1 on the other M1 decreases (31) depending on the movement 
kinematics (32, 33). In a study by Talelli et al. (20), a relationship 
between resting IHI and task-related ipsilateral M1 activity as 
measured by fMRI was demonstrated. Specifically, peak forces for 
a hand grip were positively correlated with increases in ipsilateral 
M1-blood oxygenation level-dependent (BOLD) response when 
IHI between motor cortices was weak. This positive correlation 
changed to a negative correlation when IHI was strong. This 
would indicate that activity in ipsilateral M1 is controlled to some 
extent by the inhibitory effect of the contralateral M1.
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Contralesional M1 Reorganization in  
Post-Stroke Recovery

Reorganization of Contralesional M1 in the 
Post-Stroke Recovery Period (fMRi evidence)
In task-related functional imaging studies of stroke patients, the 
activation of contralesional motor areas (corresponding to ipsi-
lateral motor areas in healthy subjects) have been consistently 
reported (34). Cross-sectional studies of stroke patients moving 
the affected hand revealed a shift from an initially (abnormal) 
bilateral activation of motor areas in the subacute stroke patients 
(1, 9, 16, 35–40) toward a more normal unilateral activation 
pattern of ipsilesional motor areas in chronic stroke patients 
(40). Importantly, in a longitudinal study of stroke patients, this 
activation shift to the ipsilesional hemisphere was associated 
with good recovery, whereas persistence of the bilateral activa-
tion pattern was associated with poor outcome (40). On the 
basis of these studies, it was concluded that greater involvement 
of contralesional M1 predicted poorer motor outcome. (34, 
40). However, in several studies, mirror movements of the non-
affected hand were reported during the performance with the 
affected hand during imaging (34). This raised the possibility 

that some contralesional M1 activity is, in fact, related to mir-
ror movements of the non-affected hand (41, 42). As mirror 
movements and coactivation of the non-affected hand are seen 
more frequently in patients with poor motor outcome (41, 43), 
the presence of these movements may have confounded the 
findings of increased contralesional M1 activation in patients 
with poor outcome.

In our own fMRI study of subacute stroke patients with excel-
lent recovery, strictly unilateral performance resulted in activation 
of bilateral motor cortices (16). In this study, eight stroke patients 
underwent fMRI of the brain to test M1 activity related to the 
performance of a non-sequential finger opposition task with their 
paretic hand. EMG activity of bilateral arm muscles was recorded 
during the scanning. All patients showed excellent recovery. 
Their results were compared to age-matched normal volunteers. 
While overt mirror movements were absent in all patients, three 
patients showed substantial EMG activity of the non-affected arm 
when performing the task with the affected hand. Their data were 
excluded from further analysis. As demonstrated in Figure 3, in 
the remaining five patients with strictly unilateral performance, 
bilateral activation of premotor and primary motor cortices was 
evident. In contrast, the age-matched controls showed a strictly 

FiGURe 2 | Resting and active interhemispheric inhibition (iHi): (A) IHI can be demonstrated by applying a conditioning stimulus to M1, which inhibits the size 
of the motor-evoked potential (MEP) produced by the test stimulus applied to the homotopic area of the opposite M1. These measures are obtained during rest 
(resting IHI, rIHI) or in the pre-movement period during preparation of a movement (active IHI). (B) During rest, there is significant rIHI (round symbol) from one M1 on 
the other M1. Active IHI (rectangular symbol) decreases immediately prior to the movement onset depending on kinematics of the movement (B,C). (B,C) Pointing to 
a large target with less demand on accuracy (square) results in less reduction of active IHI compared to pointing at a small target (diamond) with high demand on 
accuracy (33).
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FiGURe 3 | Mean fMRi activation map of the performance of a finger sequence with the affected hand in patients (n = 5) (A) and with either hand in 
the age-matched control group (n = 9) (B). For both groups, the activation map is superimposed on the T1-weighted MRI of the same healthy control subject. 
(A) In patients, right in the axial slice of brain (z = 56) corresponds to the lesioned hemisphere and left to the contralesional hemisphere. Activation of contralesional 
precentral gyrus is evident (corrected p < 0.05). (B) For the control group performing the finger sequence with the left (lower left image, corrected p = 0.05) or right 
(lower right image, uncorrected p < 5.8e−12) hand, there was activation in the precentral gyrus of the hemisphere that is contralateral to the performing hand. 
Initially, the significance level was set as low as corrected p = 0.05 to pick up any activity in the motor cortex ipsilateral to the moving hand (shown for left hand 
movement, lower left image). At this significance level, massive activation was seen in the pre- and postcentral gyrus contralaterally when moving the right hand. To 
separate clusters of activity in pre- and postcentral gyrus, the significance level was increased until the two clusters became distinct (uncorrected p < 5.8e−12, 
lower right panel) (16).
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unilateral activation of the corresponding contralateral M1. These 
results support the notion that activation in contralesional M1 
most likely reflects a reorganizational process in these patients. 
However, based on the findings in healthy subjects, where 
ipsilateral M1 is activated as the task becomes more demanding, 
increased activity could also be explained by a relatively higher 
demand on motor skill in stroke patients when compared to 
healthy controls (i.e., because of the compromised hand function 
due to stroke, the execution of the task is more challenging for 
the patient compared to the controls). Schaechter and Perdue 
(44) studied chronic stroke patients with good recovery of hand 
function and demonstrated that cortical activation during per-
formance of the unskilled and skilled movement was increased 
in the patients relative to controls in the contralesional primary 
sensorimotor cortex. These findings suggest that in the chronic 
phase after stroke the neuronal substrate supporting affected hand 
function includes contralesional M1. The question whether this 
abnormal contralesional M1 activity is related to recovery-related 
regenerative responses as demonstrated for the subacute stroke 
patients or whether these changes reflect degenerative responses 
to the stroke remains to be determined as both processes are 
to some extent activity dependent, interact and impact similar 
circuitries (4).

