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There currently remains considerable variability in stroke survivor recovery. To address 
this, developing individualized treatment has become an important goal in stroke treat-
ment. As a first step, it is necessary to determine brain dynamics associated with stroke 
and recovery. While recent methods have made strides in this direction, we still lack 
physiological biomarkers. The Virtual Brain (TVB) is a novel application for modeling brain 
dynamics that simulates an individual’s brain activity by integrating their own neuroim-
aging data with local biophysical models. Here, we give a detailed description of the 
TVB modeling process and explore model parameters associated with stroke. In order 
to establish a parallel between this new type of modeling and those currently in use, in 
this work we establish an association between a specific TVB parameter (long-range 
coupling) that increases after stroke with metrics derived from graph analysis. We used 
TVB to simulate the individual BOLD signals for 20 patients with stroke and 10 healthy 
controls. We performed graph analysis on their structural connectivity matrices calculating 
degree centrality, betweenness centrality, and global efficiency. Linear regression analysis 
demonstrated that long-range coupling is negatively correlated with global efficiency 
(P = 0.038), but is not correlated with degree centrality or betweenness centrality. Our 
results suggest that the larger influence of local dynamics seen through the long-range 
coupling parameter is closely associated with a decreased efficiency of the system. We 
thus propose that the increase in the long-range parameter in TVB (indicating a bias 
toward local over global dynamics) is deleterious because it reduces communication as 
suggested by the decrease in efficiency. The new model platform TVB hence provides a 
novel perspective to understanding biophysical parameters responsible for global brain 
dynamics after stroke, allowing the design of focused therapeutic interventions.
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inTrODUcTiOn

Heterogeneity of functional outcomes following stroke remains 
a major limitation to stroke rehabilitation. While the majority of 
stroke survivors suffer from motor impairment, particularly in 
the upper extremities (1), the degree and type of this impairment 
and the level of recovery following rehabilitation are highly vari-
able (2). The functional basis for variation in patient deficits is 
still poorly understood, and there is no consensus on a theoretical 
or empirical framework for linking brain injury to functional 
deficits (3). In order to address this issue, recent approaches in 
stroke rehabilitation have aimed at the development and the opti-
mization of individualized treatments that maximize long-term 
functional gains (4, 5).

To this end, different theoretical approaches have been used. 
The most general method has probed stratification measures 
based on patient demographics, behavioral outcomes, affective 
states, brain function, and lesion characteristics (4–6). None have 
been shown as a reliable biomarker. Particularly noticeably has 
been the presence of an inconsistent relationship between brain 
lesion and the resulting functional deficits (6), likely due to the 
inherent complexity of damage in a highly interconnected brain.

Researchers have thus turned to network analysis to under-
stand stroke (7–9). In this approach, one of the goals is to 
explain the observed variations after stroke and predict recovery. 
Interestingly, the initial efforts with network analysis focused on 
alterations to specific pathways as the key links to understand 
behavior (8, 10). For example, while some functional connectiv-
ity studies showed that lesions within the motor areas can cause 
dysfunction of remote brain regions (11–13), others showed a 
relationship between improved motor function and strengthening 
interhemispheric and intrahemispheric connectivity involving 
the primary motor cortex (14). An important issue in interpret-
ing such relationships is that the changes may reflect either the 
abnormal functioning of a damaged network or the formation of 
a different network that results in new behavioral patterns.

Furthermore, while these initial studies have been an impor-
tant development, their main limitation is that they assume 
stable, localized changes within specific sub-networks, obliterat-
ing global changes, with the consequence that these potential 
biomarkers have been very adequate as descriptors at the group 
level but not in individual patients (15).

Recently, the neuroimaging community has begun to focus on 
connectomics, or the mapping of all connections at the whole-
brain level. These connectomes, derived from structural [dif-
fusion tensor imaging (DTI)] or functional outputs (fMRI and 
EEG), have recently been termed “big data,” referring to datasets 
that require the generation of large amounts of multimodal imag-
ing data, (including raw, preprocessed, and intermediate data), 
for a high number of subjects (16). These initiatives span normal 
function [Human Connectome Project (17), CONNECT (18), 
Brainnetome (19), development [National Institutes of Health 
(NIH) Pediatric Database] and brain disorders such as Alzheimer’s 
disease (Alzheimer’s Disease Neuroimaging Initiative)].

In order to help interpret such large datasets, graph theory 
is increasingly used to distinguish inherent patterns that likely 
correlate with brain networks at the whole-brain level. Using 

connectomics and graph theory, specific brain regions can be 
understood as nodes (20), and lesions can be understood as 
damage to nodes and/or the connections among them. With 
these methods, stroke has been shown to produce changes in 
both structural and functional network connectivity, particu-
larly related to the organization of “hubs,” or highly intercon-
nected nodes (21, 22). Graph theory provides an assessment of 
the changes at an organizational level. However, this approach 
still suffers from some limitations, mainly the inability to deter-
mine dynamical changes in a constantly changing brain and 
the lack of concrete biophysical substrates for understanding 
those dynamics. Consequently, according to Smith et al., one 
of the major challenges in the field of functional connectom-
ics “will be to enable application of biologically interpretable 
models using large numbers of nodes in a robust and practical 
way” (9).

