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Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system 
that results in destruction of the myelin sheath that surrounds axons and eventual 
neurodegeneration. Current treatments approved for the treatment of relapsing forms 
of MS target the aberrant immune response and successfully reduce the severity of 
attacks and frequency of relapses. Therapies are still needed that can repair damage 
particularly for the treatment of progressive forms of MS for which current therapies are 
relatively ineffective. Remyelination can restore neuronal function and prevent further 
neuronal loss and clinical disability. Recent advancements in our understanding of the 
molecular and cellular mechanisms regulating myelination, as well as the development 
of high-throughput screens to identify agents that enhance myelination, have lead to the 
identification of many potential remyelination therapies currently in preclinical and early 
clinical development. One problem that has plagued the development of treatments to 
promote remyelination is the difficulty in assessing remyelination in patients with current 
imaging techniques. Powerful new imaging technologies are making it easier to discern 
remyelination in patients, which is critical for the assessment of these new therapeu-
tic strategies during clinical trials. This review will summarize what is currently known 
about remyelination failure in MS, strategies to overcome this failure, new therapeutic 
treatments in the pipeline for promoting remyelination in MS patients, and new imaging 
technologies for measuring remyelination in patients.
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iNTRODUCTiON

The therapeutic armamentarium for multiple sclerosis (MS) has expanded significantly in the 
last few decades due to better understanding of the basic pathophysiological mechanisms of the 
disease process. However, despite the development of increasingly effective therapies, a cure for 
MS has not been found and MS patients continue to suffer from chronic progressive disability. 
Currently, approved treatments for MS work by reducing immune system activity or blocking 
entry of immune cells into the central nervous system (CNS). Although these treatments can 
reduce relapse rates and severity of attacks, they do not repair immune-mediated damage to the 
myelin sheaths surrounding axons. Chronic demyelination leads to degeneration of axons and 
eventually loss of neurons. Neuronal loss correlates highly with clinical disability, highlighting 
the need for treatments that promote neuronal survival in both relapsing and progressive forms 
of MS. Experimental models of MS (both in vitro cultures and in vivo studies) have shown that 
preservation of myelin and remyelination of axons can increase neuronal survival (1, 2). To protect 
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neurons, restore function, and halt the progression of disability, 
additional treatments need to be developed to promote myelin 
repair and neuronal protection. In this article, we will review 
current concepts of effective remyelination in MS including 
proposed mechanisms of myelin regulation, emerging therapies 
that might contribute to repair and restore cell function in MS, 
and the use of magnetic resonance imaging (MRI) to measure 
remyelination in clinical trials.

FACTORS THAT CONTRiBUTe TO 
ReMYeLiNATiON FAiLURe iN MS

Understanding why endogenous remyelination often fails in MS is 
essential to the development of effective remyelination and repair 
strategies. Myelination of axons by oligodendrocytes in the CNS 
is a dynamic process determined by both the cytoarchitecture and 
microenvironment of the brain, spinal cord, and optic nerves. To 
ensure proper myelination of axons, oligodendrocytes regulate 
both their numbers and the amount of myelin each cell produces 
to properly match the number, diameter, and length of axons they 
encounter. After the completion of developmental myelination, 
many oligodendrocyte progenitor cells (OPCs) persist in the 
adult CNS. Unlike neurons, which fail to regenerate after CNS 
insult, adult OPCs are capable of proliferating and differentiating 
into mature oligodendrocytes that myelinate axons in response 
to injury or damage (3–5). Despite this regenerative ability, why 
do many axons remain demyelinated in the CNS of MS patients?

One hypothesis for remyelination failure is that the number 
of adult OPCs available for remyelination is depleted over time 
(1, 2, 4), however, post-mortem examinations of MS patients, 
including those in the seventh and eighth decades of life, revealed 
the presence of OPCs throughout the CNS, including within MS 
lesions (5–7). Nonetheless, many OPCs fail to mature into myelin-
producing oligodendrocytes. These observations suggest that the 
lesion microenvironment is prohibitive to OPC differentiation 
and subsequent remyelination of axons.

Many changes occur in areas of demyelination that could 
prevent remyelination by endogenous OPCs [reviewed by Ref. 
(8, 9)]. Disruptions to the blood–brain barrier, basal lamina dis-
turbances, and vasculature leakage occur (10–12). This leads to 
aberrant deposition of extracellular matrix (ECM) components, 
including fibronectin, hyaluronic acid (HA), and chondroitin 
sulfate proteoglycans (CSPGs), which can block the differen-
tiation of OPCs and premyelinating oligodendrocytes (8, 9, 
13–18). Demyelination can expose OPCs within lesions to other 
inhibitory cues, including components of damaged myelin such 
as the proteins MAG (myelin-associated glycoprotein), OMgp 
(oligodendrocyte myelin glycoprotein), and Nogo-A that signal 
through the Nogo receptor 1 and its co-receptors p75NTR, TROY, 
and LINGO-1 (leucine-rich repeat- and Ig domain-containing 
Nogo receptor-interacting protein 1) to inhibit both axonal 
regeneration as well as oligodendrocyte differentiation and remy-
elination (19–23). Activation of both innate CNS and peripheral 
immune cell populations leads to the release of soluble factors, 
such as pro-inflammatory cytokines, that can also negatively 
impact remyelination (24–27).

In particular, semaphorins, originally described as guidance 
molecules for axons, have been shown to play important roles 
in the regulation of remyelination. The soluble class III sema-
phorins (sema) 3A and 3F have been shown to be upregulated in 
active demyelinating but not chronic lesions in MS patients (28). 
These molecules are known to influence OPC migration, with 
sema 3A repelling OPCs and sema 3F attracting OPCs (29–31). 
Modulation of semaphorin levels within the lesion environment 
via viral overexpression impacts OPC migration and subsequent 
remyelination in animal models of demyelination suggests that 
relative levels of semaphorins in MS lesions may impact remyeli-
nation (31, 32). Interestingly, sema 3A and 3F are upregulated in 
the neuronal cell bodies of demyelinated axons far from lesions 
sites, raising the possibility that changes in demyelinated neurons 
may also influence their potential to be remyelinated (28). The 
transmembrane-bound semaphorin 4D (CD100) is normally 
expressed by mature MAG-expressing oligodendrocytes but not 
NG2-positive OPCs. Sema 4D is upregulated after injury and 
increases oligodendrocyte cell death (33, 34). Overexpression 
of sema 4D inhibits myelination in oligo-neuronal co-cultures 
while knock-down of sema 4D in a model of spinal cord injury 
(SCI) promotes functional recovery (35). Additionally, sema 4D 
expression disrupts endothelial tight junctions (35, 36). Recently, 
an antibody against sema 4D was used to treat animals in the 
experimental autoimmune encephalomyelitis (EAE) model and 
resulted in improved blood-brain barrier (BBB) integrity and 
improved OPC differentiation and axonal myelination (37). A 
phase I trial evaluating safety of a humanized anti-Sema4D IgG4 
antibody in MS patients was recently completed (38).