Mechanisms Underlying Reorganization 
of Contralesional M1 in the Post-Stroke 
Recovery Period
The interpretation of task-related fMRI results is limited by the 
fact that changes in inhibitory and excitatory activity cannot be 
distinguished and the functional relevance of these changes in M1 
activity is unclear. Specifically, task-related increases in BOLD in 

contralesional M1 could result from increases of inhibitory or 
excitatory activity or any combination of these.

In rodent stroke models, functional and structural reorgani-
zational changes in contralesional M1 have been reported [for 
detailed review, see Ref. (4, 5)]. Briefly, in these models, small 
focal cortical lesions led to long-lasting changes in contralesional 
M1, such as down-regulation of GABAA-receptor function (45, 
46) and up-regulation of NMDA-receptor function (47, 48), 
both mechanisms operating in increases of synaptic efficacy such 
as long-term potentiation (LTP). In contrast to human studies 
(see below), excitability in contralesional M1 was transiently 
increased but returned to the original values within hours. 
Similarly, representation of the rodent forelimb expanded in 
the contralesional M1 but returned to normal dimensions over 
the following days [for review, see Ref. (5)]. From a structural 
perspective, increase in neuropil volume (49), use-dependent 
dendritic growth followed by dendritic pruning, synapse forma-
tion, and changes in the specific structure of synaptic connections 
have been described (49–51).

In humans, increased intracortical excitability of contrale-
sional M1 has been demonstrated in subacute and chronic stroke 
patients (29, 52–54) when explored with the paired pulse TMS 
technique. In this paradigm, a suprathreshold TS is preceded by 
a subthreshold CS at an interstimulus interval (ISI) of 2 ms. In the 
M1 of healthy subjects, CS inhibits the MEP produced by the sub-
sequent TS, referred to as short interval intracortical inhibition 
(55). This effect is mediated by GABAA-receptors (56) and arises 
in close proximity to the stimulated area (57). By varying the 
intensity of CS, the effects mediated by inhibitory and excitatory 
networks can be separated in more detail (29, 54) (Figures 4A,B). 
In a study of subacute stroke patients, the inhibitory effect of CS at 
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low intensity was similar to values found in healthy age-matched 
controls while the inhibitory effect was abnormally reduced at 
higher intensities. This may indicate that the balance of excitatory 
and inhibitory activity in neuronal circuits was shifted toward 
excitatory activity (29, 54). Alternatively, abnormal function 
of the high threshold GABAergic inhibitory interneurons may 
result in a decreased inhibitory effect of CS at higher intensities. 
These findings suggest that regulation of excitatory and inhibitory 
neurotransmitter systems may play a role early in the reorganiza-
tion process in contralesional M1 (48, 58) and may support func-
tional recovery early after stroke. This notion is supported by the 
finding in patients in the subacute phase of stroke involving M1 
or its corticospinal projections where a close association between 
increased excitability of contralesional M1 and good recovery of 
hand function was demonstrated (54). However, whether these 
findings hold up and can be applied to patients with other lesion 
locations has to be determined in larger longitudinal studies.

Relationship Between Contralesional M1 
and ipsilesional M1 (interhemispheric inhibition) 
in the Post-Stroke Recovery Period
As described for the intact brain, the two motor cortices inhibit 
each other through connections via the corpus callosum (5). In 
addition to the discussed mechanisms underlying contralesional 
M1 reorganization, stroke-related changes in the inhibitory drive 
between motor cortices could play an important role in reorgani-
zational changes of contralesional M1. While increased contral-
esional M1 excitability was demonstrated in multiple studies (29, 
31, 53, 54, 59), very few studies have examined the relationship 
between increased contralesional M1 excitability and resting IHI. 
It was concluded that loss of inhibitory drive of the lesioned M1 
on the contralesional M1 through interhemispheric connections 
may contribute to the reorganizational processes observed for 
this motor cortex. Increases in contralesional M1 excitability 
may result in an excessive inhibitory effect on the ipsilesional M1, 
which may interfere with its reorganization and related recovery 
(31, 53, 59). In our study of 23 subacute stroke patients with 
documented ongoing recovery of motor function, contralesional 
M1 excitability was increased as demonstrated by paired pulse 
TMS technique (29) (see above for detailed description of the 
methods). Resting IHI from ipsilesional M1 on contralesional M1 
was reduced in both cortical and subcortical location of the stroke 
while IHI from contralesional M1 on ipsilesional M1 was normal 
(Figures  4C,D). In patients with cortical stroke, there was an 
inverse correlation between inhibitory effect from contralesional 
on ipsilesional M1 and contralesional M1 excitability. This rela-
tionship was not seen in patients with subcortical stroke. This 
would indicate that in subacute patients recovering from stroke, 
the demonstrated increased contralesional M1 excitability is not 
causally related to abnormally reduced IHI from ipsilesional M1 
on contralesional M1. Further, because IHI of the contralesional 
on ipsilesional M1 was normal and measures of contralesional 
M1 excitability were increased, there was no evidence in this 
study to support the hypothesis that an abnormally increased 
contralesional M1 excitability results in abnormally increased IHI 
of contralesional on ipsilesional M1 with subsequently decreased 
activity or excitability of ipsilesional M1 in this patient population. 

However, when IHI was measured in the pre-movement interval 
(active IHI, see above for details of the methods) contralesional 
on the ipsilesional M1 was abnormally increased in chronic stroke 
patients when compared to healthy age-matched controls (31). 
The role of abnormally increased active IHI and the relationship 
between abnormal active IHI, measures of M1 excitability, and 
recovery of hand function in stroke needs to be determined in 
more detail and is currently a topic of active investigations.