In other words, although tackling questions about brain net-
work dynamics in both healthy and stroke populations requires 
a great deal of data, simply collecting more data is not itself an 
answer. While these efforts provide the necessary empirical foun-
dation, they lack a computational and theoretical framework with 
quantitative tools to link these multiple datasets to “reconstruct” 
the brain and provide the link between these data and the brain 
function of individuals.

In this context, novel theoretical perspectives have been pro-
posed based upon the nature of the brain as a large-scale network 
(3, 23–25). The implementation of the framework has been sig-
nificantly accelerated by The Virtual Brain (TVB), a novel large-
scale neural modeling platform (26–28). TVB uses neuroimaging 
data to parameterize a model and because individual data is used, 
the individual person’s brain can become a “virtual brain.”

The Virtual Brain (thevirtualbrain.org) was developed as a plat-
form for modeling the dynamics of large-scale neural systems (3, 
29). TVB integrates structural long-range connectivity generated 
from empirical DTI data with mesoscopic, or local level models 
[at each node or region of interest (ROI)]. By combining these 
two scales (global connectivity with local dynamics), TVB is able 
to predict and simulate an individual’s brain activity, essentially 
modeling a virtual representation of their brain. TVB thus lies at 
the intersection of experimental and theoretical neurosciences, 
making it well positioned to provide a link between population 
and individual datasets.

The models available in TVB integrate the anatomical con-
nectivity between parts of the brain (provided by DTI) and the 
dynamics of local neural populations (embedded in the plat-
form). Using these models, TVB has the flexibility to generate 
simulated data ranging from local field potentials to EEG and 
fMRI BOLD signals, allowing for a multimodal link between 
simulated and empirical data. The scalable architecture of TVB 
allows us to include neurophysiological information (e.g., 
receptor distributions and ion channels) adding another level of 
detail and bringing the model’s behavior closer to the real brain. 
Spatiotemporal motifs as present in empirical EEG/fMRI data 
can be reproduced to a large degree (29, 30). Because biophysical 
parameters are invisible to brain-imaging devices, TVB acts as a 
“computational microscope” that allows the inference of internal 
states and processes of the large-scale model.
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The Virtual Brain therefore serves as a powerful research 
tool that has the potential to utilize big data and to develop and 
test advanced theories of brain dynamics. The individualiza-
tion of TVB allows the creation of one model per person and 
systematically assesses the modeled biophysical parameters 
related to individual differences. The natural extension of 
this approach goes further into clinical applications, deriving 
parameters that both relate to biophysics and predict clinical 
outcome, making TVB an ideal tool for addressing limitations 
in stroke research.

The objective of this manuscript is twofold:

 (1) To give a thorough overview of the modeling method 
employed using TVB as it pertains to stroke, with the goal 
of providing details for those interested in using it in the 
context of stroke.

 (2) To provide a link between one of the TVB parameters 
(long-range coupling) to current whole-brain analytical 
approaches based on graph analysis.

MaTerials anD MeThODs

subjects
Twenty individuals with ischemic stroke in the middle cerebral 
artery territory (41.13  ±  23.78  months postonset) and 10 age-
matched controls were recruited for the study. Demographics for 
all stroke subjects are shown in Table 1.

imaging acquisitions
Magnetic resonance images were collected using a 3-T Philips 
scanner and an eight-channel SENSE head coil for signal recep-
tion and body coil transmitter for signal excitation. The following 
sequences were used:

TaBle 1 | Demographics and stroke characteristics of the stroke cohort.

subject age sex handedness    affected  
hemisphere

affected  
   hand

 stroke location stroke volume  
       (mm3)

1 41 F Right Right ND Cort 22,495.0
2 54 F Right Left D Cort/subcort 49,078.0
3 57 M Right Left D Cort/subcort 17,411.0
4 57 M Right Left D Cort/subcort 38,703.0
5 54 F Right Left D Subcort 27,677.0
6 50 M Right Right ND Subcort 3,570.0
7 23 M Right Left D Subcort 560.0
8 55 F Right Right ND Cort 6,781.0
9 68 M Right Left D Subcort 1,988.3
10 56 F Right Left D Subcort 6,239.7
11 46 M Right Left D Subcort 325.0
12 56 F Left Right D Cort/subcort 60,669.0
13 37 M Right Left D Cort/subcort 83,406.2
14 62 M Right Left D Subcort 22,154.8
15 57 M Right Right ND Cort/subcort 25,392.0
16 66 M Right Left ND Cort/subcort 19,927.0
17 61 M Right Left D Subcort 978.0
18 74 M Right Left D Cort/subcort 63,642.0
19 67 F Right Right ND Subcort 588.0
20 74 F Right Left D Cort/subcort 44,892.0

D, dominant hemisphere; ND, non-dominant; Cort, cortical; subcort, subcortical.

