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We recently documented plasma lipid dysregulation in preclinical late-onset Alzheimer’s 
disease (LOAD). A 10 plasma lipid panel, predicted phenoconversion and provided 90% 
sensitivity and 85% specificity in differentiating an at-risk group from those that would 
remain cognitively intact. Despite these encouraging results, low positive predictive
values limit the clinical usefulness of this panel as a screening tool in subjects aged 
70–80 years or younger. In this report, we re-examine our metabolomic data, analyzing 
baseline plasma specimens from our group of phenoconverters (n = 28) and a matched 
set of cognitively normal subjects (n = 73), and discover and internally validate a panel 
of 24 plasma metabolites. The new panel provides a classifier with receiver operating 
characteristic area under the curve for the discovery and internal validation cohort of 
1.0 and 0.995 (95% confidence intervals of 1.0–1.0, and 0.981–1.0), respectively.
Twenty-two of the 24 metabolites were significantly dysregulated lipids. While positive 
and negative predictive values were improved compared to our 10-lipid panel, low
positive predictive values provide a reality check on the utility of such biomarkers in 
this age group (or younger). Through inclusion of additional significantly dysregulated 
analyte species, our new biomarker panel provides greater accuracy in our cohort but 
remains limited by predictive power. Unfortunately, the novel metabolite panel alone may 
not provide improvement in counseling and management of at-risk individuals but may 
further improve selection of subjects for LOAD secondary prevention trials. We expect 
that external validation will remain challenging due to our stringent study design, espe-
cially compared with more diverse subject cohorts. We do anticipate, however, external 
validation of reduced plasma lipid species as a predictor of phenoconversion to either 
prodromal or manifest LOAD.
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inTrODUcTiOn

A major push in neurology and neurological research related to 
late-onset Alzheimer’s disease (LOAD) in the last 5 years has been 
to better define the preclinical pathological stages that herald the 
development of clinically overt disease (1). As it relates to this paper, 
when we use the term AD, we mean LOAD, the most common 
clinical form of the disease and featuring a combination of genetic 
and epigenetic etiologies. In this context, we define preclinical 
LOAD as the separate stages of pathobiologic development that 
immediately precede prodromal amnestic mild cognitive impair-
ment (aMCI) and manifest LOAD. We define, therefore, aMCI 
and LOAD to comprise the clinical stages of AD. Since treatments 
initiated during the preclinical stages may be more effective due 
to a more receptive brain substrate, the discovery and validation 
of biomarkers that define such a preclinical period has gained 
significant momentum (1). Our current investigative efforts focus 
on defining a more accurate and predictive set of plasma-based 
metabolomic biomarkers compared to those from our previous 
study (2). While the majority of LOAD biomarker studies to date 
have been carried out via case–control comparisons, our inves-
tigations arise from data developed from a 5-year longitudinal 
observation study. Longitudinal studies allow direct assessment 
of pathobiology during times of transition, while case–control 
studies primarily infer these transition events by comparing 
health to disease. Cerebrospinal fluid (CSF), neuroimaging, and a 
variety of other blood-based biomarkers have also been proposed 
via case–control analyses (3) but have not gained favor due to 
their associated risk, cost, and/or lack of requisite sensitivity and 
specificity values. There are few longitudinal investigations in 
the literature that define which neurocognitively intact subjects 
will progress to either prodromal or manifest LOAD. Our recent 
plasma lipid biomarker study (2) provided receiver operating 
characteristic area under the curve (ROC AUC) values of 0.96 
and 0.92 with 95% confidence interval of 0.93–0.99 and 0.87–0.98, 
respectively, in the discovery and internal validation cohorts 
analyzed. The calculated positive predictive value (PPV), but not 
the negative predictive value (NPV), estimates remained low due 
to the low prevalence in this age group, arguing against the use of 
such a panel as a screening tool in a similarly aged, asymptomatic 
population. While sensitivity and specificity reflect on accuracy 
provided by a test, predictive values address the meaning of test 
results given a particular context (i.e., age-dependent prevalence) 
(4). The discovery and internal validation metabolomic analyses 
that were originally advanced, however, provided support to the 
lipid irregularities previously associated with LOAD (5), and our 
5-year longitudinal study design allowed identification of bio-
markers that predict the pending phenoconversion to the clinical 
stages of LOAD. Herein, we describe the discovery and internal 
validation of an expanded panel of plasma metabolites, from the 
same baseline asymptomatic subjects previously reported (2). 
The expanded metabolite panel provides increased sensitivity 
and specificity and improved predictive values within our cohort. 
In addition, the specific analytes in the panel further strengthen 
the links between dysregulated brain and plasma lipid species 
during the preclinical stages of LOAD. Our expanded biomarker 
panel, therefore, provides significant potential benefits, as well as 

burdens that must be considered by individuals and society at 
large. Such a biomarker panel for preclinical LOAD must initially 
play a role in selecting subjects for secondary prevention trials 
and, possibly, monitoring their therapeutic success or failure. 
Eventually, however, it will be critical that biomarker panels of 
disease stimulate the development of new or repurposed thera-
peutics. A diagnostic test without an associated viable treatment 
option is always limited. Eventually, a highly accurate panel such 
as proposed might be applicable in a general clinical practice, 
identifying older adults with a high risk of phenoconversion to 
the clinical stages of LOAD, and allowing initiation of treatment 
that could modify the course of disease.