There is some evidence regarding the relationship between the 
ipsi- and contralesional M1 in rodent stroke models. Specifically, 
an ischemic lesion of M1 leads to partial denervation of the 
contralesional M1, which has a tendency to sprout into the per-
ilesional neuronal tissue of ipsilesional M1 (60, 61). Moreover, 
learning a new motor skill with the non-affected limb reduces 
spontaneous recovery and limits rehabilitation-related functional 
improvements of the affected limb (62–64). These findings under-
score the importance of interhemispheric connections between 
and ipsi- and contralesional M1 and their potential involvement 
in mediating reorganizational effects on the ipsilesional M1.

Factors that Determine the Role of 
Contralesional M1 in the Post-Stroke 
Recovery Period
The factors that determine involvement of contralesional M1 are 
currently not known. In non-human primate stroke models, pro-
gressively larger M1 hand lesions were associated with a propor-
tional expansion of ipsilesional ventral premotor (PMv) (65, 66) 
and supplementary motor area (SMA) (67) hand representation.

In rodent stroke models, reorganizational changes in con-
tralesional M1 depend on the lesion size (68) and rehabilitation 
treatment (64, 69) and include long-term changes in neurotrans-
mitter systems, dendritic growth, and synapse formation (45, 
46, 50, 51, 70, 71). Inhibiting the contralesional hemisphere in 
rats that recovered from large ischemic infarcts generates more 
behavioral deficits of the impaired forelimb in comparison to 
control animals (72).

In humans, Schaechter and Perdue (44) demonstrated in 
chronic stroke patients a linear relationship between abnormally 
increased affected hand movement-related contralesional M1 
activity and extend of CST damage. Further, the observed differ-
ential effect on contralesional M1 excitability and the relationship 
between contralesional M1 excitability and IHI (Figure 4) (29) 
supports the notion that location of the stroke seems to impact 
reorganizational processes. These differential remote effects of 
the lesion are also consistent with the findings that contralesional 
M1 seems to support function in a subset of patients after stroke 
(18) but may interfere with recovery or affected hand function in 
others (73, 74).

interventions in Stroke Rehabilitation 
Treatment Targeting Contralesional M1

Several reports have demonstrated that non-invasive cortical 
stimulation can enhance functional reorganization, motor 
cortical excitability, and the beneficial effects of motor train-
ing on performance (75–80). Either ipsi- or contralesional 
M1 are target of these interventional approaches (3). In this 
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FiGURe 4 | M1 excitability and iHi in patients with subacute stroke (n = 23) and healthy age-matched controls (n = 20): eMG was recorded from the 
first dorsal interosseus muscle (FDi). (A,B) Effect of lesion location on SICI in patients. Control (square) and contralesional M1 of patients with cortical [open 
triangle (A)] and subcortical location of infarction [open inverted triangle (C)]. IHI of the lesioned M1 on the contralesional M1 is reduced in patients with cortical 
(open triangle) or subcortical infarction (open inverted triangle) when compared to healthy controls (square). (D) IHI from contralesional M1 on the lesioned M1 was 
intact for cortical infarction (black triangle) and subcortical infarction (black inverted triangle). The conditioned MEP amplitude is expressed as percentage of the 
mean test-MEP. (e,F) Relationship between M1 excitability, SICI (CS at 80% MT), and IHI in patients with cortical infarction (triangle) and subcortical infarction 
(inverted triangle). For each patient (each point represents one subject), SICI of the contralesional M1 was plotted against IHI from lesioned on the contralesional M1 
(open symbols). Regression was calculated. For cortical location of the infarction, there was an inverse linear relationship between SICE of the contralesional M1 and 
IHI from lesioned on the contralesional M1 [(e) r2 = 0.972, p = 0.002]. Although there is a similar trend in the subcortical group (F), the relationship was more 
variable [(F)r2 = 0.105, p = ns]. The insert indicates the position of the coil for application of CS (dotted lines) and the TS (solid lines). The location of the lesion is 
indicated by the bullet. CS = intensity of conditioning stimulus, MT = motor threshold. The scattered lines indicate the cutoff between facilitation (>100) and 
inhibition (<100). Mean ± SE. *p < 0.05, **p < 0.02, and ***p < 0.01 (29).
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review, I will focus on non-invasive cortical stimulation targeting 
the contralesional M1.

Down-regulation of excitability in one motor cortex influ-
ences corticomotor excitability in the opposite motor cortex. 
Several reports of studies in healthy subjects have now demon-
strated that 1 Hz rTMS applied to M1 of one hemisphere results 
in increased corticomotor excitability in the opposite M1 (81, 
82) and improved performance in the corresponding hand (14, 
83) depending on the level of motor demand (14). As discussed 

in the previous sections, although the extent to which the 
contralesional M1 contributes to motor recovery is not known, 
many currently employed rTMS protocols are designed with the 
assumption that following stroke, ipsilesional M1 is hypoactive 
while contralesional M1 is hyperactive and should be inhibited 
(3, 80). Accordingly, stimulation of contralesional M1 has been 
used to inhibit its hyperactivity (3, 74, 78, 84–86). Meta- analyses 
on the effectiveness of repetitive transcranial magnetic stimula-
tion (rTMS) or transcranial direct current stimulation (tDCS) 
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in stroke rehabilitation therapy do not agree on the available 
evidence to either support or reject it (87–90).

Summary

Taken together, there is evidence from human and animal studies 
that activity in contralesional M1 will impact motor function of 
the paretic limb differently in different patients. However, cur-
rently employed treatment strategies are geared toward inhibiting 
its function. There is a great need to identify the precise factors 

that specifically influence the role of contralesional M1 in the 
recovery process. A better understanding of those factors is criti-
cal to the development of effective therapies tailored to its specific 
role in the recovery process to improve outcome post stroke.