1.  High-resolution anatomical images (T1-w): three-
dimensional (3D) Magnetization Prepared Rapid 
Gradient Echo sequence, FOV  =  250  ×  250, resolu-
tion = 1 mm × 1 mm × 1 mm, SENSE reduction factor = 1.5, 
TR/TE = 7.4/3.4 ms, flip angle = 8, sagittal orientation, and 
number of slices = 301 covering the whole brain.

2.  Diffusion Tensor Imaging (DTI): FOV  =  224  ×  224, TR/
TE =  13,030/55, 72 slices, slice thickness =  2 mm, resolu-
tion = 0.875 × 0.875 × 2, b = 1,000 s/mm2 (and b = 0), 32 
diffusion directions.

3.  Functional imaging acquisition at rest (rsfMRI): whole 
brain (37 slices), single-shot echo-planar MR (EPI), 
slice thickness  =  4.0  mm, FOV  =  230  ×  230, voxel 
size  =  2.8  mm  ×  2.8  mm, TR/TE  =  2,000/20  ms, and 
duration = 5 min.

resting state fMri Preprocessing
Resting state fMRI (rsfMRI) preprocessing analysis was per-
formed using AFNI functions (31) and included the following 
steps:

1.  Motion correction using a six-parameter 3D registration of 
functional and anatomical data sets (32).

2.  Three-dimensional spatial registration to a reference acqui-
sition from the first fMRI run.

3.  Registration of functional images to the anatomical volume.
4.  Despiking of the time series.
5.  Mean normalization of the time series.
6.  Inspection and censoring of time points occurring during 

excessive motion (>1 mm) (33).
7.  Regression of cerebrospinal fluid and white matter signals to 

remove slow drifts in the fMRI signal.
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Preprocessing: structural connectivity
Brain Parcelation
Parcellating image data that contain lesions with the use of 
semiautomated schemes produce inaccurate results due to the 
absence of tissue and consequent mechanical deformation. We 
therefore developed The Virtual Brain transplant (VBT). This 
method effectively replaces the lesion produced by the cortical 
stroke with T1-w images of brain tissue from the contralesional 
hemisphere from the same subject (34). This method allows us 
to use a semiautomated parcelation scheme subsequent to the 
transplant. The VBT process consisted of the following steps 
(Figure 1):

1.  Lesion segmentation by hand.
2.  The high-resolution anatomical T1-w brain images and 

lesion masks were uploaded to a transplantation pipeline, 
which dissected the MRI brain tissue from the non-lesioned 
hemisphere homologous to the lesion, and transplanted it 
into the lesioned hemisphere at the site of the lesion, filling 
in the missing portions of the brain.

3.  After the initial transplant was done, manual corrections 
in the interface between the native and transplanted T1-w 
images were performed.

4.  The brain was segmented into 83 cortical and subcortical 
regions using the Lausanne 2008 (Freesurfer) parcelation 
scheme within the Connectome Mapper Toolkit (35, 36).

T1-w to DTI Alignment
The T1-w anatomical image was then aligned to a reference 
b = 0 s/mm2 DTI image, using a six degrees of freedom linear 
transformation with FSL’s FLIRT function (37). This transforma-
tion was also applied to the Freesurfer parcellations.

DTI Tractography
We performed the following steps:

1.  DWI was aligned to the same reference b = 0 s/mm2 image 
used to align the corrected T1-w via VBT to DTI. Distortions 
caused by eddy currents and head motion were corrected 
using the FSL eddy current correction (12 degrees of 
freedom linear transformation), and the diffusion gradient 
vectors rotated accordingly (38). That is, the T1-w images 
with the “transplanted masks” are used to supply the region 
of interest landmarks for tractography but do not directly 
impact the tractography algorithm as the transplant is not 
performed in the DWI space.

2.  The diffusion-weighted images were resampled to 2mm 
isotropic resolution (39).

3.  White matter deterministic tractography of DTI data was 
performed in Trackvis software (39) using the FACT algo-
rithm (40). Threshold values of a maximum of 60° turning 
angle and a minimum of 0.20 fractional anisotropy (FA) were 
used as stopping criteria for the tracking algorithm. These 
thresholds take into account the decrease in signal in regions 
with the lesion. The FA threshold is particularly useful in 

terminating tracks before they enter regions containing the 
lesion. These regions, filled with CSF, have FA values close to 
zero. Therefore white matter pathways ordinarily connect-
ing two ROIs will not be tracked if the ROI is completely 
lesioned, despite appearing intact in the transplanted T1-w 
image from which the parcelation is made. If a parcelation 
is partially compromised by the lesion then white matter 
pathways will also be partially tracked as reflected by a lesser 
number of streamlines.