As lesions develop, astrogliosis, a hallmark of MS pathology, 
occurs in and around lesions, resulting in both structural and bio-
chemical changes. Astrocyte secretion of cytokines can influence 
lymphocyte infiltration (39, 40) while secretion of cytotoxic fac-
tors such as reactive oxygen and nitrogen species, glutamate, and 
ATP may directly affect oligodendrocytes and neurons (41–44). It 
is important to note that not all astrocyte changes are pathologic 
and some may even contribute to repair. For example, BDNF 
derived from astrocytes has been shown to play an important role 
in remyelination after cuprizone-induced demyelination (45). 
Astrocytes may also suppress inflammation and protect neurons 
from damaging reactive oxygen species in MS lesions via regula-
tion of mitochondrial antioxidant enzymes (46). Clearly, the role 
of astrocytes in MS pathology is a complicated one and much 
remains to be elucidated (47, 48), but reduction of astrogliosis 
has beneficial effects on remyelination in several animal models 
of demyelination (49, 50).

Disruptions in the glial–neuronal network between astrocytes, 
oligodendrocytes, and neurons also lead to metabolic deficiencies 
across cell types that cause cellular dysfunction and death (51–56). 
As neurodegeneration proceeds, unhealthy axons may no longer 
be receptive to remyelination; therefore, strategies that improve 
neuronal survival may also lead to increased remyelination, and 
importantly, improved clinical outcomes.

Several non-disease-related factors such as age, sex, diet, and 
individual genetic background can also impact the efficiency of 
remyelination (57–61). For example, with age, remyelination 
occurs more slowly due to changes in the CNS environment and 
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TABLe 1 | Selected pathways and molecules that influence myelination.

Signaling 
pathway

impact on 
oligodendrocytes 
and myelination

Levels in MS Reference

Notch Spatial regulation of 
OPCs

In active MS lesions: Notch1 is 
expressed by non-differentiated 
oligodendrocytes, and Jagged1 
is expressed by hypertrophic 
astrocytes. GWAS identified 
Jagged1 as susceptibility  
gene for MS

(70–74)

Wnt Negatively regulates 
production and 
differentiation of 
oligodendrocytes. 
Inhibition of Wnt 
via Axin2 promotes 
differentiation and 
myelination

Wnt signaling and proteins are 
elevated in active MS lesions

(75–78)

Akt-mTOR Powerful positive 
regulator of myelination 
without dramatically 
impacting specification 
or proliferation of OPCs

Not determined (79–83)

Erk1/2 
MAPK

Regulates 
myelin thickness 
without impacting 
oligodendrocyte 
numbers, or 
specification, or 
differentiation

Not determined (84–86)

RXR/
PPAR

Stimulation of RXR/
PPARs inhibits 
microglial activation 
and accelerates 
remyelination

RXRγ levels are high in active 
and remyelinating lesions and 
very low in chronic inactive 
lesions

(87–89)

ISR Stress resistance and 
protection

ISR proteins CHOP, ATF4, 
and p-eIF2alpha are highly 
upregulated in MS lesions

(90–93)

mTOR, mammalian target of rapamycin; RXR, retinoic acid receptors; PPAR, 
peroxisome proliferator-activated receptor; ISR, integrated stress response.
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intrinsic epigenetic changes in oligodendrocytes, as well as age-
related changes in the immune response (60, 62–66). Another 
interesting observation is that females are at higher risk of devel-
oping MS, yet may also remyelinate more efficiently than males, 
which could be due to the differential effects of sex hormones on 
oligodendrocyte proliferation and maturation as well as on the 
neuroinflammatory process (57, 58, 67, 68).

PROPOSeD MeCHANiSMS OF CNS 
RePAiR AND ReMYeLiNATiON iN THe 
CONTeXT OF MS

There are several potential strategies to enhance the remyelina-
tion capacity of endogenous OPCs, such as manipulating intrin-
sic signaling pathways within oligodendrocytes to override the 
inhibition of remyelination or altering the lesion environment 
to be more permissive of OPC differentiation and remyelina-
tion. Transplantation to increase OPC numbers is probably not 
necessary in MS given the large numbers of OPCs present in adult 
brain tissue. Likewise, if endogenous OPCs sense injury and enter 
lesions, but cannot differentiate there, then enhancing the overall 
proliferation/migration of OPCs is unlikely to dramatically alter 
their capacity to remyelinate axons. Therefore, after dampening 
inflammation, it is crucial to support the survival and differentia-
tion of endogenous adult OPCs in order to stimulate remyelina-
tion within the altered microenvironment of MS lesions, while 
also prolonging survival of denuded axons so that they may be 
effectively remyelinated.

Modulation of intrinsic Signaling Pathways
An important approach to myelin preservation and repair is the 
pharmacological manipulation of intrinsic signaling pathways. 
Small molecules that can target specific components of the signal-
ing pathways that underlie myelination will need to be developed 
and tested. Fortunately, much has been learned about the many 
signaling pathways that govern oligodendrocyte differentiation 
and myelination over the last three decades (see Table 1). Several 
groups have recently utilized small molecules capable of modu-
lating these pathways to enhance myelination as discussed below. 
Complicating matters, however, there is a tremendous amount of 
cross-talk among signaling pathways, and manipulation of one 
pathway often induces alterations in another pathway (69). The 
high degree of cross-talk highlights the need for continued study 
of the interaction of these pathways in myelinating cells to aid 
therapeutic intervention.

Altering the extracellular environment
Unquestionably, the extracellular environment is altered in 
MS lesions, and more effective remyelination would likely be 
achieved if the local environment within lesions could be restored 
(8, 9). To this end, clearance of myelin debris and the glial scar 
produced by astrocytes may enhance remyelination. Attempts to 
modify the ECM with enzymatic digestion, particularly CSPGs 
and HA, in the context of SCI have generated favorable results 
(94–96). This is possible due to the defined local area of damage 

in SCI that is easily identified and accessed for the application of 
ECM degrading enzymes. The challenge for such an approach in 
MS is the disparate and currently unpredictable pattern of demy-
elinated regions throughout the CNS, making local delivery dif-
ficult. Therefore, strategies that directly impact cells that produce 
ECM components, such as astrocytes, or alter oligodendrocyte 
responses to aberrant ECM molecules may be more successful 
approaches.

enhancement of Cell Survival
Disruptions to glial–neuronal networks and subsequent meta-
bolic changes also impact OPCs and myelination. During acute 
demyelination, there is an increase in the mitochondrial content 
of axons early on in an attempt to keep up with the increased 
energy demands of denuded axons (97–99); however, over time 
this can lead to increased production of free radicals that can 
perpetuate axonal injury in the context of chronic demyelination 
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TABLe 2 | Potential remyelinating and neuroprotective therapies in multiple sclerosis.

Drug Proposed mechanism Results Reference

Anti-ASIC-1 Blockage of ASIC-1 prevents excessive intracellular 
accumulation of injurious Na(+) and Ca(2 +) in MS 
lesions

Clinical studies suggest neuroprotection as measured by brain 
atrophy during treatment compared with pretreatment.