Acknowledgments

CB was supported by NINDS (R56NS070879, R01NS060830, 
and 1R01NS090677-01A1) and NICHD (R21HD067906 and 
1R01NS090677-01A1).

References

1. Chollet F, Dipiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The 
functional anatomy of motor recovery after stroke in humans: a study with 
positron emission tomography. Ann Neurol (1991) 29:63–71. doi:10.1002/
ana.410290112 

2. Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor 
reorganization in hemiplegic cerebral palsy. Brain (1993) 116(Pt 5):1223–47. 
doi:10.1093/brain/116.5.1223 

3. Hummel F, Celnik P, Pascual-Leone A, Fregni F, Byblow WD, Buetefisch CM, 
et  al. Controversy: noninvasive and invasive cortical stimulation show effi-
cacy in treating stroke patients. Brain Stimul (2008) 1:370–82. doi:10.1016/j.
brs.2008.09.003 

4. Jones TA, Allred RP, Jefferson SC, Kerr AL, Woodie DA, Cheng SY, et al. Motor 
system plasticity in stroke models: intrinsically use-dependent, unreliably 
useful. Stroke (2013) 44:S104–6. doi:10.1161/STROKEAHA.111.000037 

5. Dancause N, Touvykine B, Mansoori BK. Inhibition of the contralesional 
hemisphere after stroke: reviewing a few of the building blocks with a 
focus on animal models. Prog Brain Res (2015) 218:361–87. doi:10.1016/
bs.pbr.2015.01.002 

6. Winstein CJ, Grafton ST, Pohl PS. Motor task difficulty and brain activity: 
investigation of goal-directed reciprocal aiming using positron emission 
tomography. J Neurophysiol (1997) 77:1581–94. 

7. Seidler RD, Noll DC, Thiers G. Feedforward and feedback processes 
in motor control. Neuroimage (2004) 22:1775–83. doi:10.1016/j.
neuroimage.2004.05.003 

8. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB. Ipsilateral motor 
cortex activity during unimanual hand movements relates to task complexity. 
J Neurophysiol (2005) 93:1209–22. doi:10.1152/jn.00720.2004 

9. Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A, Schlaug 
G. Imaging correlates of motor recovery from cerebral infarction and their 
physiological significance in well-recovered patients. Neuroimage (2007) 
34:253–63. doi:10.1016/j.neuroimage.2006.09.010 

10. Verstynen T, Ivry RB. Network dynamics mediating ipsilateral motor cortex 
activity during unimanual actions. J Cogn Neurosci (2011) 23:2468–80. 
doi:10.1162/jocn.2011.21612 

11. Buetefisch CM, Pirog Revill K, Shuster L, Hines B, Parsons M. Motor demand 
dependent activation of ipsilateral motor cortex. J Neurophysiol (2014) 
112(4):999–1009. doi:10.1152/jn.00110.2014 

12. Chen R, Cohen LG, Hallett M. Role of the ipsilateral motor cortex in voluntary 
movement. Can J Neurol Sci (1997) 24:284–91. 

13. Talelli P, Waddingham W, Ewas A, Rothwell JC, Ward NS. The effect of age on 
task-related modulation of interhemispheric balance. Exp Brain Res (2008) 
186:59–66. doi:10.1007/s00221-007-1205-8 

14. Buetefisch CM, Hines B, Shuster L, Pergami P, Mathes A. Motor demand-de-
pendent improvement in accuracy following low-frequency transcranial 
magnetic stimulation of left motor cortex. J Neurophysiol (2011) 106:1614–21. 
doi:10.1152/jn.00048.2011 

15. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M. The functional 
neuroanatomy of simple and complex sequential finger movements: a PET 
study. Brain (1998) 121(Pt 2):253–64. doi:10.1093/brain/121.2.253 

16. Butefisch CM, Kleiser R, Korber B, Muller K, Wittsack HJ, Homberg V, 
et  al. Recruitment of contralesional motor cortex in stroke patients with 
recovery of hand function. Neurology (2005) 64:1067–9. doi:10.1212/01.
WNL.0000154603.48446.36 

17. Hummel F, Kirsammer R, Gerloff C. Ipsilateral cortical activation during 
finger sequences of increasing complexity: representation of movement dif-
ficulty or memory load? Clin Neurophysiol (2003) 114:605–13. doi:10.1016/
S1388-2457(02)00417-0 

18. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of 
multiple contralesional motor areas for complex hand movements after 
internal capsular lesion. J Neurosci (2006) 26:6096–102. doi:10.1523/
JNEUROSCI.4564-05.2006 

19. Diedrichsen J, Wiestler T, Krakauer JW. Two distinct ipsilateral cortical 
representations for individuated finger movements. Cereb Cortex (2012) 
23(6):1362–77. doi:10.1093/cercor/bhs120 

20. Talelli P, Ewas A, Waddingham W, Rothwell JC, Ward NS. Neural correlates 
of age-related changes in cortical neurophysiology. Neuroimage (2008) 
40:1772–81. doi:10.1016/j.neuroimage.2008.01.039 

21. Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, et  al. 
Dissociation of the pathways mediating ipsilateral and contralateral motor-
evoked potentials in human hand and arm muscles. J Physiol (1999) 518(Pt 
3):895–906. doi:10.1111/j.1469-7793.1999.0895p.x 

22. Soteropoulos DS, Edgley SA, Baker SN. Lack of evidence for direct corticospi-
nal contributions to control of the ipsilateral forelimb in monkey. J Neurosci 
(2011) 31:11208–19. doi:10.1523/JNEUROSCI.0257-11.2011 

23. Soteropoulos DS, Williams ER, Baker SN. Cells in the monkey ponto-medul-
lary reticular formation modulate their activity with slow finger movements. 
J Physiol (2012) 590:4011–27. doi:10.1113/jphysiol.2011.225169 