Generation of Structural Connectivity Matrices
Using the Connectome Mapper Toolkit, two connectivity metrics 
were extracted for each pathway in order to generate two struc-
tural connectivity matrices that quantify connectivity between all 
pairs of the cortical regions for each subject:

1.  Weights, defined as FA  ×  number of streamlines in the 
pathway (note that per the white matter deterministic 
tractography of DTI data, pathways connecting regions 
impacted by the lesion will show a decreased number of 
streamlines and potentially altered FA). This metric reflects 
the maximum rate of transmission of information through 
edges (41). The number of streamlines in the pathway was 
assessed using the deterministic FACT algorithm.

2.  Lengths of the individual tracts, defined in millimeters, were 
derived after smoothing the tractography with a B-Spline 
filter (39).

These matrices are symmetrical, as connections using DTI are 
considered unidirectional (30).

Modeling with TVB
Modeling with TVB involves three initial steps, namely the 
import of individual structural connectivity matrices (obtained 
as described earlier), the selection of a biophysical local model, 
and the choice of relevant biophysical parameter values. TVB 
has several types of local models available, each one taking into 
account different biophysical parameters. Hence, whereas some 
are focused on field potentials [Stefanescu–Jirsa two dimensional 
(2D) and Stefanescu–Jirsa 3D (SJ3D)], others are focused on 
firing rates (Wilson–Cowan, Brunel–Wang, and Jansen–Rit) or 
are phenomenological (Generic 2D, Kuramoto, and Epileptor). In 
our previous efforts, since we simulated the BOLD response, the 
mesoscopic model used was the SJ3D, one of the more complex 
and refined models in the repertoire of TVB.

The reasoning behind this choice was not only the obvious 
relationship between the BOLD response and local field poten-
tials (42–44) but the additional fact that the BOLD signal has 
poor time resolution and the model does not rely heavily on 
synaptic delays. Concretely, the SJ3D model is a reduced form 
of the Hindmarsh–Rose model (43), which forecasts individual 
neuronal behavior. The SJ3D model predicts local dynamics 
using six differential equations that include variables represent-
ing physiological properties such as neuron membrane potentials, 
transport of ions across the membrane through fast and slow ion 
channels, and the dynamic coupling of excitatory and inhibitory 
neuronal populations.

FigUre 1 | Virtual brain transplant method. Virtual brain transplant is done in stroke cases with cortical damage with the goal of being able to parcellate the 
brain. This graphic representation summarizes the process of replacing the damaged portion of the brain with the homologous non-stroke tissue. (a) T1-w image 
showing the lesion (left hemisphere) of one subject. (B) Close-up of the left hemisphere, demarcating the lesion mask in red. (c) Segregation of the right and left 
hemispheres (left) and after the right hemisphere has been flipped having the lesion mask applied (right). (D) Depiction of the tissue from the right hemisphere 
applied to the lesion in the left hemisphere (left) and the resulting transplanted brain volume (right).
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terminating tracks before they enter regions containing the 
lesion. These regions, filled with CSF, have FA values close to 
zero. Therefore white matter pathways ordinarily connect-
ing two ROIs will not be tracked if the ROI is completely 
lesioned, despite appearing intact in the transplanted T1-w 
image from which the parcelation is made. If a parcelation 
is partially compromised by the lesion then white matter 
pathways will also be partially tracked as reflected by a lesser 
number of streamlines.

Generation of Structural Connectivity Matrices
Using the Connectome Mapper Toolkit, two connectivity metrics 
were extracted for each pathway in order to generate two struc-
tural connectivity matrices that quantify connectivity between all 
pairs of the cortical regions for each subject:

1.  Weights, defined as FA  ×  number of streamlines in the 
pathway (note that per the white matter deterministic 
tractography of DTI data, pathways connecting regions 
impacted by the lesion will show a decreased number of 
streamlines and potentially altered FA). This metric reflects 
the maximum rate of transmission of information through 
edges (41). The number of streamlines in the pathway was 
assessed using the deterministic FACT algorithm.

2.  Lengths of the individual tracts, defined in millimeters, were 
derived after smoothing the tractography with a B-Spline 
filter (39).

These matrices are symmetrical, as connections using DTI are 
considered unidirectional (30).