MaTerials anD MeThODs

Participants
The study design for this investigation is structured in a manner 
similar to that used in our original study (2) but features discov-
ery and internal validation sets that include only subjects who 
maintain a cognitively normal status [normal control (NC)] and 
those who phenoconvert from cognitive normality at baseline 
(Converterpre) to either aMCI or AD by either year 3 or year 5 
of the Rochester/Orange County Aging Study (Figure  1). As 
part of a 5-year observational study, we enrolled a total of 525 
community-dwelling participants from two distinct geographic 
regions, aged 70 and older, and who were otherwise healthy. 
Health records and medications were fully documented, and 
subjects were excluded only if major neurologic or oncologic 
illness was present. All study participants provided informed 
consent for study inclusion and use of their neurocognitive 
results and peripheral blood specimens for analyses. Institutional 
review boards (IRBs) at each institution approved the protocols 
and informed consent documents. As opposed to including the 
incident aMCI/AD group, as described in our original investiga-
tion (2), the primary inclusion and comparison for this analysis 
was limited to those subjects who remained cognitively normal 
throughout the study and those who phenoconverted to aMCI or 
AD during the 5-year study. Subjects were continuously enrolled 
in the study over 5  years. In a planned midpoint analysis, we 
selected those who remained cognitively normal or phenocon-
verted from baseline to year 3 for the discovery cohort and those 
who were subsequently enrolled or who subsequently phenocon-
verted during year 3 to 5 for the internal validation cohort. As 
shown in Table 1, the 71 discovery subjects include 53 NC and 
18 Converterpre individuals. The discovery cohort Converterpre 
subjects consisted of 2 individuals who phenoconverted to AD 
and 16 who transitioned to aMCI. Of this group, three of those 
converting to aMCI carried an APOE ϵ4 allele. The 30 internal 
validation subjects featured 20 NC and 10 Converterpre indi-
viduals. Internal validation cohort phenoconverters consisted 
of five individuals who developed AD and five meeting criteria 
for aMCI. In the internal validation cohort, two of the AD con-
verters carried an APOE ϵ4 allele. The discovery and internal 
validation cohorts did not share any common subjects. Figure 1 
further depicts how the Converterpre subjects were selected 
(number that phenoconverted by year 3 and the remaining that 
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TaBle 1 | Discovery and internal validation cohort demographic details.

clinical groups n (M/F) Mean age 
years [sD]

Mean education 
years [sD]

% APOE 
ϵ4

Normal control (NC)

 Discovery 53 (18/35) 81.6 [3.6] 15.7 [2.3] 24.6

 Internal validation 20 (9/11) 81.4 [3.3] 15.1 [2.5] 20

Converterpre

 Discovery 18 (8/10) 80.7 [2.3] 15.3 [3.1] 16.7

 Internal validation 10 (4/6) 79.3 [5.5] 14.5 [1.8] 20

Total discovery 71 (26/45) 81.8 [3.0] 15.5 [2.7] 20.7

Total internal 
validation

30 (13/17) 80.9 [4.4] 14.8 [2.2] 20.0

n, number of subjects; F, female subjects; M, male subjects; SD, standard deviation; % 
APOE ϵ4, percent having at least a single APOE ϵ4 allele.
Gender, age, education, and APOE ϵ4 status were not significantly different (Chi-square 
p > 0.05) between discovery and internal validation groups.
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phenoconverted by year 5) and matched to NC subjects, for this 
manuscript as well as our previous lipidomic study. The number 
of subjects in our discovery (n  =  71) and internal validation 
(n = 30) groups (or cohorts), therefore, approaches the accepted 
biostatistical standards (6) for discovery and validation group-
ings of 2/3 and 1/3, respectively. This study focused solely on 
biomarker comparisons between subject groups categorized as 
fulfilling the cognitively normal state (Converterpre vs. NC) at 
baseline. Excluded from this and our previous analysis (2) were 

•
•

•
•

•

•

FigUre 1 | schematic representation of overall study design and specific analyses reported in this paper. Clinical subjects for the 5-year observational 
study were selected for participation at the University of Rochester and the University of California Irvine. An interim analysis was performed at year 3 of the study, 
comparing 53 subjects who maintained normal cognition since baseline study entry, to a group of 18 subjects who were cognitively normal at baseline but had 
phenoconverted to either aMCI or AD by year 3. This group made up our discovery cohort from which initial biomarker discovery was performed. With complete 
neuropsychological assessments available by study termination, an additional group of 10 subjects were noted to have phenoconverted during year 4 and year 5. 
This latter group was combined with a group of 20 matched subjects who maintained normal cognition throughout the study, and together were designated as the 
internal validation group (or cohort). All subjects included in this analysis (Discovery and Internal Validation cohorts) had only their baseline blood specimens 
assessed for metabolomic biomarker comparisons (dashed red circles).

a significant number of the total longitudinal study participants 
who could not be categorized based on the strict neurocognitive 
grouping parameters. We believe that rigorous clinical classifica-
tion is necessary to increase signal in the biological samples for 
new metabolomic discovery. In any study with clinical charac-
terization such as ours, we can clearly identify the cases (aMCI 
or LOAD), but not all remaining subjects should be considered 
NCs. Thus, in our work, we specifically define criteria for NCs 
and those who do not meet either definition (case or control) 
are not included in the specific study analysis. Subject data 
from the excluded individuals are undergoing separate analyses, 
not specifically related to the diagnosis of LOAD. The goal of 
this analysis, therefore, was to develop a biomarker model that 
would more accurately predict whether phenoconversion would 
or would not occur in cognitively normal subjects of our aging 
cohort within 5  years from study entry. Herein, we compare 
those cognitively normal (Converterpre or preclinical LOAD, 
n = 28) individuals, who developed memory impairment, with 
or without functional impairment, within 5 years of study entry, 
to those subjects who remained cognitively normal (NC, n = 73) 
over the same 5-year study period (Table 1) (total study group 
analyzed, n = 101). Of the 28 subjects who phenoconverted, 21 
developed aMCI, and 7 developed AD within the 5-year study. 
We reiterate that the 101 subjects in this analysis are a subset of 
those reported in our previous publication (that also included 
those with incident aMCI/AD) (2).
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Our discovery and internal validation groups of cognitively 
normal individuals at baseline assessment (including both NC 
and Converterpre) were matched for age, gender, and education and 
featured similar APOE allele status (Table 1). Our internal valida-
tion group consisted of approximately one-third of all subjects 
included in our analysis and was composed of phenoconverters 
from years 3 to 5 and their matched set of control subjects. All 
study participants underwent phlebotomy between 8:00 a.m. and 
10:00 a.m., on a yearly basis, while fasting and withholding their 
morning medications, and as close as possible to the same day 
each year of study participation. Blood specimens were initially 
placed on ice, and the blood components were separated within 
24 h, yielding multiple plasma aliquots that were frozen immedi-
ately thereafter at −80°C until undergoing metabolomic analyses. 
Smaller plasma aliquots allowed a single freeze-thaw cycle prior 
to metabolomic processing for all specimens. All metabolomic 
data used for this analysis had been previously made available 
online (2), and untargeted discovery and targeted internal vali-
dation data had been obtained from baseline plasma specimens 
for all reported study participants. Glycerophospholipids were 
the most significantly dysregulated class of metabolites in our 
original untargeted discovery data. Discovery group data for this 
investigation resulted from 71 baseline subject specimens who 
underwent a targeted multiple reaction monitoring-stable iso-
tope dilution-mass spectrometry (MRM-SID-MS) analysis using 
the Biocrates Absolute-IDQ P180 Kit (Biocrates Life Sciences, 
Innsbruck, Austria), which evaluates five classes of metabolites, 
including acylcarnitines (ACs), amino acids, hexoses, phospho- 
and sphingo-lipids, and biogenic amines, in an effort to reduce 
bias toward a particular class of metabolites. A subsequent inter-
nal validation study was completed on an additional 30 baseline 
subject specimens that underwent similar metabolomic analyses 
(Figure 1). These data were preprocessed, as previously described 
(2), prior to statistical consideration.