24. Koch G, Fernandez Del Olmo M, Cheeran B, Schippling S, Caltagirone C, 
Driver J, et al. Functional interplay between posterior parietal and ipsilateral 
motor cortex revealed by twin-coil transcranial magnetic stimulation during 
reach planning toward contralateral space. J Neurosci (2008) 28:5944–53. 
doi:10.1523/JNEUROSCI.0957-08.2008 

25. Koch G, Ruge D, Cheeran B, Fernandez Del Olmo M, Pecchioli C, Marconi B, 
et al. TMS activation of interhemispheric pathways between the posterior pari-
etal cortex and the contralateral motor cortex. J Physiol (2009) 587:4281–92. 
doi:10.1113/jphysiol.2009.174086 

26. Kalaska JF. From intention to action: motor cortex and the control 
of reaching movements. Adv Exp Med Biol (2009) 629:139–78. 
doi:10.1007/978-0-387-77064-2_8 

27. Kobayashi M, Hutchinson S, Schlaug G, Pascual-Leone A. Ipsilateral motor 
cortex activation on functional magnetic resonance imaging during unilateral 
hand movements is related to interhemispheric interactions. Neuroimage 
(2003) 20:2259–70. doi:10.1016/S1053-8119(03)00220-9 

28. Dafotakis M, Grefkes C, Wang L, Fink GR, Nowak DA. The effects of 1 Hz 
rTMS over the hand area of M1 on movement kinematics of the ipsilateral 
hand. J Neural Transm (2008) 115:1269–74. doi:10.1007/s00702-008-0064-1 

29. Butefisch CM, Wessling M, Netz J, Seitz RJ, Homberg V. Relationship 
between interhemispheric inhibition and motor cortex excitability in 
subacute stroke patients. Neurorehabil Neural Repair (2008) 22:4–21. 
doi:10.1177/1545968307301769 

30. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. 
Interhemispheric inhibition of the human motor cortex. J Physiol (1992) 
453:525–46. doi:10.1113/jphysiol.1992.sp019243 

31. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric 
interactions on motor function in chronic stroke. Ann Neurol (2004) 55:400–9. 
doi:10.1002/ana.10848 

32. Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG. 
Kinematically specific interhemispheric inhibition operating in the process 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1002/ana.410290112
http://dx.doi.org/10.1002/ana.410290112
http://dx.doi.org/10.1093/brain/116.5.1223
http://dx.doi.org/10.1016/j.brs.2008.09.003
http://dx.doi.org/10.1016/j.brs.2008.09.003
http://dx.doi.org/10.1161/STROKEAHA.111.000037
http://dx.doi.org/10.1016/bs.pbr.2015.01.002
http://dx.doi.org/10.1016/bs.pbr.2015.01.002
http://dx.doi.org/10.1016/j.neuroimage.2004.05.003
http://dx.doi.org/10.1016/j.neuroimage.2004.05.003
http://dx.doi.org/10.1152/jn.00720.2004
http://dx.doi.org/10.1016/j.neuroimage.2006.09.010
http://dx.doi.org/10.1162/jocn.2011.21612
http://dx.doi.org/10.1152/jn.00110.2014
http://dx.doi.org/10.1007/s00221-007-1205-8
http://dx.doi.org/10.1152/jn.00048.2011
http://dx.doi.org/10.1093/brain/121.2.253
http://dx.doi.org/10.1212/01.WNL.0000154603.48446.36
http://dx.doi.org/10.1212/01.WNL.0000154603.48446.36
http://dx.doi.org/10.1016/S1388-2457(02)00417-0
http://dx.doi.org/10.1016/S1388-2457(02)00417-0
http://dx.doi.org/10.1523/JNEUROSCI.4564-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.4564-05.2006
http://dx.doi.org/10.1093/cercor/bhs120
http://dx.doi.org/10.1016/j.neuroimage.2008.01.039
http://dx.doi.org/10.1111/j.1469-7793.1999.0895p.x
http://dx.doi.org/10.1523/JNEUROSCI.0257-11.2011
http://dx.doi.org/10.1113/jphysiol.2011.225169
http://dx.doi.org/10.1523/JNEUROSCI.0957-08.2008
http://dx.doi.org/10.1113/jphysiol.2009.174086
http://dx.doi.org/10.1007/978-0-387-77064-2_8
http://dx.doi.org/10.1016/S1053-8119(03)00220-9
http://dx.doi.org/10.1007/s00702-008-0064-1
http://dx.doi.org/10.1177/1545968307301769
http://dx.doi.org/10.1113/jphysiol.1992.sp019243
http://dx.doi.org/10.1002/ana.10848


October 2015 | Volume 6 | Article 2149

Buetefisch Contralesional hemisphere in post-stroke recovery

Frontiers in Neurology | www.frontiersin.org

of generation of a voluntary movement. Cereb Cortex (2005) 15:588–93. 
doi:10.1093/cercor/bhh160 

33. Wischnefski M, Kowalski G, Belagaje S, Buetefisch C. Task Dependent 
Modulation of Interhemispheric Inhibition. Washington, DC: SFN (2014).