Modeling with TVB
Modeling with TVB involves three initial steps, namely the 
import of individual structural connectivity matrices (obtained 
as described earlier), the selection of a biophysical local model, 
and the choice of relevant biophysical parameter values. TVB 
has several types of local models available, each one taking into 
account different biophysical parameters. Hence, whereas some 
are focused on field potentials [Stefanescu–Jirsa two dimensional 
(2D) and Stefanescu–Jirsa 3D (SJ3D)], others are focused on 
firing rates (Wilson–Cowan, Brunel–Wang, and Jansen–Rit) or 
are phenomenological (Generic 2D, Kuramoto, and Epileptor). In 
our previous efforts, since we simulated the BOLD response, the 
mesoscopic model used was the SJ3D, one of the more complex 
and refined models in the repertoire of TVB.

The reasoning behind this choice was not only the obvious 
relationship between the BOLD response and local field poten-
tials (42–44) but the additional fact that the BOLD signal has 
poor time resolution and the model does not rely heavily on 
synaptic delays. Concretely, the SJ3D model is a reduced form 
of the Hindmarsh–Rose model (43), which forecasts individual 
neuronal behavior. The SJ3D model predicts local dynamics 
using six differential equations that include variables represent-
ing physiological properties such as neuron membrane potentials, 
transport of ions across the membrane through fast and slow ion 
channels, and the dynamic coupling of excitatory and inhibitory 
neuronal populations.

FigUre 1 | Virtual brain transplant method. Virtual brain transplant is done in stroke cases with cortical damage with the goal of being able to parcellate the 
brain. This graphic representation summarizes the process of replacing the damaged portion of the brain with the homologous non-stroke tissue. (a) T1-w image 
showing the lesion (left hemisphere) of one subject. (B) Close-up of the left hemisphere, demarcating the lesion mask in red. (c) Segregation of the right and left 
hemispheres (left) and after the right hemisphere has been flipped having the lesion mask applied (right). (D) Depiction of the tissue from the right hemisphere 
applied to the lesion in the left hemisphere (left) and the resulting transplanted brain volume (right).
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The sequential steps for modeling in TVB are as follows 
(graphical depiction can be found in Figure 2):

1.  Importing the two metrics derived from individualized SC 
matrices [weights (FA  ×  number of fibers) and lengths] 
representing connections between regions, along with the 
T1-w structural data providing individual brain topology.

2.  Parameter space exploration: the goal of this process is 
the optimization of the model parameters. When applying 
TVB methodology to stroke, one can classify the numerous 
parameters included in the modeling into two categories: 
global parameters that will model brain dynamics between 
nodes, and local parameters that will describe brain 
dynamics within nodes. In the first category, the two main 
parameters to optimize are conduction velocity and long-
range coupling. Likewise the biophysical parameters within 
the SJ3D model to be used are those providing the coupling 
between excitatory and inhibitory populations within the 
local regions: K11 (excitatory on excitatory), K12 (excitatory 
on inhibitory), and K21 (inhibitory on excitatory). This 
exploration systematically explores the entire range of avail-
able values for each parameter and identifies the value with 
the highest overall distribution of variance (Figure 3) as the 
optimal parameter value to be used on each individual for 
the actual signal simulation. The order of optimization can 
be done as follows:

 a. Long-range coupling and conduction velocity: starting 
ranges are 0.001–0.1 global coupling and 1–100 conduction 
velocity.

 b. K12 and K21: starting ranges are 0–1.0 for both. K12 is 
optimized first, and the identified value is then used when 
optimizing K21.

 c. K11: starting range is 0–1.0.
3.  Simulating the BOLD response: based on the values obtained 

in the parameter exploration, simulation of the BOLD time 
series should reflect the same duration (4 min) and sampling 
rate (TR = 2 s) of the empirical MRI acquisition. Noise is 
added to each node. The noise to be used is white with 
Gaussian amplitude (mean  =  0, standard deviation  =  1). 
Numerical integration of the system is performed using 
stochastic Heun’s method (45), with an integration step size 
of 0.0122 ms.

4.  Validating the simulated brain signals: this is done by com-
paring the simulated and empirical time series in terms of 
their amplitude, frequency, and phase.

 a. Amplitude: the range is calculated by identifying the highest 
and lowest peaks present in the time series across all regions. 
The overall mean is calculated by averaging the mean ampli-
tude per region across all regions. Mean amplitudes should 
be similar. An example is shown in Figure 4A.

 b. Frequency is computed via fast Fourier transforms of the 
time series with Matlab’s “fft” function with an fs of 0.5 Hz 
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FigUre 3 | example global parameter space explorations in healthy and stroke cases. This figure represents the two viewing options for multiple parameter 
or single parameter explorations. (a) Parameter explorations of the K12 and K21 variables (coupling between inhibitory and excitatory populations) in one healthy 
control (top) and one stroke case (bottom). Heat maps depict the distribution of system variance, with hotter colors indicating values of parameters that yield higher 
variance. High resolution of heat maps allows for identification of precise parameter values related to high variance. (B) Parameter exploration of the K21 variable 
alone, after optimization has been completed. Colored circles depict degree of variance at each value of K21.