statistical analysis
Statistical treatment of the data in this study was according to the 
same overall methods as described in our previous publication 
(2). The abundance measurements for metabolites (with a specific 
mass/charge ratio, m/z) in both positive and negative modes were 
expressed as intensity units that were initially normalized using 
log transformation and quantile normalization (Figure  2). For 
the 71 subjects in the discovery cohort, we calculated the level of 
differential expression for each metabolite using a t-test, compar-
ing NC and Converterpre, constrained by p-value <0.05. Among 
these differentially expressed metabolites, we performed the 
feature selection using a regularized learning technique, which 
uses the least absolute shrinkage and selection operator (LASSO) 
penalty (7, 8). We first obtained the regularization path over a grid 
of values for the tuning parameter lambda (λ) through 10-fold 
cross-validation. The optimal value for λ obtained by the cross-
validation procedure was used to fit the model. All the features 
with nonzero coefficients were deemed as biomarker candidates. 
This technique is known to reduce overfitting and variance in 
classification.

The classification performance of the selected metabolites 
was assessed using the ROC curve AUC. To maintain rigor 

of independent validation, the simple logistic model from the 
discovery set was fixed. The statistical team was blinded to the 
sample group identities of the internal validation cohort, which 
consisted of different NCs and Converterpre subjects than those 
used in the discovery cohort. Any separation in values between NC 
and Converterpre subjects for the final panel was evaluated using 
a robust method, the hidden logistic regression model with the 
maximum estimated likelihood (MEL) estimator (9). A combined 
classifier, based on the final biomarker panel for 101 subjects, 
within the discovery and internal validation groups, was developed 
to determine differences between NC and Converterpre groups. The 
resulting combined classifier allowed the development of a plasma 
metabolite index (PMI), which provides a single predictive value of 
risk of phenoconversion in cognitively normal subjects observed 
over the 5-year interval. The PMI is obtained by mapping the log 
odds in a regularized logistic regression model on a 0–100 scale.

Positive and negative predictive value calculations used in this 
paper feature the direct measures of sensitivity and specificity 
defined from the ROC curves (10, 11) as well as the clinical 
prevalence from the literature (12), based on the disease in 
the specific population tested (13). Accuracy measures, which 
combine sensitivity and specificity for our biomarkers, were 
calculated for the 10-lipid and new metabolite panels. Accuracy 
values are calculated for potential cutoff probabilities of being 
diagnosed Converterpre based on the ROC curve.

resUlTs

The clinical groups (see Table 1) were not significantly different 
(p  ≥  0.05) from each other based on gender, age, education, 
and APOE ϵ4 allele carrier percentages. APOE allele status was 
not a significant covariate, as previously reported (2). The ROC 
AUC with and without inclusion of APOE ϵ4 allele status in the 
classifier was not significantly different (p ≥ 0.05). Cognitive and 
phenoconversion details for the cohorts associated with this study 
are provided in Table 2. The memory Z-scores clearly decline from 
baseline to the post conversion (Converterpost) state. Mean time to 
phenoconversion for all converters was 2.1 years. The discovery 
group had a mean time to phenoconversion of 1.5 years, while the 
internal validation group’s mean time to phenoconversion was 
3.1 years. The mean time to phenoconversion was significantly 
longer for the internal validation group compared to the discovery 
group (Mann–Whitney U Z-score = −3.21, p = 0.0013).

A total of 174 significant (p <  0.05) differentially expressed 
metabolites were defined in the discovery cohort. Of this group, 
24 metabolites [13 glycerophosphatidylcholines (PCs), 9 ACs, 1 
amino acid, and 1 biogenic amine] (Table 3) fulfilled the specific 
selection criteria established for the new biomarker panel. Three 
of the 24 metabolites, all belonging to the AC group (see bottom 
3 entities in Table  3; Figure  3), had significantly increased 
levels, while quantities of the remaining metabolites were all 
significantly reduced in Converterpre subjects compared to NC, 
for both discovery and internal validation groups (Table  3; 
Figure  3). Seven of the 24 metabolites were featured in our 
previously reported panel of 10 plasma lipids (2) (see top 7 in 
Table 3; Figure 3), and include a single AC (C3, proprionyl-l-
carnitine), a single lysophosphatidylcholine (lysoPC a C18:2), 
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TaBle 2 | cognitive Z-scores and conversion diagnosis.

cognitive Z-scores conversion Dx (aMci/
aD)

Years to 
phenoconversion 

[seM]Zatt [seM] Zexe [seM] Zlan [seM] Zmem [seM] Zvis [seM]

Normal control (NC)

 Discovery −0.17 [0.1] −0.06 [0.1] 0.03 [0.1] 0.08 [0.1] 0.06 [0.1] n.a. n.a.