(105, 106)

Anti-LINGO-1 Function-blocking anti-LINGO-1 antibodies enhance 
OPC differentiation and myelination

Phase 2 trial in patients with a first episode of optic neuritis 
showed an improvement on nerve impulse conduction along  
the affected optic nerve. Phase 2 trial in RRMS is ongoing.

(107, 108)

Benztropine Antagonism of M1/M3 muscarinic acetylcholine 
receptors with subsequent stimulation of 
oligodendrocyte differentiation

In experimental models of MS, benztropine induced the 
differentiation of OPCs, and enhanced remyelination.

(109)

Guanabenz α2 adrenergic receptor agonist. Protects 
oligodendrocytes by preventing dephosphorylation  
of eIF2, increasing oligodendrocyte survival and  
prevention of myelin loss.

Preclinical studies demonstrated improvement of deficits in 
EAE. Phase I clinical studies are ongoing. 

(110, 111)

Laquinimod Modified quinolone derivative; reduces microglia and 
astrocyte activation; increases neuroprotection and 
myelin preservation

Clinical studies suggest neuroprotection as measured by  
brain atrophy in treated versus untreated patients. 

(112–117)

Miconazole and  
clobetasol

Activates eIF2, TX/RXR, and cholesterol signaling Promoted oligodendrocyte differentiation and enhanced 
remyelination in in vivo models

(118)

Olesoxime Decreases oxidative stress. Promotes oligodendrocyte 
maturation and myelin synthesis

Accelerated oligodendrocyte maturation and enhanced 
myelination in vitro and in vivo without affecting oligodendrocyte 
survival or proliferation. Phase 1 trail in MS patients completed.

(119, 120)

Quetiapine fumarate Stimulates proliferation and maturation of 
oligodendrocytes, increases neurotrophic factors,  
and inhibits activated microglia, astrocytes, and  
T lymphocytes

Remyelinating and neuroprotective properties in EAE (121, 122)

rHIgM22 rHIgM22 binds to the surface of oligodendrocytes 
promoting myelin repair

Preclinical studies indicate that it may protect oligodendrocytes 
and stimulate myelin repair. Phase I study demonstrated 
acceptable safety profile.

(123–125)

OPC, oligodendrocyte precursor cells; eIF2, Eukaryotic Initiation Factor 2; CNS, Central Nervous System; LINGO, leucine-rich repeat and immunoglobulin-like domain-containing, 
Nogo receptor-interacting protein; rHIgM22, recombinant human IgM antibody 22; EAE, experimental autoimmune encephalomyelitis; ASIC-1, acid-sensing (proton gated) ion 
channel 1.
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(100). Providing metabolic support (e.g., lactate supplementa-
tion or reducing metabolic stress signaling) could preserve both 
neurons and oligodendroglia.

Finally, it is also important to note that acute inflammation is an 
important signal that activates adult OPCs to mobilize and mature, 
but long-term inflammation can be cytotoxic to OPCs (101, 102). 
Reducing the duration of astroglial and microglial activation could 
have several beneficial effects (e.g., reducing ECM deposition and 
decreasing pro-inflammatory cytokine production), which could 
be more conducive for OPC survival, differentiation, and remy-
elination. Another potential target for therapeutic intervention is 
to increase protection of oligodendrocytes in response to inflam-
mation. Care must be taken, however, as the same signal can often 
have dual effects, either anti- or pro-inflammatory depending on 
the context. For example, silencing interferon-gamma (IFNγ) in 
astrocytes alleviates symptoms in EAE, whereas silencing of IFNγ 
in microglia increases disease severity (103).

ReMYeLiNATiON THeRAPieS iN THe 
PiPeLiNe FOR THe TReATMeNT OF MS

Remyelination Therapies
Drugs that have a positive impact on remyelination and neuropro-
tection (Table 2) could be used as part of a combination therapy, 

including immunomodulatory drugs. Treatments that enhance 
the speed of remyelination are predicted to protect neurons 
from axonal degeneration. Intervention to maintain and repair 
myelin should occur early as chronically demyelinated axons will 
degenerate precluding future remyelination by existing OPCs and 
oligodendrocytes (104).

High-throughput screens of previously FDA-approved drugs 
have identified several classes of drugs that enhance OPC differ-
entiation and myelination. Although the beneficial effects of these 
drugs on CNS cells are encouraging, careful study of off-target 
effects will need to be undertaken, given that many of these drugs 
were originally utilized for non-CNS targets. Anticholinergics, 
including the drugs benztropine (109) and clemastine (126), were 
identified in two separate high-throughput screens looking for 
agents that enhance myelination. Activation of muscarinic recep-
tors inhibits the differentiation of oligodendrocytes (127); there-
fore, the pro-myelinating effects of benztropine and clemastine are 
likely via their antagonism of M1/M3 muscarinic acetylcholine 
receptors. These anti-muscarinic compounds appear to enhance 
remyelination through direct effects on oligodendrocytes and 
not immunosuppressive effects. As phase 1 safety profile testing 
of anticholinergics has already been done for other indications, 
there has been a rapid translation of the preclinical laboratory 
findings to phase 2 clinical trials on the efficacy of clemastine in 
MS (128).
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A third small molecule screen identified two additional FDA-
approved drugs that promote oligodendrocyte differentiation and 
enhance remyelination in in vivo models (118): miconazole, an 
antifungal agent, and clobetasol, a corticosteroid used to treat 
eczema and psoriasis. Both act directly on oligodendrocytes as 
remyelinating drugs and impact eIF2 signaling, thyroid hormone 
receptor/retinoic acid receptor (TX/RXR) activation, and choles-
terol signaling. Interestingly, miconazole acts through MAPK 
signaling and has no effect on the immune system, whereas 
clobetasol acts through glucocorticoid receptor signaling and is 
also a potent immunosuppressant in addition to being a remyeli-
nating agent. With their high safety profile already established, 
approval for phase 2 trials to establish efficacy in MS could occur 
quickly.

Another strategy for promoting remyelination in MS is alter-
ing the local environment (soluble factors released by innate CNS 
cells, modifying the ECM), to be more permissive to endogenous 
OPCs. As mentioned above, the addition of enzymes, such as 
chondroitinase and hyaluronidase, is not very practical in a multi-
focal demyelinating disease such as MS. Therefore, an alternative 
approach is to change cellular responses to hostile environments. 
One promising target is the Nogo-A co-receptor LINGO-1, which 
is expressed by both neurons and oligodendrocytes. LINGO-1 
acts as a negative regulator of oligodendrocyte differentiation and 
myelination. LINGO-1 knockout mice have enhanced remyelina-
tion in several demyelination models, including EAE and toxin-
induced demyelinated lesions (23, 129, 130). Function-blocking 
anti-LINGO-1 antibodies enhance OPC differentiation and 
myelination (129). Promising results were obtained in a Phase 
2 trial of a human IgG1 anti-LINGO-1 monoclonal antibody 
(BIIB033) in patients with a first episode of optic neuritis (107). 
Treatment was well tolerated; and after 24 weeks, those patients 
given the anti-LINGO antibody had faster nerve impulse con-
duction along the optic nerve than before treatment compared 
to those on placebo, indicating myelin repair. Although visual 
evoked potentials were increased, neither visual acuity nor retinal 
neuron layer thickness were improved. Another phase 2 trial in 
patients with relapsing MS is ongoing with estimated completion 
in June 2016 (108).