FigUre 4 | comparisons of simulated and empirical signals: amplitude and frequency. (a) BOLD time series: example of a simulated (top) and empirical 
(bottom) time series. Note the similarity of amplitudes as indicated by the maxima and minima. (B) Frequency: example frequency distribution graphs for primary 
motor cortex (M1) of the simulated (top) and empirical (bottom) time series where both signals have similar profiles and peaks.
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to determine the range, profile, and peak frequencies. The 
maximum frequency for simulated signals should be around 
0.25 Hz that coincides with the empirical BOLD responses. 
An example is shown in Figure 4B.

 c. Phase can be done by calculating the pair-wise covariance 
of the time series for each region for each subject (30) using 
the “corr” function in Matlab, which results in a functional 
connectivity matrix for each subject. In order to smooth the 
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FigUre 5 | comparison of simulated and empirical signals: phase. (a) Functional connectivity matrix from simulated data modeled from one subject.  
(B) Average functional connectivity matrix from empirical data from all healthy subjects. (c) Correlation of functional connectivity between simulated (x-axis) and 
empirical (y-axis) time series.
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data, one can average all matrices from groups of interest to 
obtain a group control matrix and then calculate the pair-
wise linear correlation coefficient between the simulated 
functional connectivity matrix for each individual to the 
group (Figure 5). Results from this analysis should reveal 
similar phases between empirical and simulated signals. 
Significance of the correlation can be achieved via Fisher 
Z-transformation.

comparison Between healthy controls 
and stroke
We found an increase in long-range coupling in the stroke 
group compared to healthy controls. The meaning of long-
range coupling is not intuitive, especially when compared to 
other parameters more closely linked to biophysical features, 
such as conduction velocity, channel dynamics, and the cou-
pling between excitatory and inhibitory neuronal populations. 
The long-range coupling function is applied to the activity 
propagated between brain region regions by the structural 
pathways before it enters the local dynamic equations of the 
model. Its primary purpose is to rescale the incoming activity 
to a level appropriate to model. At a more intuitive level this 
parameter describes the balance between the global and the 
local dynamics. In other words, an increase in long-range 
coupling suggests a preponderance of local over long-range 
brain dynamics.

In order to put this parameter in the context of current 
network analytical approaches, in this study we determined 
the relationship between the modeled long-range coupling in 
stroke cases with structural network metrics derived from graph 
analysis including degree centrality, betweenness centrality, and 
global efficiency.

graph analysis
Graph Analysis Metrics
Based on the deterministic tractography performed for each 
individual subject, a binary adjacency matrix Aij was generated 

whose elements represent the connections (edges) between nodes 
i and j (46–48). From these matrices, three measures of functional 
integration were obtained: average degree centrality, average 
betweenness centrality, and global efficiency as others have done 
(49–51), using the NetworkX software (52) [mathematical nota-
tion adapted from (20)]:

1.  Average degree centrality is the number of nodes adjacent to 
node i, averaged across all nodes in the graph (53):
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  where n is the number of nodes in the graph, and N is the 
set of those nodes; ki is the degree centrality for node i, and 
aij equals 1 when nodes i and j are the nearest neighbors and 
zero otherwise. This is the simplest measure of centrality and 
is commonly used to discriminate between well-connected 
nodes (hubs) and less well-connected nodes (51).

2.  Average betweenness centrality refers to the fraction of 
shortest paths between any pair of nodes in the network that 
travel through a given node averaged across all nodes (54):
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  where bi is the betweenness centrality for node i; phj is the 
number of shortest paths between nodes h and j, and phj(i) 
is the number of shortest paths between h and j that pass 
through node i. This is the oldest and most commonly used 
measure of centrality (51) where “shortest” refers to the 
path between two nodes that contains the least number of 
intermediate nodes.

 3. Global efficiency is the average of the inverse of the shortest 
path length between all nodes (minimum number of edges 
traversed to connect one node to another) (21, 53):
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FigUre 6 | Distributions of graph analysis metrics in control and stroke cases. Distribution graphs comparing the control (black) and stroke (green) cases 
for (a) Degree centrality, (B) Betweenness centrality, and (c) Global efficiency. Note that distributions in stroke shift to the left for global efficiency but not for degree 
centrality nor for betweenness centrality.
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where dij
-1 is the inverse of the shortest path length between nodes 

i and j. For binary matrices, a network where each node has a 
direct connection to all other nodes in the graph has maximal 
global efficiency, equal to 1, while a partially disconnected net-
work has lower global efficiency (49).