 Internal validation 0.03 [0.1] 0.06 [0.2] 0.06 [0.1] −0.05 [0.1] 0.27 [0.2] n.a. n.a.

Converterpre

 Discovery −0.35 [0.2] −0.54 [0.2] −0.58 [0.3] −0.81 [0.1] −0.48 [0.3] n.a. n.a.

 Internal validation −0.42 [0.2] −0.42 [0.4] −0.03 [0.4] −0.02 [0.1] 0.35 [0.3] n.a. n.a.

Converterpost

 Discovery −0.33 [0.2] −0.60 [0.2] −0.88 [0.3] −1.7 [0.1] −0.39 [0.3] (16/2) 1.5 [0.5]

 Internal validation −0.31 [0.2] −1.0 [0.4] −0.75 [0.4] −1.7 [0.1] 0.06 [0.3] (5/5) 3.1* [1.2]

Zatt, attention composite Z score; Zexe, executive composite Z score; Zlan, language composite Z score; Zmem, memory composite Z score; Zvis, visuoperceptual composite Z score.
Conversion Dx represents the number of individuals who phenoconverted to the specific diagnosis: n.a., not applicable; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s 
disease. Note the prominent decline in Zmem for the Converter subjects from Converterpre to Converterpost consistent with phenoconversion to memory impairment. Also, note decline 
in other cognitive domains consistent with the diagnosis of AD in some subjects, which requires impairment in memory plus one other cognitive domain. 
*Mean time to phenoconversion was significantly longer for the internal validation converter group compared to the discovery converter group (Mann–Whitney U Z-score = −3.21, 
p < 0.01); SEM, standard error of the mean.

•
•

•

FigUre 2 | Flow chart showing steps in biomarker model development. Discovery cohort information was obtained from baseline specimen metabolomic 
data from subjects who remained cognitively normal (NC) throughout the study and baseline specimens from those that phenoconverted (Converterpre) during the 
study’s first 3 years. Discovery metabolomic data from positive and negative modes underwent normalization, followed by selection of significantly altered 
metabolites (p < 0.05), which were then annotated. The significant, annotated biomarker panel was then defined via a regularized learning method that features the 
LASSO restriction. The discovery biomarker panel selected is then tested using the receiver operating characteristic area under the curve (ROC AUC) method. With 
the statistical team blinded to group identities, the Internal Validation cohort data were similarly normalized and annotated. Internal Validation data were subjected to 
the results of the discovery logistic regression classifier and tested using the ROC AUC method. Combined data from the discovery and internal validation sets were 
used to develop a 24-metabolite index.
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and 5 PCs, with either ester (a) or ether (e) linkages (PC aa 
36:6; PC aa 38:0; PC aa 38:6; PC aa 40:1; and PC ae 40:6). Nine 
novel ACs in the current panel include valeryl-l-carnitine 
(C5), hydroxyvaleryl-l-carnitine/methylmalonyl-l-carnitine 

(C5-OH/C3-DC-M), non-ayl-l-carnitine (C9), decenoyl-l-
carnitine (C10:1), decadienyl-l-carnitine (C10:2)dodecenoyl-
l-carnitine (C12:1), hexadecadienyl-l-carnitine (C16:2), and 
hydroxyoctadecenoyl-l-carnitine (C18:1-OH). This new panel 
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TaBle 3 | components of the 24 metabolite biosignature for determining risk of phenoconversion from normal cognition to aMci or aD.

Metabolite name Discovery cohort internal validation cohort

p-value log ratio (mean) log ratio (median) log ratio (mean) log ratio (median)