34. Calautti C, Baron JC. Functional neuroimaging studies of motor recovery 
after stroke in adults: a review. Stroke (2003) 34:1553–66. doi:10.1161/01.
STR.0000071761.36075.A6 

35. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorga-
nization of the brain in recovery from striatocapsular infarction in man. Ann 
Neurol (1992) 31:463–72. doi:10.1002/ana.410310502 

36. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A 
functional MRI study of subjects recovered from hemiparetic stroke. Stroke 
(1997) 28:2518–27. doi:10.1161/01.STR.28.12.2518 

37. Cao Y, D’olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of 
functional MRI to assess cerebral activation of motor function after poststroke 
hemiparesis. Stroke (1998) 29:112–22. doi:10.1161/01.STR.29.1.112 

38. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna 
S, Matthews PM. The role of ipsilateral premotor cortex in hand movement 
after stroke. Proc Natl Acad Sci U S A (2002) 99:14518–23. doi:10.1073/
pnas.222536799 

39. Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A. Cerebellar hemispheric 
activation ipsilateral to the paretic hand correlates with functional recovery 
after stroke. Brain (2002) 125:1544–57. doi:10.1093/brain/awf148 

40. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates 
of motor recovery after stroke: a longitudinal fMRI study. Brain (2003) 
126:2476–96. doi:10.1093/brain/awg145 

41. Kim YH, Jang SH, Chang Y, Byun WM, Son S, Ahn SH. Bilateral 
primary  sensori-motor cortex activation of post-stroke mirror move-
ments: an fMRI study. Neuroreport (2003) 14:1329–32. doi:10.1097/01.
wnr.0000078702.79393.9b 

42. Wittenberg GF, Chen R, Ishii K, Bushara KO, Eckloff S, Croarkin E, et  al. 
Constraint-induced therapy in stroke: magnetic-stimulation motor maps 
and cerebral activation. Neurorehabil Neural Repair (2003) 17:48–57. 
doi:10.1177/0888439002250456 

43. Nelles G, Cramer SC, Schaechter JD, Kaplan JD, Finklestein SP. Quantitative 
assessment of mirror movements after stroke. Stroke (1998) 29:1182–7. 
doi:10.1161/01.STR.29.6.1182 

44. Schaechter JD, Perdue KL. Enhanced cortical activation in the contralesional 
hemisphere of chronic stroke patients in response to motor skill challenge. 
Cereb Cortex (2008) 18:638–47. doi:10.1093/cercor/bhm096 

45. Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW. 
Electrophysiological transcortical diaschisis after cortical photothrombosis in 
rat brain. Stroke (1996) 27:1105–9. doi:10.1161/01.STR.27.6.1105 

46. Neumann-Haefelin T, Witte OW. Periinfarct and remote excitability changes 
after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 
(2000) 20:45–52. doi:10.1097/00004647-200001000-00008 

47. Qu M, Buchkremer-Ratzmann I, Schiene K, Schroeter M, Witte OW, Zilles 
K. Bihemispheric reduction of GABAA receptor binding following focal cor-
tical photothrombotic lesions in the rat brain. Brain Res (1998) 813:374–80. 
doi:10.1016/S0006-8993(98)01063-4 

48. Witte OW. Lesion-induced plasticity as a potential mechanism for 
recovery and rehabilitative training. Curr Opin Neurol (1998) 11:655–62. 
doi:10.1097/00019052-199812000-00008 

49. Hsu JE, Jones TA. Time-sensitive enhancement of motor learning with the 
less-affected forelimb after unilateral sensorimotor cortex lesions in rats. Eur J 
Neurosci (2005) 22:2069–80. doi:10.1111/j.1460-9568.2005.04370.x 

50. Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after 
neocortical damage. J Neurosci (1994) 14:2140–52. 

51. Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth 
in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a 
quantitative electron microscopic examination. Brain Res (1996) 733:142–8. 
doi:10.1016/0006-8993(96)00792-5 

52. Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaf-
fected hemisphere after acute stroke. Muscle Nerve (2000) 23:1761–3. 
doi:10.1002/1097-4598(200011)23:11<1761::AID-MUS14>3.0.CO;2-M 

53. Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, et al. Motor cortical 
disinhibition in the unaffected hemisphere after unilateral cortical stroke. 
Brain (2002) 125:1896–907. doi:10.1093/brain/awf183 

54. Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V. Remote changes in 
cortical excitability after stroke. Brain (2003) 126:470–81. doi:10.1093/brain/
awg044 

55. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, 
et  al. Corticocortical inhibition in human motor cortex. J Physiol (1993) 
471:501–19. doi:10.1113/jphysiol.1993.sp019912 

56. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam 
on the motor cortical excitability in man. Exp Brain Res (1996) 109:127–35. 
doi:10.1007/BF00228633 

57. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, et al. 
Magnetic transcranial stimulation at intensities below active motor threshold 
activates intracortical inhibitory circuits. Exp Brain Res (1998) 119:265–8. 
doi:10.1007/s002210050341 

58. Nudo JR. Recovery after damage to motor cortical areas. Curr Opin Neurobiol 
(1999) 9:740–7. doi:10.1016/S0959-4388(99)00027-6 

59. Boroojerdi B, Diefenbach K, Ferbert A. Transcallosal inhibition in cortical 
and subcortical cerebral vascular lesions. J Neurol Sci (1996) 144:160–70. 
doi:10.1016/S0022-510X(96)00222-5 

60. Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intra-
cortical projections after focal cortical stroke. Neurobiol Dis (2001) 8:910–22. 
doi:10.1006/nbdi.2001.0425 

61. Liu Z, Zhang RL, Li Y, Cui Y, Chopp M. Remodeling of the corticospinal 
innervation and spontaneous behavioral recovery after ischemic stroke in 
adult mice. Stroke (2009) 40:2546–51. doi:10.1161/STROKEAHA.109.547265 

62. Allred RP, Maldonado MA, Hsu JE, Jones TA. Training the “less-affected” 
forelimb after unilateral cortical infarcts interferes with functional recovery 
of the impaired forelimb in rats. Restor Neurol Neurosci (2005) 23:297–302. 