Comparison of Graph Analysis Metrics Between 
Groups
To test for differences in degree centrality, betweenness central-
ity, and global efficiency between healthy and stroke cases, we 
used the Wilcoxon-rank sum test. Significance threshold was 
set to P = 0.017 (Bonferroni correction). A simple linear regres-
sion analysis was used to correlate TVB long-range coupling 
(independent variable) with graph analysis metrics (dependent 
variables).

resUlTs

comparison of graph analysis Metrics 
Between stroke cases and healthy 
controls
Results from the Wilcoxon-rank sum test showed no significant 
differences between healthy controls and stroke cases in degree 
centrality (P = 0.11), betweenness centrality (P = 0.86), or global 
efficiency (P = 0.0822). However, the distributions of each graph 
analysis metric between the two groups showed differences 
(Figure 6). Specifically, global efficiency showed a trend toward 
lower values in stroke cases compared to controls (P = 0.04) but not 
degree centrality (P = 0.22) nor betweeness centrality (P = 0.95). 
While there was not a statistical difference in distribution of 

degree centrality between healthy and stroke populations, a large 
amount of subjects showed lower values of degree centrality.

correlation Between long-range 
coupling and graph analysis Metrics
Linear regression analysis showed that the only graph analysis 
metric associated with the TVB long-range coupling parameter 
was global efficiency (Figure 7). That is, higher values of global 
coupling were correlated with lower values of global efficiency 
(t  =  −2.19, P  =  0.038). There was no significant correlation 
between global coupling and degree centrality (P  =  0.7) or 
betweenness centrality (P = 0.6).

DiscUssiOn

We have demonstrated that TVB can be a novel tool for iden-
tifying biophysical biomarkers of stroke recovery, showing that 
(1) the parameters associated with TVB modeling directly link 
structural imaging data to biophysical processes associated with 
brain dynamics; (2) the models are individualized, as they are 
based on the specific structural connectome from each person; 
and (3) TVB parameters can be correlated with other metrics 
not currently associated with biological parameters (i.e., graph 
analysis metrics). Importantly, this study harnessed the relation-
ship between TVB and graph analysis, wherein the latter supplies 
an additional description of changes in relationships between 
different brain regions, while TVB supplies the neurobiological 
mechanisms responsible for them. The outlined steps using TVB 
offer a unique method, providing a new dimension to the study 
of stroke.
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FigUre 7 | correlation between global coupling and graph analysis metrics. Correlation graphs between global coupling (x-axes) and graph analysis metrics 
(y-axes): (a) Global efficiency, (B) Degree centrality, and (c) Betweenness centrality. Only global efficiency correlated significantly with long-range coupling 
(P = 0.038) but not degree centrality (P = 0.7) or betweenness centrality (P = 0.6).
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TVB integrates Macroscopic and 
Mesoscopic levels to Predict Brain 
Dynamics
There is currently no way to directly measure the local parameters 
modeled in TVB in humans, whereas global measures derived 
from imaging data have been used as potential biomarkers of 
stroke recovery (6, 55), the parameters considered within TVB 
at the local level represent a dimension reduction derived from 
processes at the cellular or even molecular levels. That is, the 
mesocopic level represents the transitional state between the 
macro- and microscales (56). Thus, these parameters better inform 
us of underlying brain mechanism responsible for brain dynamics 
that current imaging analyses are unable to access, such as dynam-
ics between excitatory and inhibitory neuronal populations and 
ion channel properties. In this way, TVB can assist to generate 
hypotheses associated with basic mechanisms that are responsible 
for the changes in brain dynamics associated with stroke.

In this context, it is important to mention that TVB can 
have wide applicability in the clinical setting because the input 
required for its operation can be minimal. In ideal circumstances, 
the experimental data needed are T1-w, fMRI (EEG or MEG), 
and DTI. However, some of these categories may not be necessary 
when only physiological data are available (e.g., EEG) without 
anatomical or connectivity data. In these cases, TVB platform 
includes normalized anatomical data (a parcellated cortical 
surface based on the MNI atlas) and a theoretical structural con-
nectome based on the CocoMac database (3, 57). For stroke cases, 
while it is preferable to have anatomical data, it is still possible to 
run accurate simulations by manually modifying this provided 
structural connectome to exemplify the individual lesions.

The resulting TVB Models are 
individualized
There is large consensus on the importance of individualized 
medicine as one of the means to improve medical care. In this 

sense, a central feature of TVB is its direct focus on individual 
subjects’ brain dynamics. The structural connectivity matrix of 
each individual drives the modeling producing the individual-
ized simulated brain activity, whereas the applicability of previous 
studies has been at the group level (15). By generating reliable 
simulations, the system provides a window into the state of bio-
physical parameters associated with it in each person and hence 
enables the development of customized, individualized therapies 
and treatments.