PC ae C40:6 0.0380 −0.3039 −0.0809 −0.2980 −0.2445

PC aa C40:1 0.0414 −0.2040 −0.0779 −1.1414 −0.1909

PC aa C38:6 0.0365 −0.3372 −0.2081 −0.9792 −0.1445

PC aa C38:0 0.0391 −0.2510 −0.0533 −0.5129 −0.1469

PC aa C36:6 0.0446 −0.3695 −0.1270 −0.2383 −0.1472

lysoPC a C18:2 0.0299 −0.3326 −0.0409 −0.3801 −0.1235

C3 0.0031 −0.4574 −0.2728 −1.2751 −0.3337

PC ae C36:4 0.0428 −0.3994 −0.0769 −0.6625 −0.2740

C10:2 0.0403 −0.4042 −0.1914 −0.1913 −0.2948

C9 0.0070 −0.4044 −0.2231 −0.8499 −0.2433

PC ae C42:1 0.0073 −0.4980 −0.3428 −1.3565 −0.3138

PC aa C38:3 0.0432 −0.4141 −0.1500 −0.8084 −0.2387

C5 0.0013 −0.2769 −0.1959 −0.6762 −0.2451

ADMA 0.0163 −0.2962 −0.1144 −1.0761 −1.5794

Asn 0.0441 −0.1788 −0.0891 −0.8982 −0.1933

PC aa C34:4 0.0346 −0.4353 −0.1906 −0.1430 −0.0835

C18:1-OH 0.0182 −0.2676 −0.3349 −1.2507 −0.2383

PC ae C34:0 0.0148 −0.4064 −0.2323 −1.2721 −0.4404

C5-OH (C3-DC-M) 0.0003 −0.4214 −0.3204 −2.1235 −2.0212

PC aa C40:5 0.0298 −0.4349 −0.1534 −0.5866 −0.4183

PC aa C32:0 0.0150 −0.4014 −0.1843 −1.4605 −0.6273

C16:2 0.0108 0.2767 0.0789 0.5001 0.0419

C12:1 0.0001 0.5075 0.3435 0.8748 0.2055

C10:1 0.0026 0.3642 0.2172 0.6121 0.0184

In the metabolites listed, C_ species (e.g., C3) denote acylcarnitines (ACs). Phosphocholine (PC) metabolites display combined numbers of carbon atoms for their two acyl groups 
(sn1 and sn2 positions) (e.g., C38), whereas the combined number of double bonds (unsaturation) is displayed after the colon (e.g., C38:6). Acyl group linkages to choline backbone 
for PCs feature ester (a) or ether (e) linkage (e.g., PC ae C36:4). Asn, asparagine. ADMA, asymmetric dimethylarginine. LysoPC, lysophosphatidylcholine species, with only one acyl 
group, typically in the sn1 position. The discovery cohort provided significant differentially expressed metabolites between Converterpre and NC. The column of p values indicates 
the significant differences for mean analyte values between the clinical groups for the discovery cohort. Log ratios represent the difference of the log-transformed values (mean or 
median) for Converterpre and NC subjects. Negative log values indicate that levels (mean or median) of the analyte in Converterpre < NC, while positive log values indicate that levels 
(mean or median) in Converterpre > NC. NC, normal control subjects.
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also features asparagine (Asn), an amino acid, and asymmetric 
dimethylarginine (ADMA), a biogenic amine. All 7 novel PCs 
in this panel contain pairs of long chain fatty acids (FAs) (13–21 
carbons), as did those in our previous report (2). The new PCs 
include PC aa C32:0, PC aa C34:0, PC aa C34:4, PC ae C36:4, PC 
aa C38:3, PC aa C40:5, and PC ae C42:1.

Receiver operating characteristic analyses (Figures 4A,B) of 
the plasma 24-metabolite panel yielded AUC measures of 1.00 
and 0.995, for the discovery and internal validation groups, 
respectively. As a test on the accuracy of the 24-metabolite panel, 
a support vector machine (SVM) classifier was also developed 
on the discovery set and provided a similar ROC AUC (0.98) 
measure. Such precision allows the development of a plasma 24 
metabolite index (P24MI) (Figure  4C) based on a regularized 
logistic regression model using the combined discovered and 
validated 24 metabolite values. The P24MI provides 100% 
confidence that subjects in our study with scores of ≥49 will 
phenoconvert to either aMCI or AD over the next 5 years.

Comparisons of our 10-lipid panel and expanded 24-metabolite 
panel are presented in Table 4, which define the comprehensive 
improvement provided by the expanded panel. Importantly, 
the presented PPV and NPV in Table  4 are derived using a 
conservative calculation method (10), and they feature similar 

published prevalence estimates of LOAD for female and male 
subjects aged 71–79 years: 2.33% for females, and 2.30% for males 
(12). Gender differences in LOAD prevalence grow significantly 
in subsequent decades, much higher in women, and is most likely 
due to their longer life expectancy (14).

DiscUssiOn

We present an expanded plasma metabolite panel that attempts 
to maximize sensitivity, specificity, PPV, NPV, and accuracy in 
predicting risk of phenoconversion in a clinically asymptomatic 
cohort of seniors participating in a 5-year observational study. 
We included predictive assessments in the presentation of this 
24-metabolite panel and in the retrospective analysis of our 
published 10-lipid panel (2) (see Table  4). It is important to 
note that our original lipidomic panel, while demonstrating the 
feasibility of risk identification using blood-based biomarkers for 
the preclinical stages of LOAD, was specifically defined to achieve 
approximately 90% sensitivity and specificity of classification uti-
lizing the smallest number of analytes. These particular selection 
criteria were meant to provide interpretive simplicity and ease 
of implementation on a path toward a putative diagnostic assay. 
Since then, other investigators (15–17) have reported similar 
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FigUre 3 | horizontal box and whisker plots of plasma 24 metabolite panel results for clinical groups in discovery and internal validation cohorts. 
Comparative ranges of plasma metabolite levels for the targeted discovery and internal validation studies are displayed, allowing appraisal of metabolite results in the 
cognitively intact normal (orange) versus Converterpre (light blue) groups. The box defines the interquartile range (IQR) with the vertical black line within the box 
representing the median value. The whiskers define the upper and lower 25% limits of the data, while the dots represent outliers (≥1.5 IQR lengths from the ends of 
the box). The normal group featured 53 subjects in the discovery and 20 in the internal validation cohorts, while the Converterpre group included 18 and 10 subjects, 
for discovery and internal validation cohorts, respectively. Individual analytes are listed on the left vertical axis, while normalized metabolite levels are shown on the 
horizontal axis. All the Converterpre analyte results are reduced in comparison to NC levels, except for three acylcarnitine species (bottom of figure), C16:2, C12:1, 
and C10:1, which are elevated. Note the higher variability of the internal validation set compared to the discovery set, due to less than half of the number of subjects 
in the former compared to the latter.
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groups of phospholipids depleted in the blood of Alzheimer’s 
disease (AD) patients, while a recent nutritional intervention 
study provided an alternative validation of our initial lipidomic 
findings (18). Since the ultimate utility of a clinical diagnostic test 
will depend, at least in part, on a combination of safety, predictive 
accuracy, and cost, especially if used as a screening tool in asymp-
tomatic subjects, we now provide a new metabolomic panel that 
maximizes predictive accuracy in the examined age group while 
maintaining safety and relatively low cost.

Despite the significant differences in time to phenoconversion 
between our discovery and internal validation groups (Table 2), 
we are encouraged that our metabolomic profile developed under 
a time to phenoconversion of 1.5 years also appears accurate up 
to 3 years prior to phenoconversion. We believe that analysis of 
serial specimens from our participants would provide extremely 
valuable information regarding analyte changes over time. Such 
analyses are yet to be finalized due to the associated expenses. 
However, we believe that insights on whether expansion of our 
metabolomic biomarker panel could be useful in raising predic-
tive accuracy of phenoconversion risk would be independent of 
these serial analyses. While test sensitivity and specificity was 
improved, PPV and NPV, especially PPV remained limited by 

the low prevalence used for our age range (12). Importantly, 
our 24-metabolite panel provides an improved risk assessment 
regarding which subjects will develop aMCI or AD, and more 
importantly, which subjects will not.