Preclinical studies of a recombinant human IgM antibody 
(rHIgM22) indicate that it may protect oligodendrocytes and 
stimulate myelin repair (123, 124). rHIgM22 binds to the surface 
of oligodendrocytes, and prevents their apoptosis. Although the 
exact target is not known, rHIgM22 may bind αvß3 integrins, 
the vitronectin/fibronectin receptor, and aggregated fibronectin 
has been shown to inhibit OPC differentiation and remyelination 
(131, 132). rHIgM22 also seems to inhibit OPC differentiation, 
so how it promotes myelin repair remains unclear. rHIgM22 was 
found safe and tolerable in Phase 1 clinical trials after a 6-month 
follow-up of a single dose of patients who remained on their exist-
ing MS treatments (133). A second dose-escalating phase 1 trial 
is underway (125).

Oligodendrocytes have very high metabolic demands due to 
production of extensive amounts of lipid-rich myelin membrane. 
This makes oligodendrocytes particularly sensitive to disruptions 
in metabolic homeostasis. Hypoxia/ischemia, oxygen–glucose 
deprivation, viral infections, and high rates of protein synthesis 

in the endoplasmic reticulum (ER) can all lead to ER stress, 
which activates pancreatic ER kinase (PERK) phosphorylation 
of eukaryotic translation initiation factor 2α (eIF2α) and the 
integrated stress response (ISR) (90). The ISR inhibits global 
protein synthesis to reduce the load on the ER and also 
upregulates transcription factors, such as STF4, CHOP, ATF4, 
and p-eIF2σ that cause the cell to be in a more stress-resistant 
state. Upregulation of these ISR targets is seen in MS lesions, 
with increased PERK activity in oligodendrocytes (91). 
Enhancement of the ISR in oligodendrocytes could protect 
them and lead to increased remyelination efficiency.

Guanabenz is an α2 adrenergic receptor agonist that has been 
previously approved by the FDA for the treatment of hyperten-
sion (134). Guanabenz alleviates symptoms in EAE, increases 
oligodendrocyte survival, and reduces CD4+ T cell accumula-
tion in the CNS (110). Guanabenz appears to work by protecting 
oligodendrocytes against the inflammatory CNS environment. 
Guanabenz enhances the protective ISR of oligodendrocytes by 
preventing dephosphorylation of eIF2α, increasing oligoden-
drocyte survival, and protecting against myelin loss (110, 135). 
A phase 1 safety trail of oral guanabenz in MS patients recently 
began recruiting patients (111).

Olesoxime, is a cholesterol-oxime compound and mitochon-
drial pore modulator, originally developed to treat amyotrophic 
lateral sclerosis that targets proteins of the outer mitochondrial 
membrane, preventing permeability and decreasing oxidative 
stress (136). Olesoxime accelerates oligodendrocyte maturation 
and enhanced myelination in vitro and in vivo without affecting 
oligodendrocyte survival or proliferation (119). A phase 1b study 
in MS is ongoing (120).

Stem cell-based remyelinating therapies are also a plausible 
alternative strategy in MS as stem cells of both neural and mesen-
chymal origin have the ability to facilitate endogenous reparative 
processes, participate directly in remyelination, and attenuate 
neuroinflammation. However, there are crucial questions that 
have to be addressed before considering clinical studies, includ-
ing the determination of the optimal cellular platform, the route 
of cell delivery, and candidate patients for treatment (137).

Neuroprotective Strategies
In order to achieve maximal levels of remyelination, therapies 
that decrease axonal degeneration and increase neuronal survival 
in response to demyelination could be used to extend the period 
during which axons could be remyelinated.

Quetiapine fumarate is an atypical antipsychotic that has been 
shown to have both remyelinating and neuroprotective properties 
in EAE (121). It appears to impact various biological pathways 
relevant in MS with potential to stimulate proliferation and matu-
ration of oligodendrocytes, release of neurotrophic factors, and 
inhibit activated microglia, astrocytes, and T lymphocytes (121). 
A dose-finding trial in both relapsing and progressive forms of 
MS is underway (122).

The acid-sensing ion channel, ASIC-1, contributes to the exces-
sive intracellular accumulation of injurious Na(+) and Ca(2+) 
and is over-expressed in acute MS lesions. Blockade of ASIC1 
through amiloride, a potassium-sparing diuretic that is currently 
licensed for hypertension and congestive cardiac failure, showed 
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neuroprotective and myeloprotective effects in experimental 
models of MS (105, 106). A pilot study in primary progressive MS 
showed positive effects on brain volume (105) and a multi-arm 
randomized Phase II trial in secondary progressive MS patients 
is currently enrolling (138).

Promising results have been achieved with laquinimod, a small 
molecule that in addition to its effects on lymphocytes can also 
reduce glial reactivity (139, 140). Although the exact mechanism 
of action is not known, laquinimod, a modified quinoline deriva-
tive, appears to have direct effects on astrocytes and microglia/
macrophages within the CNS (49, 117, 139, 140). This modula-
tion of astrocyte and microglia responses appears to provide a 
protective effect on both neuronal function and oligodendrocytes 
and myelin within lesion areas (112, 141, 142). In phase 3 clinical 
trials of relapsing-remitting MS patients, both clinical disability 
and brain atrophy were reduced with laquinimod treatment 
indicative of a neuroprotective effect (113, 114, 143). A phase 
2 trial for laquinimod in primary progressive MS is underway 
(115).

ASSeSSMeNT OF ReMYeLiNATiON iN 
CLiNiCAL STUDieS

One of the biggest difficulties in the development of remyelina-
tion therapies for MS is the demonstration of remyelination 
in living patients. Indirect measures, such as improvements in 
neurophysiological outcomes, such as electroencephalography, 
evoked potentials, optical coherence tomography, and transcra-
nial magnetic stimulation may suggest, yet not confirm, remy-
elination (144–148). Functional improvements could indicate 
remyelination, but could also indicate neuronal plasticity or the 
spreading of sodium channels into demyelinated internodes, 
which could also restore conduction in unmyelinated axons 
(144, 149, 150). Although an extensive discussion is beyond 
the scope of this review, analysis of serum and cerebrospinal 
fluid (CSF) biomarkers could provide important and specific 
information regarding remyelination and repair in the future. At 
present, candidate biomarkers appear to relate to disease activity 
(interleukin-6 or its soluble receptor, nitric oxide and nitric oxide 
synthase, osteopontin, and fetuin-A) or neurodegeneration and 
blood–brain barrier dysfunction (neurofilaments, tau, 14-3-3 
proteins, S-100β, GFAP), rather than repair [for review, see in 
Ref. (151, 152)]. Even post-mortem, histopathologic approaches 
to detect remyelination are inherently limited to a “snapshot” 
assessment of the fluctuating process of demyelination and 
remyelination (153).