63. Allred RP, Jones TA. Maladaptive effects of learning with the less-affected 
forelimb after focal cortical infarcts in rats. Exp Neurol (2008) 210:172–81. 
doi:10.1016/j.expneurol.2007.10.010 

64. Allred RP, Cappellini CH, Jones TA. The “good” limb makes the “bad” limb 
worse: experience-dependent interhemispheric disruption of functional 
outcome after cortical infarcts in rats. Behav Neurosci (2010) 124:124–32. 
doi:10.1037/a0018457 

65. Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote 
cortical regions after ischemic brain injury: a potential substrate for stroke 
recovery. J Neurophysiol (2003) 89:3205–14. doi:10.1152/jn.01143.2002 

66. Dancause N, Barbay S, Frost SB, Zoubina EV, Plautz EJ, Mahnken JD, et al. 
Effects of small ischemic lesions in the primary motor cortex on neurophys-
iological organization in ventral premotor cortex. J Neurophysiol (2006) 
96:3506–11. doi:10.1152/jn.00792.2006 

67. Eisner-Janowicz I, Barbay S, Hoover E, Stowe AM, Frost SB, Plautz EJ, et al. 
Early and late changes in the distal forelimb representation of the supplemen-
tary motor area after injury to frontal motor areas in the squirrel monkey. J 
Neurophysiol (2008) 100:1498–512. doi:10.1152/jn.90447.2008 

68. Kim SY, Jones TA. Lesion size-dependent synaptic and astrocytic responses in 
cortex contralateral to infarcts in middle-aged rats. Synapse (2010) 64:659–71. 
doi:10.1002/syn.20777 

69. Jones TA, Jefferson SC. Reflections of experience-expectant development 
in repair of the adult damaged brain. Dev Psychobiol (2011) 53:466–75. 
doi:10.1002/dev.20557 

70. Qü M, Mittmann T, Luhmann HJ, Schleicher A, Zilles K. Long-term changes 
of ionotropic glutamate and GABA receptors after unilateral permanent 
focal cerebral ischemia in the mouse brain. Neuroscience (1998) 85:29–43. 
doi:10.1016/S0306-4522(97)00656-8 

71. Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G. Functional dif-
ferentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb 
Blood Flow Metab (2000) 20:1149–65. doi:10.1097/00004647-200008000-00001 

72. Biernaskie J, Szymanska A, Windle V, Corbett D. Bi-hemispheric contri-
bution to functional motor recovery of the affected forelimb following 
focal ischemic brain injury in rats. Eur J Neurosci (2005) 21:989–99. 
doi:10.1111/j.1460-9568.2005.03899.x 

73. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, 
et  al. A sham stimulation-controlled trial of rTMS of the unaffected hemi-
sphere in stroke patients. Neurology (2005) 64:1802–4. doi:10.1212/01.
WNL.0000161839.38079.92 

74. Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ, et  al. A 
sham-controlled trial of a 5-day course of repetitive transcranial magnetic 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1093/cercor/bhh160
http://dx.doi.org/10.1161/01.STR.0000071761.36075.A6
http://dx.doi.org/10.1161/01.STR.0000071761.36075.A6
http://dx.doi.org/10.1002/ana.410310502
http://dx.doi.org/10.1161/01.STR.28.12.2518
http://dx.doi.org/10.1161/01.STR.29.1.112
http://dx.doi.org/10.1073/pnas.222536799
http://dx.doi.org/10.1073/pnas.222536799
http://dx.doi.org/10.1093/brain/awf148
http://dx.doi.org/10.1093/brain/awg145
http://dx.doi.org/10.1097/01.wnr.0000078702.79393.9b
http://dx.doi.org/10.1097/01.wnr.0000078702.79393.9b
http://dx.doi.org/10.1177/0888439002250456
http://dx.doi.org/10.1161/01.STR.29.6.1182
http://dx.doi.org/10.1093/cercor/bhm096
http://dx.doi.org/10.1161/01.STR.27.6.1105
http://dx.doi.org/10.1097/00004647-200001000-00008
http://dx.doi.org/10.1016/S0006-8993(98)01063-4
http://dx.doi.org/10.1097/00019052-199812000-00008
http://dx.doi.org/10.1111/j.1460-9568.2005.04370.x
http://dx.doi.org/10.1016/0006-8993(96)00792-5
http://dx.doi.org/10.1002/1097-4598(200011)23:11 < 1761::AID-MUS14 > 3.0.CO;2-M
http://dx.doi.org/10.1093/brain/awf183
http://dx.doi.org/10.1093/brain/awg044
http://dx.doi.org/10.1093/brain/awg044
http://dx.doi.org/10.1113/jphysiol.1993.sp019912
http://dx.doi.org/10.1007/BF00228633
http://dx.doi.org/10.1007/s002210050341
http://dx.doi.org/10.1016/S0959-4388(99)00027-6
http://dx.doi.org/10.1016/S0022-510X(96)00222-5
http://dx.doi.org/10.1006/nbdi.2001.0425
http://dx.doi.org/10.1161/STROKEAHA.109.547265
http://dx.doi.org/10.1016/j.expneurol.2007.10.010
http://dx.doi.org/10.1037/a0018457
http://dx.doi.org/10.1152/jn.01143.2002
http://dx.doi.org/10.1152/jn.00792.2006
http://dx.doi.org/10.1152/jn.90447.2008
http://dx.doi.org/10.1002/syn.20777
http://dx.doi.org/10.1002/dev.20557
http://dx.doi.org/10.1016/S0306-4522(97)00656-8
http://dx.doi.org/10.1097/00004647-200008000-00001
http://dx.doi.org/10.1111/j.1460-9568.2005.03899.x
http://dx.doi.org/10.1212/01.WNL.0000161839.38079.92
http://dx.doi.org/10.1212/01.WNL.0000161839.38079.92


October 2015 | Volume 6 | Article 21410

Buetefisch Contralesional hemisphere in post-stroke recovery

Frontiers in Neurology | www.frontiersin.org

stimulation of the unaffected hemisphere in stroke patients. Stroke (2006) 
37:2115–22. doi:10.1161/01.STR.0000231390.58967.6b 

75. Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-fre-
quency transcranial magnetic stimulation on motor excitability and 
basic motor behavior. Clin Neurophysiol (2000) 111:1002–7. doi:10.1016/
S1388-2457(00)00284-4 