The revised selection criteria for our 24-metabolite panel 
accounts for the inclusion of seven significantly dysregulated 
plasma lipid species from our original report (2), and 15 addi-
tional abnormal plasma lipids, a single amino acid, and a single 
biogenic amine. The 3 lipids included in our original 10-lipid 
panel but excluded from the current 24-metabolite panel were 
likely not considered due to more significant metabolites and 
the LASSO exclusion to avoid co-linearity. We assert that 
this novel plasma metabolite panel provides concordant, sig-
nificantly altered analytes based on the specific selection criteria 
and statistical stringency used. These plasma biosignatures of 
phenoconversion risk primarily feature dysregulated lipid spe-
cies, with the majority being reduced in plasma compared to 
normal. The significant reduction in both PC and AC species 
in peripheral blood supports the hypothesis put forth by our 
group (2) and others (5, 15, 18–20) that abnormalities in lipid 
networks may not only represent biomarkers for, but may be 
integral to the development of specific neurodegenerative 
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FigUre 4 | analytic representations to discriminate converterpre from normal control (nc) subjects. (a,B) provide receiver operating characteristic (ROC) 
curves, whereas (c) depicts the calculated plasma 24 metabolite index (P24MI). (a) ROC area under the curve (AUC) for the Discovery cohort was equal to 1.00 with 
95% confidence interval (in parentheses) ranging from 1.00 to 1.00. (B) ROC AUC for the internal validation cohort was 0.995, with 95% confidence interval (shaded area 
on plot) ranging from 0.981 to 1.00. (c) The P24MI results are depicted in vertical boxplots based on the logistic regression model that distinguishes between Converterpre 
and NC groups. Solid black horizontal lines represent the mean value, while the dashed red horizontal lines represent the median value. Orange and light blue dots 
represent outliers (≥1.5 IQR lengths from the ends of the box). The higher index values (left vertical axis) are associated with an increased risk of phenoconversion to aMCI 
or AD, as seen in our Converterpre subjects, with confidence (right vertical axis) of predicting phenoconversion transitioning from 90 to 100% at an relative index value of 
48. Based on the calculated P24MI in our current dataset, a relative index value ≥49 represents a Converterpre individual and a risk of phenoconversion of 100% within the 
5-year study range. Note the relatively low variability of the P24MI for both the NC group and the Converterpre group, with no overlap.
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pathologies, including LOAD. Similarities in the dysregulated 
lipid networks within brains from human LOAD and transgenic 
mouse models of early-onset AD (EOAD) suggest disruptions in 
the levels of certain bioactive lipids, including glycerophospho-
lipids, ceramides, and sphingomyelins, highlighting the utility 

of lipidomics for investigating these conditions (21). Future 
assessments may elucidate shared as well as distinct etiologic 
mechanisms in both EOAD and LOAD and dictate particular 
therapeutic options to target the differences in their pathobio-
logic networks.

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


TaBle 4 | Biomarker panel comparisons.

Biomarker panel sensitivity specificity rOc aUc PPV/nPV (%) accuracy (%) 

gender cohort

10 lipid (2) 0.9 0.85 85
Male 12.4/99.7
Female 12.5/99.7

Discovery 0.96
Internal validation 0.92

24 metabolite 1.00 0.95 95
Male 32.0/100
Female 32.3/100

Discovery 1.00
Internal validation 0.995

ROC AUC, receiver operating characteristic area under the curve; PPV, positive predictive value; NPV, negative predictive value.

November 2015 | Volume 6 | Article 2379

Fiandaca et al. Metabolites Predict Phenoconversion to aMCI/AD

Frontiers in Neurology | www.frontiersin.org

In our previous (2) as well as our current plasma biomarker 
panel, all the PCs are notably reduced during the preclinical stages 
of LOAD. Similar PC reductions have been documented in AD 
brains (22) and attributed to pathologic activation of phospho-
lipase A2 (PLA2) (22, 23). Using current analytic methods, dys-
regulated lipid metabolism has been confirmed, with reductions 
in specific PCs noted in brain (24), plasma (5), and serum (25) 
of AD subjects compared to controls. With PLA2 activity known 
to form lyso PCs, lack of significant central elevations in this 
phospholipid byproduct may relate to their rapid re-acylation to 
form PCs for repair (or attempted repair) of membranes (26) or 
to generation of downstream metabolites. The mechanistic link 
between reduction of brain lipid in association with LOAD, and 
in peripheral blood, has yet to be fully elucidated. Interestingly, 
the PCs in our 24-metabolite panel all feature polyunsaturated 
fatty acids (PUFAs) (Table  3), as has been reported by others 
(25, 27). While the brain has the capacity to generate all the lipid 
species it requires for normal function, along with most saturated 
and monounsaturated FAs (28, 29), specific substrates required 
to maintain brain lipid homeostasis, especially sources of energy 
and certain PUFAs, are delivered to the brain via the bloodstream. 
In normal brain metabolic processing, phospholipid components 
are efficiently recycled and have relatively long central half-lives 
(28). Essential PUFAs such as docosahaxaenoic acid (DHA; 22:6 
n-3) and arachidonic acid (AA; 20:4 n-6) provide structural 
functionality as phospholipid components in bilayer membranes. 
Once released, either directly or through byproducts, they are 
known to participate in signal transduction processes that have 
positive and negative consequences within cells (30). Under 
conditions where brain membrane lipids undergo catabolism 
(e.g., oxidative stress, or neuroinflammation), the downstream 
intermediates often are not recycled to the membrane and thereby 
increase the demand for lipid precursors from the bloodstream 
(Figure  5). Such precursors exist in plasma as unesterified FAs 
(≤22 carbons) bound to albumin, or as esterified FA species (>22 
carbons) within phospholipids preferentially transported within 
circulating lipoproteins (30). Esterified FAs can be converted to 
unesterified forms via lipases within the lipoproteins or circulat-
ing within the blood (31–33). Flux of unesterified FAs into the 
brain, across the blood–brain barrier (BBB), is rapid and occurs 
via simple diffusion and possibly via facilitated transport (30). All 
unesterified FAs entering the brain are immediately esterified by 