Demyelinating lesions are readily detected by T2-weighted 
(T2W) and fluid attenuated inversion recovery (FLAIR) MRI 
(154–156). Unfortunately, these sequences are unable to differen-
tiate remyelination from the ever-changing milieu of local inflam-
mation, edema, and axonal and myelin damage (153, 157–159). 
In addition, the correlation between MRI-identified lesion load 
and clinical disability is weak, a phenomenon referred to as the 
“clinical-radiologic paradox” in MS (160). With the increasing 
interest in development of new therapies for MS targeting remy-
elination, accurate MRI measures of myelin repair are crucial for 

assessing the impact of these therapies (161). Advancements in 
MRI technology may provide an opportunity for in vivo assess-
ment of this dynamic process in both visible lesions and the 
putatively “normal appearing white matter (NAWM).” Candidate 
imaging sequences must be sensitive and specific for changes 
occurring in vivo, correlate with other indicators of remyelina-
tion, and crucially for quantitative MRI, must be reproducible 
across imaging platforms.

ASSeSSMeNT OF ReMYeLiNATiON BY 
ADvANCeD iMAGiNG

Diffusion Tensor imaging
Diffusion tensor imaging (DTI) tracks the Brownian motion of 
water molecules in tissue to provide quantitative data about tissue 
microstructure, and is particularly well-suited to highly ordered 
environments such as CNS white matter (162). For different 
aspects of white matter microstructure, DTI produces various 
quantitative indices, including fractional anisotropy, mean diffu-
sivity, axial diffusivity, and radial diffusivity. Fractional anisotropy 
reflects the overall vector of diffusion of water molecules and, by 
inference, the directionality of the fiber tracts, while mean diffu-
sivity represents the overall magnitude of diffusion, regardless of 
direction (162). Both mean diffusivity and fractional anisotropy 
correlate with the number of axons and the degree of myelination 
in post-mortem examination, but it is difficult, if not impossible, 
to distinguish remyelination from demyelination using these 
metrics (163, 164). In highly ordered white matter bundles, 
radial diffusivity is thought to represent the diffusion of water 
molecules perpendicular to fiber tracts, while axial diffusivity is 
thought to represent the diffusion of water molecules parallel to 
the tract, and it has been suggested that radial diffusivity might 
be more sensitive to myelin damage while axial diffusivity may 
be more sensitive to axonal injury (164–167). While this appears 
promising, the major limitation of the radial and axial diffusivity 
indices is that the models used for derivation depend on accu-
rate calculation of the correct fiber tract orientation. Crossing 
fibers and disruption of the white matter microstructure by 
varying pathology in MS (pro-inflammatory cellular infiltration, 
edema, demyelination, and axonal loss) may result in inaccurate 
determination of the diffusion tensor and underestimation of 
radial diffusivity, leading to underestimation of the degree of 
changes in myelination (168–171). Newer techniques such as 
high angular resolution diffusion imaging, which is capable of 
resolving crossing fibers (172), and neurite orientation dispersion 
and density imaging, which is more specific for myelination than 
standard DTI indices (173), may increase the specificity of these 
more advanced techniques to serve as biomarkers for tracking 
remyelination in MS.

Magnetization Transfer imaging
Magnetization transfer (MT) imaging exploits the exchange 
of magnetization that occurs between two “pools” of protons 
in vivo: a “free” pool of protons that are generally unbound in 
an aqueous environment, and a “restricted” pool of protons 
that are bound to high molecular weight molecules such as 
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FiGURe 1 | Magnetization transfer imaging. Axial FLAIR (A) 
demonstrating a large demyelinating lesion in the white matter posterior to 
the Sylvian fissure. Magnetization transfer image (B) demonstrates a band of 
normal white matter signal intensity across the mid aspect of the lesion (solid 
arrow) compatible with partial remyelination.
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lipids and proteins (174, 175). While signal on conventional 
imaging is predominantly derived from the relaxation of 
protons in the “free” pool; in MT imaging, two sets of images 
are obtained (one with MT-weighting, and the other without) 
allowing imaging of both pools. An estimate of the magneti-
zation transfer ratio (MTR) between these two pools can be 
calculated allowing for discrimination of subtle changes not 
picked up by conventional MRI.

Although edema, inflammation, and axonal density do 
influence MTR, the high lipid content of myelin strongly affects 
the MTR (170, 176–178), allowing MT imaging to be relatively 
sensitive in detecting changes in myelination, including remy-
elination (Figure  1). White matter lesions have a lower MTR 
than NAWM, and NAWM in MS patients has a lower MTR than 
NAWM in controls (179–181). There is also variation between 
disease subtypes: secondary progressive MS has the lowest white 
matter MTR measures, followed by relapsing-remitting MS, and 
clinically isolated syndrome (CIS) (181). Remyelinated lesions 
have higher MTR than unmyelinated lesions, but MTR in remy-
elinated lesions remains lower than NAWM (153, 182–184), 
suggesting either that remyelination is incomplete or that 
newly formed myelin in lesions has a different structure, which 
is consistent with reports of thinner myelin in post-mortem 
examination of remyelinated lesions (185). While lesions appear 
generally static on conventional imaging over time, MTR fluctu-
ates within lesions, suggesting alternating waves of both demy-
elination and remyelination (184). Given the semi-quantitative 
nature of MTR measurement, recent efforts have been made to 
directly measure the size and relaxation characteristics of the 
“restricted” proton pool, to provide quantitative measurements 
that are even more strongly influenced by myelin in the brain 
(186–190). Although performing multiple MT-weighted acqui-
sitions increases scan times, MT imaging could be advantageous 
in large clinical trials as quantitative metrics are more consistent 
across scanners.

Myelin water Fraction imaging
Brain tissue microstructure is complex and each tissue compo-
nent displays different T2 relaxation characteristics. The differ-
ences in T2 relaxation correlate with water separated into three 
components: a long T2 component corresponding to CSF, an 
intermediate T2 component corresponding to intra/extracellular 
water, and a short T2 relaxation time component corresponding 
to water trapped with layers of myelin (191). Of most interest 
in MS is the short T2 (myelin water) component, measured as 
the ratio of myelin water to the total water, i.e., the myelin water 
fraction (MWF). Histopathological studies have shown that the 
MWF correlates with myelin content, is insensitive to changes 
related to inflammation, and is independent of axonal loss/
degeneration (186, 192).

Early techniques for measuring MWF depended on 2D 
multi-spin echo acquisitions, which due to time considerations 
permitted only incomplete coverage of the brain. To improve 
brain coverage and further reduce MT effects, other sequences 
are now available, including 3D-GRASE and most recently 
mcDESPOT, which allow coverage of the entire brain within rea-
sonable acquisition times (157, 193, 194). While these techniques 
show much promise, work still needs to be done to confirm their 
tissue specificity. One recent study, for instance, indicated that in 
white matter mcDESPOT may not be able to precisely estimate 
the two-pool model with exchange (195). Despite that limitation, 
MWF is lower in MS patients compared to that of controls (196), 
correlates with disability, and decreases over time in patients with 
progressive MS (197). MWF imaging has the potential to follow 
remyelination in lesions after acute edema has resolved (198) and 
has been shown to increase in patients treated with alemtuzumab, 
suggesting it may be useful in monitoring for remyelination in 
treated patients (199).