There are a myriad of stroke therapies currently under 
investigation, including constraint-induced motor therapy 
(58–60), action observation therapy (61, 62), neurostimulation 
(e.g., transcranial magnetic stimulation and transcranial direct-
current stimulation) (63, 64), robotic therapy (65, 66), and 
cellular-based (e.g., stem cell) therapies (67), that have shown 
limited degrees of effectiveness, due perhaps to the fact that 
they are not specifically targeting brain mechanisms responsible 
for individual dysfunction. This is a reflection of the paucity in 
our understanding of basic mechanisms generating individual 
brain dynamics. Having new hypotheses applicable to each 
patient will enable us to generate new therapeutic interventions 
that specifically target the elements producing particular brain 
states. Furthermore, the more we learn about basic processes 
based on animal studies for instance, the more we can modify 
current TVB local models and hence, obtain more sophisticated 
simulations.

TVB Parameters can be related to Other 
network Metrics
An additional feature of parameters derived from TVB is that 
they can be contrasted with other measures. Our results showed 
a trend toward decreased global efficiency in stroke that measures 
the network’s capacity for communication, with greater efficiency 
indicating better overall communication (20, 49). In other words, 
network communication is impaired after stroke. Interestingly, 
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degree centrality and betweeness centrality after stroke were not 
different from healthy controls probably due to the large variance 
of stroke size.

The negative correlation between global efficiency and the 
modeled long-range coupling provides unique insight into the 
network structure of the brain following stroke. We have previ-
ously observed increased long-range coupling after stroke, intui-
tively indicating a higher influence of local dynamics on brain 
activity than long-range dynamics. In this context, it is important 
to remember that the global model is derived from the structural 
connections between nodes, and hence, one would expect that 
shorter (direct) paths that originate from damaged nodes should 
be compromised. The graph analysis results suggest that the post-
stroke connectivity between nodes is done through less efficient, 
longer paths (20). Therefore, decreased global efficiency and 
increased long-range coupling after stroke suggest a breakdown 
in the ability to transfer information between regions, weighting 
the activity toward local dynamics. Our findings thus highlight 
the global impact of stroke, despite its relatively focal damage. 
This novel finding in stroke is consistent with studies in other 
neurological diseases, such as schizophrenia, where imbalances 
between local and global dynamics, specifically a breakdown 
of local structure and a shift toward global dynamics have been 
suggested (68).

limitations
The Virtual Brain as any modeling approach is laden with limita-
tions. Among them:

1.  The fact that TVB simulations depend on structural con-
nectivity assumes the structural matrices having reasonable 
reliability. This is very relevant in stroke because the damage 
can produce mechanical distortions of tissue. In our case, 
we have used TVB transplant to minimize these issues. 
Additionally, there are many definitions of “weights” of 
connections (69, 70) although novel approaches promise at 
least high intraindividual reliability in the reconstruction 
(71). In our case, we used a surrogate measure reflecting the 
“number of fibers per pathway.” This is the reason why we 
normalized the number of streamlines between nodes by the 
FA of the particular pathway.

2.  The weights of connections are currently based on the 
size (number of streamlines) of the pathways, yet the 
particular features of the synaptic connections are not 
taken into consideration. For example, the penetrance of 
a smaller pathway could be larger than a bigger pathway 
if the former establishes the synaptic contact with more 
proximal versus distal dendrites. This type of informa-
tion is available for other species but is not yet known in 
humans.

Future Directions and clinical impact
The ability of generating a virtual brain from any individual opens 
up an interesting venue for therapeutics. Once a hypothesis is 

derived from the biophysical parameters affected by the stroke, 
the effects on brain dynamics can be tested within the TVB 
platform by modifying the parameters for an individual case. 
In this way, TVB can be used as a test for potential therapeutic 
interventions before they are tested in animal models or indi-
vidual patients.

The Virtual Brain thus has the potential to revolutionize stroke 
treatment in the future, by allowing for:

1.  The application to “big data.” While the current study used a 
smaller sample size, once we have parameter changes, future 
studies can more readily utilize TVB in a large number of 
patients.

2.  The ability to study longitudinal brain changes in stroke, 
from acute and sub-acute to chronic stroke. Because of the 
predictive potential of TVB, the inclusion of patients at early 
stages can provide the identification of powerful biomarkers 
for recovery.

3.  The individualization of treatment with minimal input: one 
single MRI scan including the anatomical scan, DTI, and 
resting state fMRI.

4.  The ability to perform whole-brain modeling, integrating 
the particular intercommunication between nodes (DTI 
derived) to local biophysical models associated with con-
crete basic functional parameters.

5.  The opportunity to identify tangible targets for treatment 
that are testable within the application itself.

6.  An open source platform: it is possible to add new, more 
sophisticated mesoscopic and microscopic models via the 
open source nature of TVB. Therefore, new developments 
on basic physiological knowledge can be easily integrated in 
the future.

 7. Allowing the simulation of resting state brain activity, as was 
done in this study, but also of evoked responses through a 
built-in feature that allows for the stimulation of brain areas, 
with features determined by the modeler.
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