acetyl-CoA-synthase (34–37), preventing their diffusion back to 
blood and preparing them for incorporation into lipid biosyn-
thetic pathways. Activation of phospholipases (e.g., PLA2) with 
increased oxidative stress is implicated in diminishing PUFAs 
from membrane lipids (16). We have observed elevated levels of 
oxidative lipid metabolites in our at-risk preclinical subjects, that 
do not reach statistical significance, but reach significant elevation 
in plasma from symptomatic LOAD subjects compared to controls 
[unpublished data]1. Hartmann and colleagues (18) provided an 
indirect test to this hypothesis of depleted substrates (Figure 5A), 
in their investigation of a medically regulated nutritional supple-
ment (Souvenaid®) in a randomized, placebo-controlled, double-
blind clinical trial in subjects having mild dementia, attempting to 
stimulate de novo PC synthesis via the Kennedy pathway (38). They 
report significant elevations in five specific blood-derived PCs 
with the supplemental agents, including members of our original 
plasma 10-lipid panel. Restoration of blood lipids with dietary 
supplements has been proposed as beneficial in both preclinical 
and mild AD by stabilizing synaptic membrane function (39), and 
network connectivity (40). In another recent publication (41), the 
authors propose that redox reactive autoantibodies are produced 
in CSF and blood as a result of exposure to oxidizing agents (in 
prodromal or manifest AD). Moreover, they proposed utilizing 
the autoantibody levels as disease biomarkers to differentiate 
control subjects from those with MCI or AD. From our perspec-
tive, such phospholipid autoantibodies are poised to preferentially 
bind to specific plasma phospholipids, with resultant clearance of 
the conjugates from blood plasma, making brain lipid substrates 
less available for entry into the brain. Recent data indicate a role 
for ACs beyond β-oxidation (42), including neuroprotection by 
increasing antioxidant activity, modulating membrane composi-
tion, assisting with lipid biosynthesis, participating in gene regula-
tion, enhancing cholinergic neurotransmission, and improving 
mitochondrial function. Altered AC levels in those destined to 
phenoconvert to AD, therefore, may parallel central alterations in 
neuroprotection and/or bioenergetic capacity.

Finally, the reduced abundance of asparagine (asp) and asym-
metric dimethylarginine (ADMA), in Converterpre compared to 
NC, provide insights into orthogonal dysregulated networks in the 

1 Cheema AK, Personal communication (2015)
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FigUre 5 | schematic representations of potential alterations within 
brain and peripheral blood responsible for reduced plasma 
phospholipid levels. (a) Qualitative dot plot of differential changes occurring in 
cognitively normal control (NC), cognitively normal Converterpre (Cpre) subjects, 
and those with amnestic mild cognitive impairment or Alzheimer’s disease 
(aMCI/AD). Note that all four processes (represented within boxed legend) are 
at the zero relative level in the NC subjects. The Cpre subjects could show 
significant polyunsaturated fatty acid (PUFA) transport into brain to replenish lost 
substrate as a result of neuroinflammation or other brain injury. The increase in 
PUFA flux into the brain is an attempt to compensate for ongoing injury and 
results in a marked reduction in the plasma levels of molecules carrying those 
lipid species. Dark horizontal line within boxes represents proposed mean. (B) 
Qualitative plasma phospholipid biomarker results, previously quantified (2), 
which may be better interpreted via the theory proposed in (a). Dark horizontal 
line within boxes represents proposed mean. The full explanation for this 
metabolic phenomenon in the Cpre subjects remains to be elucidated.
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preclinical stages of LOAD. CSF and plasma asparagine levels are 
known to be reduced in AD subjects compared to controls (43). 
Depletion of asparagine from the CNS has been associated with 
reversible altered mental status in children and adults, including 
short-term memory impairment in the elderly (44). Asparagine’s 
primary role is within proteins (45), affording a common site for 
N-glycosylation and providing unique structural characteristics 
at the ends of α-helices and within β-sheets (46). The brain, com-
pared to peripheral organs, is particularly dependent on intrinsic 

production of asparagine due to limited transport across the BBB 
(47). ADMA is produced from a post-translational modification 
of polypeptides by specific methyltransferases, with subsequent 
release into plasma following cellular protein turnover (48). 
Elevated ADMA levels in blood have been consistently associated 
with cardiovascular disease (CVD) risk factors, such as hyperten-
sion or hypercholesterolemia (48, 49). Within blood and other 
tissues, ADMA is considered the primary inhibitor of nitric oxide 
synthase (NOS), and thereby, a regulator of nitric oxide (NO) 
production. Brain-specific NOS (nNOS or NOS1) (50), and 
consequently NO production, is regulated by the relative con-
centrations of substrate, arginine, versus ADMA (48). Although 
increased NO concentrations have been associated with neuronal 
cell death, NO has been implicated in important synaptic actions, 
including learning and memory (51). While ADMA levels in CSF 
and blood of AD patients have not provided consistent findings 
(52), we have not found previous reports of ADMA plasma levels 
in preclinical AD subjects. The reduced ADMA levels in our 
preclinical AD (Converterpre) subjects, and thereby the implied 
elevation of NO vasodilator activity compared to matched con-
trols, may indicate a compensatory process, possibly triggered by 
the presence of oxidative stress that increases NO production in 
the early stages of AD (53). Additional investigations are required 
to further elucidate these associations.