76. Bütefisch CM, Khurana V, Kopylev L, Cohen LG. Enhancing encoding 
of a motor memory in the primary motor cortex by cortical stimulation. J 
Neurophysiol (2004) 91:2110–6. doi:10.1152/jn.01038.2003 

77. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of 
non-invasive cortical stimulation on skilled motor function in chronic stroke. 
Brain (2005) 128:490–9. doi:10.1093/brain/awh369 

78. Hummel F, Cohen LG. Improvement of motor function with noninvasive 
cortical stimulation in a patient with chronic stroke. Neurorehabil Neural 
Repair (2005) 19:14–9. doi:10.1177/1545968304272698 

79. Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive 
transcranial magnetic stimulation after acute ischemic stroke. Neurology 
(2005) 65:466–8. doi:10.1212/01.wnl.0000173067.84247.36 

80. Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. 
Prog Brain Res (2011) 192:273–95. doi:10.1016/B978-0-444-53355-5.00015-4 

81. Plewnia C, Lotze M, Gerloff C. Disinhibition of the contralateral 
motor cortex by low-frequency rTMS. Neuroreport (2003) 14:609–12. 
doi:10.1097/00001756-200303240-00017 

82. Schambra HM, Sawaki L, Cohen LG. Modulation of excitability of human motor 
cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1. 
Clin Neurophysiol (2003) 114:130–3. doi:10.1016/S1388-2457(02)00342-5 

83. Kobayashi M, Hutchinson S, Theoret H, Schlaug G, Pascual-Leone A. 
Repetitive TMS of the motor cortex improves ipsilateral sequential simple 
finger movements. Neurology (2004) 62:91–8. doi:10.1212/WNL.62.1.91 

84. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcra-
nial magnetic stimulation of contralesional primary motor cortex improves 
hand function after stroke. Stroke (2005) 36:2681–6. doi:10.1161/01.
STR.0000189658.51972.34 

85. Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA. Effects 
of rTMS on grip force control following subcortical stroke. Exp Neurol (2008) 
211:407–12. doi:10.1016/j.expneurol.2008.02.018 

86. Nowak DA, Grefkes C, Dafotakis M, Eickhoff S, Kust J, Karbe H, et  al. 
Effects of low-frequency repetitive transcranial magnetic stimulation of the 
contralesional primary motor cortex on movement kinematics and neural 
activity in subcortical stroke. Arch Neurol (2008) 65:741–7. doi:10.1001/
archneur.65.6.741 

87. Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters 
of stimulation, clinical trial design characteristics, and motor outcomes 
in non-invasive brain stimulation in stroke. Front Psychiatry (2012) 3:88. 
doi:10.3389/fpsyt.2012.00088 

88. Hsu WY, Cheng CH, Liao KK, Lee IH, Lin YY. Effects of repetitive transcranial 
magnetic stimulation on motor functions in patients with stroke: a meta-anal-
ysis. Stroke (2012) 43:1849–57. doi:10.1161/STROKEAHA.111.649756 

89. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current 
stimulation (tDCS) for improving function and activities of daily living in 
patients after stroke. Cochrane Database Syst Rev (2013) 11:CD009645. 
doi:10.1002/14651858.CD009645.pub2 

90. Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation 
for improving function after stroke. Cochrane Database Syst Rev (2013) 
5:CD008862. doi:10.1002/14651858.CD008862.pub2 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Buetefisch. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1161/01.STR.0000231390.58967.6b
http://dx.doi.org/10.1016/S1388-2457(00)00284-4
http://dx.doi.org/10.1016/S1388-2457(00)00284-4
http://dx.doi.org/10.1152/jn.01038.2003
http://dx.doi.org/10.1093/brain/awh369
http://dx.doi.org/10.1177/1545968304272698
http://dx.doi.org/10.1212/01.wnl.0000173067.84247.36
http://dx.doi.org/10.1016/B978-0-444-53355-5.00015-4
http://dx.doi.org/10.1097/00001756-200303240-00017
http://dx.doi.org/10.1016/S1388-2457(02)00342-5
http://dx.doi.org/10.1212/WNL.62.1.91
http://dx.doi.org/10.1161/01.STR.0000189658.51972.34
http://dx.doi.org/10.1161/01.STR.0000189658.51972.34
http://dx.doi.org/10.1016/j.expneurol.2008.02.018
http://dx.doi.org/10.1001/archneur.65.6.741
http://dx.doi.org/10.1001/archneur.65.6.741
http://dx.doi.org/10.3389/fpsyt.2012.00088
http://dx.doi.org/10.1161/STROKEAHA.111.649756
http://dx.doi.org/10.1002/14651858.CD009645.pub2
http://dx.doi.org/10.1002/14651858.CD008862.pub2
http://creativecommons.org/licenses/by/4.0/

	Role of the contralesional hemisphere in post-stroke recovery of upper extremity motor function
	Introduction
	Ipsilateral M1 and Interhemispheric Interaction in the Control of Hand Movements in Intact Man
	The Contribution of Ipsilateral M1 and its Corticospinal Connections in the Control of Hand Movements
	Interhemispheric Interaction in the Control of Hand Movements in Intact Humans

	Contralesional M1 Reorganization in 
Post-Stroke Recovery
	Reorganization of Contralesional M1 in the Post-Stroke Recovery Period (fMRI Evidence)
	Mechanisms Underlying Reorganization of Contralesional M1 in the Post-Stroke Recovery Period
	Relationship Between Contralesional M1 and Ipsilesional M1 (Interhemispheric Inhibition) in the Post-Stroke Recovery Period
	Factors that Determine the Role of Contralesional M1 in the Post-Stroke Recovery Period

	Interventions in Stroke Rehabilitation Treatment Targeting Contralesional M1
	Summary
	Acknowledgments
	References