Positron emission Tomography
Positron emission tomography (PET) uses radioisotopes that 
directly bind to different tissue substrates to enable molecular 
imaging. Direct binding of imaging biomarkers specific for myelin 
could potentially far exceed the specificity of the other modali-
ties discussed above and allow investigators to detect changes 
specific for myelin content in the brain. One such biomarker 
is the thioflavine-T derivative 2-(4′-methylaminophenyl)-
6-hydroxybenzothiazole (PIB). 11C-PIB is currently used in the 
imaging of Alzheimer’s disease (200, 201) but recent studies have 
shown that in addition to amyloid plaques, PIB also has an affinity 
for CNS myelin and demonstrates differential binding to normal 
and demyelinated white matter (202, 203). In two RRMS patients, 
11C-PIB uptake was less in enhancing lesions (203), indicating 
that there may be differences in the myelination of lesions at 
different stages. While promising, additional studies of more MS 
patients are required to validate these findings and not all centers 
will have access to such technology.

CONCLUSiON

Repair and remyelination in MS is possible, but remyelina-
tion often fails as a consequence of failure to recruit OPCs 
fully into the lesions, failure of OPCs to generate mature 
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myelinating oligodendrocytes, and failure of oligodendrocytes 
to  remyelinate axons. Several candidates to enhance remy-
elination are currently under investigation with a variety of 
mechanisms of action. One barrier to evaluating remyelination 
therapies in patients is the lack of methods to accurately detect 
myelination, demyelination, and remyelination with standard 
imaging technologies. Advancements in MRI technology allow 
better detection of myelin-specific changes but criteria that 

can be readily quantified using new imaging technologies will 
have to be established and validated to determine the success of 
remyelination in clinical trials.

FUNDiNG

This research received no specific grant from any funding 
agency in the public, commercial, or not-for-profit sectors.

ReFeReNCeS

1. Nave K-AA. Myelination and the trophic support of long axons. Nat Rev 
Neurosci (2010) 11:275–83. doi:10.1038/nrn2797 

2. Chari DM, Blakemore WF. New insights into remyelination failure in mul-
tiple sclerosis: implications for glial cell transplantation. Mult Scler (2002) 
8:271–7. doi:10.1191/1352458502ms842oa 

3. Moyon S, Dubessy AL, Aigrot M-SS, Trotter MWB, Huang JK, Dauphinot L, 
et al. Demyelination causes adult CNS progenitors to revert to an immature 
state and express immune cues that support their migration. J Neurosci 
(2015) 35:4–20. doi:10.1523/JNEUROSCI.0849-14.2015 

4. Franklin RJM, ffrench-Constant C, Edgar JM, Smith KJ. Neuroprotection 
and repair in multiple sclerosis. Nat Rev Neurol (2012) 8:624–34. doi:10.1038/
nrneurol.2012.200 

5. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligo-
dendrocytes in chronic lesions of multiple sclerosis. N Engl J Med (2002) 
346:165–73. doi:10.1056/NEJMoa010994 

6. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive 
oligodendrocyte progenitor cells in adult human brain and multiple sclerosis 
lesions. J Neurosci (2000) 20:6404–12. 

7. Fancy SP, Zhao C, Franklin RJM. Increased expression of Nkx2.2 and Olig2 
identifies reactive oligodendrocyte progenitor cells responding to demyelin-
ation in the adult CNS. Mol Cell Neurosci (2004) 27:247–54. doi:10.1016/j.
mcn.2004.06.015 

8. Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW. Pathophysiology 
of the brain extracellular matrix: a new target for remyelination. Nat Rev 
Neurosci (2013) 14:722–9. doi:10.1038/nrn3550 

9. Harlow DE, Macklin WB. Inhibitors of myelination: ECM changes, CSPGs 
and PTPs. Exp Neurol (2014) 251:39–46. doi:10.1016/j.expneurol.2013.10.017 

10. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche 
S, et  al. Focal disturbances in the blood-brain barrier are associated with 
formation of neuroinflammatory lesions. Neurobiol Dis (2015) 74:14–24. 
doi:10.1016/j.nbd.2014.09.016 

11. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. 
Fibrinogen-induced perivascular microglial clustering is required for the 
development of axonal damage in neuroinflammation. Nat Commun (2012) 
3:1227. doi:10.1038/ncomms2230 

12. Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, et  al. 
Astrocytic TYMP and VEGFA drive blood-brain barrier opening in 
inflammatory central nervous system lesions. Brain (2015) 138:1548–67. 
doi:10.1093/brain/awv077 

13. Sloane JA, Batt CE, Ma Y, Harris ZM, Trapp BD, Vartanian TK. Hyaluronan 
blocks oligodendrocyte progenitor maturation and remyelination through 
TLR2. Proc Natl Acad Sci U S A (2010) 107:11555–60. doi:10.1073/
pnas.1006496107 

14. Bugiani M, Postma N, Polder E, Dieleman N, Scheffer PG, Sim FJ, et  al. 
Hyaluronan accumulation and arrested oligodendrocyte progenitor 
maturation in vanishing white matter disease. Brain (2013) 136:209–22. 
doi:10.1093/brain/aws320 

15. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et  al. 
Hyaluronan accumulates in demyelinated lesions and inhibits oligoden-
drocyte progenitor maturation. Nat Med (2005) 11:966–72. doi:10.1038/
nm1279 

16. Haist V, Ulrich R, Kalkuhl A, Deschl U, Baumgartner W. Distinct spa-
tio-temporal extracellular matrix accumulation within demyelinated spinal 

cord lesions in Theiler’s murine encephalomyelitis. Brain Pathol (2012) 
22:188–204. doi:10.1111/j.1750-3639.2011.00518.x 

17. van Horssen J, Bo L, Dijkstra CD, de Vries HE. Extensive extracellular 
matrix depositions in active multiple sclerosis lesions. Neurobiol Dis (2006) 
24:484–91. doi:10.1016/j.nbd.2006.08.005 

18. Mohan H, Krumbholz M, Sharma R, Eisele S, Junker A, Sixt M, et  al. 
Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan 
and decorin are upregulated and associated with infiltrating immune cells. 
Brain Pathol (2010) 20:966–75. doi:10.1111/j.1750-3639.2010.00399.x 

19. Mei F, Christin Chong SY, Chan JR. Myelin-based inhibitors of oligodendro-
cyte myelination: clues from axonal growth and regeneration. Neurosci Bull 
(2013) 29:177–88. doi:10.1007/s12264-013-1319-x 

20. Kotter MR, Li WW, Zhao C, Franklin RJM. Myelin impairs CNS remyelin-
ation by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 
(2006) 26:328–32. doi:10.1523/JNEUROSCI.2615-05.2006 

21. Yang Y, Liu Y, Wei P, Peng H, Winger R, Hussain RZ, et al. Silencing Nogo-A 
promotes functional recovery in demyelinating disease. Ann Neurol (2010) 
67:498–507. doi:10.1002/ana.21935 

22. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, et al. LINGO-1 is a component of 
the Nogo-66 receptor/p75 signaling complex. Nat Neurosci (2004) 7:221–8. 
doi:10.1038/nn1188 

23. Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M, Pepinsky RB, et al. NGF 
regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte 
differentiation and myelination. J Neurosci (2007) 27:220–5. doi:10.1523/
JNEUROSCI.4175-06.2007 

24. Rodgers JM, Miller SD. Cytokine control of inflammation and repair in the 
pathology of multiple sclerosis. Yale J Biol Med (2012) 85:447–68. 