The potential for a highly accurate early screening test for 
AD raises important questions about the value of such testing, 
especially given that AD is a condition for which no cure exists 
and treatment options are extremely limited. In other contexts, 
the potential disutility associated with receiving bad health news 
(54, 55) and with discrimination based on test results, particularly 
in an employment or insurance context, has been recognized 
(56). On the other hand, information from early screening may 
produce utility by reducing uncertainty about the future and 
allowing individuals to optimize key economic decisions related 
to consumption, retirement, and future planning (57, 58). In addi-
tion, because significant limitations and rapid declines in financial 
capacity are a hallmark of patients with early stage AD (59–62), 
earlier diagnosis may also yield value in the form of averted 
financial losses. Individuals with AD that is too early to diagnose 
may be susceptible to financial exploitation and may have trouble 
managing day-to-day household financial responsibilities such as 
paying bills on time. Accurate LOAD testing may help families 
better recognize and respond to those financial decision-making 
deficits – such as by changing the financial head of household or 
instituting other checks and balances (58) – before major finan-
cial problems occur. The scale and scope of negative financial 
outcomes associated with AD in the prediagnosis period may 
be substantial but as yet remain unquantified. Finally, the advent 
of a predictive LOAD diagnostic is likely to advance researchers’ 
ability to develop and test novel AD therapeutics. Responding to 
the projected future financial burden imposed by LOAD, and the 
potential sources of value from predictive testing, many states have 
prioritized early detection in their future preparations for AD (63).

As highlighted in the most recent report of the Presidential 
Commission for the Study of Bioethical Issues (64), ethical reflection 
and review need to be integrated into the research process from the 
planning phase to produce treatments and therapies that best meet 
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the patient’s values and goals. Procedures should be implemented 
to ensure patient and public participation in the design of ethical 
research protocols, development of diagnostics and treatments, 
and a delivery process for predictive AD diagnostics. To achieve 
these goals, accurate and transparent public communication is 
needed, along with an emphasis on pre- and post-test counseling, 
as underscored in recent guidelines for AD testing (65).

We acknowledge the residual limitations provided by the 
relatively small, homogenous cohort of subjects used in this inves-
tigation, which is a subset of our previously reported study par-
ticipants (2). We believe that there are advantages to a longitudinal 
study design that cannot be replicated in larger cross-sectional or 
case–control studies, however, especially for defining and directly 
investigating the preclinical state. Despite the added cost and 
time required, longitudinal observational studies allow the direct 
determination of the included preclinical period and to time the 
transition to clinical disease quite accurately. It is through analyses 
of preclinical biospecimens directly determined through such 
observations that specific, temporally related disease mechanisms 
can be accurately determined. As a result of longitudinal clinical 
and limited correlative biomarker determinations, we have helped 
define potential preclinical dysregulated plasma lipids and other 
metabolites within our study group. Similar preclinical mechanisms 
can only be inferred using methods that compare health to disease. 
We remain committed to a full analysis of all of our longitudinal 
specimens obtained from our Rochester/Orange County Aging 
Study subjects. In the meantime, however, an external validation 
study is underway in which we are evaluating plasma specimens 
from a larger, more ethnically diverse, and slightly younger subject 
cohort to discern the applicability of our current metabolomic 
biomarker panels beyond our strictly defined cohort (2). External 
validation of our findings remains a critical component that cur-
rently limits the impact and utility of our results.

We also acknowledge the possibility of overfitting of the classi-
fier model to our limited set of subjects in this investigation, despite 
our attempt to minimize such effects with the statistical methods 
used. We present the current findings as a starting point, therefore, 
for the external validation studies that are currently underway. 
Optimal external validation of our biomarker panels will require 
plasma samples that are obtained in similar subjects, under 
comparable rigorous collection and processing procedures. In our 
case, specific details to be followed would include morning blood 
collections in a limited time window, following an overnight fast 
and withholding morning medications, and minimizing plasma 
freeze-thaw cycles prior to metabolomic analysis. It seems unlikely 
that currently available specimens from external cohorts will meet 
such strict criteria, but application of our biomarker panels to such 
disparate specimens will instruct us regarding what similarities, if 
any, may exist related to preclinical disease biosignatures despite 
different demographics and sample collection/processing methods.

The alteration in specific analyte species during the preclinical 
stages of LOAD from our studies is consistent with results from 
other groups (25, 27, 38) and provides evidence for unique metab-
olomic dysregulation, especially related to plasma lipids, during 
the preclinical and clinical LOAD stages. While the theoretical 
basis for the significant preclinical lipid reductions within plasma 
during preclinical LOAD remains unconfirmed, there are several 

mechanistic reasons for their occurrence that can be readily tested. 
We encourage other investigators to advance our understanding 
of such postulates through independent validation studies. The 
dysregulated analyte species found in our study subjects appear 
to suggest at least several altered metabolic networks, distinct 
from amyloid and tau, during the preclinical LOAD stages, 
which if supported by additional investigations, may encourage 
development of new potentially disease-modifying interventions. 
The current shift toward diagnostics that help define preclinical 
LOAD (i.e., biomarkers from blood, CSF, and neuroimaging) is 
expected to stimulate a new class of secondary prevention clinical 
trials that feature novel or repurposed therapeutics. Enrichment 
of asymptomatic at-risk individuals for participation in such tri-
als would depend on using accurate, safe, and inexpensive subject 
selection methods. The optimal biomarker method(s) could also 
allow serial monitoring of specific pathobiologic networks that 
could herald therapeutic failure (or success). Such biomarker 
approaches may not only allow improved patient safety but 
also mitigate overall study costs. Novel capabilities provided by 
preclinical biomarkers, we believe, will help stimulate resurgence 
in therapeutic development for LOAD by the biopharmaceuti-
cal industry. We remain encouraged that through a heightened 
awareness of all stakeholders in our society regarding the possible 
utility of preclinical biomarkers, through education and dialog, 
we may be better positioned to cope with and eventually over-
come the devastating effects of LOAD on the world’s population.
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