25. Brambilla R, Morton PD, Ashbaugh JJ, Karmally S, Lambertsen KL, Bethea 
JR. Astrocytes play a key role in EAE pathophysiology by orchestrating in the 
CNS the inflammatory response of resident and peripheral immune cells and 
by suppressing remyelination. Glia (2014) 62:452–67. doi:10.1002/glia.22616 

26. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R, 
et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and 
in multiple sclerosis lesions. J Neuropathol Exp Neurol (2005) 64:706–15. 
doi:10.1097/01.jnen.0000173893.01929.fc 

27. Schmitz T, Chew LJ. Cytokines and myelination in the central nervous 
system. ScientificWorldJournal (2008) 8:1119–47. doi:10.1100/tsw.2008.140 

28. Williams A, Piaton G, Aigrot M-SS, Belhadi A, Théaudin M, Petermann F, 
et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclero-
sis? Brain (2007) 130:2554–65. doi:10.1093/brain/awm202 

29. Cohen RI, Rottkamp DM, Maric D, Barker JL, Hudson LD. A role for sema-
phorins and neuropilins in oligodendrocyte guidance. J Neurochem (2003) 
85:1262–78. doi:10.1046/j.1471-4159.2003.01722.x 

30. Spassky N, de Castro F, Le Bras B, Heydon K, Quéraud-LeSaux F, Bloch-
Gallego E, et al. Directional guidance of oligodendroglial migration by class 
3 semaphorins and netrin-1. J Neurosci (2002) 22:5992–6004. 

31. Piaton G, Aigrot M-SS, Williams A, Moyon S, Tepavcevic V, Moutkine I, et al. 
Class 3 semaphorins influence oligodendrocyte precursor recruitment and 
remyelination in adult central nervous system. Brain (2011) 134:1156–67. 
doi:10.1093/brain/awr022 

32. Syed YA, Hand E, Möbius W, Zhao C, Hofer M, Nave K-AA, et al. Inhibition 
of CNS remyelination by the presence of semaphorin 3A. J Neurosci (2011) 
31:3719–28. doi:10.1523/JNEUROSCI.4930-10.2011 

33. Taniguchi Y, Amazaki M, Furuyama T, Yamaguchi W, Takahara M, 
Saino O, et al. Sema4D deficiency results in an increase in the number of 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1038/nrn2797
http://dx.doi.org/10.1191/1352458502ms842oa
http://dx.doi.org/10.1523/JNEUROSCI.0849-14.2015
http://dx.doi.org/10.1038/nrneurol.2012.200
http://dx.doi.org/10.1038/nrneurol.2012.200
http://dx.doi.org/10.1056/NEJMoa010994
http://dx.doi.org/10.1016/j.mcn.2004.06.015
http://dx.doi.org/10.1016/j.mcn.2004.06.015
http://dx.doi.org/10.1038/nrn3550
http://dx.doi.org/10.1016/j.expneurol.2013.10.017
http://dx.doi.org/10.1016/j.nbd.2014.09.016
http://dx.doi.org/10.1038/ncomms2230
http://dx.doi.org/10.1093/brain/awv077
http://dx.doi.org/10.1073/pnas.1006496107
http://dx.doi.org/10.1073/pnas.1006496107
http://dx.doi.org/10.1093/brain/aws320
http://dx.doi.org/10.1038/nm1279
http://dx.doi.org/10.1038/nm1279
http://dx.doi.org/10.1111/j.1750-3639.2011.00518.x
http://dx.doi.org/10.1016/j.nbd.2006.08.005
http://dx.doi.org/10.1111/j.1750-3639.2010.00399.x
http://dx.doi.org/10.1007/s12264-013-1319-x
http://dx.doi.org/10.1523/JNEUROSCI.2615-05.2006
http://dx.doi.org/10.1002/ana.21935
http://dx.doi.org/10.1038/nn1188
http://dx.doi.org/10.1523/JNEUROSCI.4175-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.4175-06.2007
http://dx.doi.org/10.1002/glia.22616
http://dx.doi.org/10.1097/01.jnen.0000173893.01929.fc
http://dx.doi.org/10.1100/tsw.2008.140
http://dx.doi.org/10.1093/brain/awm202
http://dx.doi.org/10.1046/j.1471-4159.2003.01722.x
http://dx.doi.org/10.1093/brain/awr022
http://dx.doi.org/10.1523/JNEUROSCI.4930-10.2011


December 2015 | Volume 6 | Article 2579

Harlow et al. Remyelination in MS

Frontiers in Neurology | www.frontiersin.org

oligodendrocytes in healthy and injured mouse brains. J Neurosci Res (2009) 
87:2833–41. doi:10.1002/jnr.22124 

34. Yamaguchi W, Tamai R, Kageura M, Furuyama T, Inagaki S. Sema4D as an 
inhibitory regulator in oligodendrocyte development. Mol Cell Neurosci 
(2012) 49:290–9. doi:10.1016/j.mcn.2011.12.004 

35. Zhang H-L, Wang J, Tang L. Sema4D knockdown in oligodendrocytes 
promotes functional recovery after spinal cord injury. Cell Biochem Biophys 
(2014) 68:489–96. doi:10.1007/s12013-013-9727-0 

36. Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regula-
tion of epithelial and endothelial junctions. Tissue Barriers (2013) 1:e23272. 
doi:10.4161/tisb.23272 

37. Smith ES, Jonason A, Reilly C, Veeraraghavan J, Fisher T, Doherty M, 
et  al. SEMA4D compromises blood-brain barrier, activates microglia, and 
inhibits remyelination in neurodegenerative disease. Neurobiol Dis (2014) 
73C:254–68. doi:10.1016/j.nbd.2014.10.008 

38. Vaccinex, Inc; PRA Health Sciences. Evaluation of safety, tolerability, and PK 
of VX15/2503 in patients with MS. In: ClinicalTrials.gov [Internet]. Bethesda, 
MD: National Library of Medicine (US) (2000). Available from: http://clini-
caltrials.gov/ct2/show/NCT01764737

39. Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova 
G, et al. Transgenic inhibition of astroglial NF-kappa B improves functional 
outcome in experimental autoimmune encephalomyelitis by suppressing 
chronic central nervous system inflammation. J Immunol (2009) 182:2628–
40. doi:10.4049/jimmunol.0802954 

40. Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, et al. Astrocyte-
restricted ablation of interleukin-17-induced Act1-mediated signaling 
ameliorates autoimmune encephalomyelitis. Immunity (2010) 32:414–25. 
doi:10.1016/j.immuni.2010.03.004 

41. Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric 
oxide production by expanding the population of astrocytes that express 
NOS-2. Glia (2006) 54:566–77. doi:10.1002/glia.20411 

42. Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide 
synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol (2001) 
158:2057–66. doi:10.1016/S0002-9440(10)64677-9 

43. Matute C, Sánchez-Gómez MV, Martínez-Millán L, Miledi R. Glutamate 
receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad 
Sci U S A (1997) 94:8830–5. doi:10.1073/pnas.94.16.8830 

44. Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple 
sclerosis. Nat Med (2000) 6:67–70. doi:10.1038/71555 

45. Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, Dreyfus 
CF. Astrocyte-derived BDNF supports myelin protein synthesis after cupri-
zone-induced demyelination. J Neurosci (2014) 34:8186–96. doi:10.1523/
JNEUROSCI.4267-13.2014 

46. Nijland PG, Witte ME, van Het Hof B, van der Pol S, Bauer J, Lassmann H, 
et  al. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity 
and suppresses inflammation: implications for multiple sclerosis. Acta 
Neuropathol Commun (2014) 2:170. doi:10.1186/s40478-014-0170-2 

47. Williams A, Piaton G, Lubetzki C. Astrocytes – friends or foes in multiple 
sclerosis? Glia (2007) 55:1300–12. doi:10.1002/glia.20546 

48. Nair A, Frederick TJ, Miller SD. Astrocytes in multiple sclerosis: a product 
of their environment. Cell Mol Life Sci (2008) 65:2702–20. doi:10.1007/
s00018-008-8059-5 

49. Brück W, Pfortner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, et al. 
Reduced astrocytic NF-kappaB activation by laquinimod protects from 
cuprizone-induced demyelination. Acta Neuropathol (2012) 124:411–24. 
doi:10.1007/s00401-012-1009-1 

50. Moore S, Khalaj AJ, Yoon J, Patel R, Hannsun G, Yoo T, et al. Therapeutic 
laquinimod treatment decreases inflammation, initiates axon remyelination, 
and improves motor deficit in a mouse model of multiple sclerosis. Brain 
Behav (2013) 3:664–82. doi:10.1002/brb3.174 

51. Saab AS, Tzvetanova ID, Nave K-AA. The role of myelin and oligodendro-
cytes in axonal energy metabolism. Curr Opin Neurobiol (2013) 23:1065–72. 
doi:10.1016/j.conb.2013.09.008 

52. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et  al. 
Oligodendroglia metabolically support axons and contribute to neurode-
generation. Nature (2012) 487:443–8. doi:10.1038/nature11314 

53. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. 
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. 
Nature (2012) 485:517–21. doi:10.1038/nature11007 

54. Mahad DJ, Ziabreva I, Campbell GR, Lax N, White K, Hanson PS, et  al. 
Mitochondrial changes within axons in multiple sclerosis. Brain (2009) 
132:1161–74. doi:10.1093/brain/awp046 

55. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et  al. 
Mitochondrial dysfunction as a cause of axonal degeneration in multiple 
sclerosis patients. Ann Neurol (2006) 59:478–89. doi:10.1002/ana.20736 

56. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C, Aloisi F, 
et al. ATP regulates oligodendrocyte progenitor migration, proliferation, and 
differentiation: involvement of metabotropic P2 receptors. Brain Res Brain 
Res Rev (2005) 48:157–65. doi:10.1016/j.brainresrev.2004.12.005 

57. Marin-Husstege M, Muggironi M, Raban D, Skoff RP, Casaccia-Bonnefil P. 
Oligodendrocyte progenitor proliferation and maturation is differentially 
regulated by male and female sex steroid hormones. Dev Neurosci (2004) 
26:245–54. doi:10.1159/000082141 

58. Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and 
experimental multiple sclerosis. Front Neuroendocrinol (2009) 30:188–200. 
doi:10.1016/j.yfrne.2009.04.004 

59. Ligon KL, Fancy SPJ, Franklin RJM, Rowitch DH. Olig gene function in CNS 
development and disease. Glia (2006) 54:1–10. doi:10.1002/glia.20273 

60. Sim FJ, Zhao C, Penderis J, Franklin RJM. The age-related decrease in CNS 
remyelination efficiency is attributable to an impairment of both oligo-
dendrocyte progenitor recruitment and differentiation. J Neurosci (2002) 
22:2451–9. 

61. Adamo AM. Nutritional factors and aging in demyelinating diseases. Genes 
Nutr (2014) 9:360. doi:10.1007/s12263-013-0360-8 

62. van Wijngaarden P, Franklin RJM. Ageing stem and progenitor cells: impli-
cations for rejuvenation of the central nervous system. Development (2013) 
140:2562–75. doi:10.1242/dev.092262 

63. Rist JM, Franklin RJM. Taking ageing into account in remyelination-based 
therapies for multiple sclerosis. J Neurol Sci (2008) 274:64–7. doi:10.1016/j.
jns.2008.04.027 

64. Doucette JR, Jiao R, Nazarali AJ. Age-related and cuprizone-induced changes 
in myelin and transcription factor gene expression and in oligodendrocyte 
cell densities in the rostral corpus callosum of mice. Cell Mol Neurobiol 
(2010) 30:607–29. doi:10.1007/s10571-009-9486-z 

65. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al. HDAC1 and 
HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-cat-
enin-TCF interaction. Nat Neurosci (2009) 12:829–38. doi:10.1038/nn.2333 

66. Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJM, et al. Age-dependent 
epigenetic control of differentiation inhibitors is critical for remyelination 
efficiency. Nat Neurosci (2008) 11:1024–34. doi:10.1038/nn.2172 

67. Li WW, Penderis J, Zhao C, Schumacher M, Franklin RJM. Females 
remyelinate more efficiently than males following demyelination in the 
aged but not young adult CNS. Exp Neurol (2006) 202:250–4. doi:10.1016/j.
expneurol.2006.05.012 

68. Nicot A. Gender and sex hormones in multiple sclerosis pathology and 
therapy. Front Biosci (2009) 14:4477–515. doi:10.2741/3543 

69. Dai J, Bercury KK, Macklin WB. Interaction of mTOR and Erk1/2 signaling 
to regulate oligodendrocyte differentiation. Glia (2014) 62:2096–109. 
doi:10.1002/glia.22729 

70. Park HC, Appel B. Delta-Notch signaling regulates oligodendrocyte specifi-
cation. Development (2003) 130:3747–55. doi:10.1242/dev.00576 

71. Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, et al. Notch1 
and Jagged1 are expressed after CNS demyelination, but are not a major 
rate-determining factor during remyelination. Brain (2004) 127:1928–41. 
doi:10.1093/brain/awh217 

72. Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, et al. Notch1 
signaling plays a role in regulating precursor differentiation during CNS 
remyelination. Proc Natl Acad Sci U S A (2009) 106:19162–7. doi:10.1073/
pnas.0902834106 

73. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, et al. Notch 
receptor activation inhibits oligodendrocyte differentiation. Neuron (1998) 
21:63–75. doi:10.1016/S0896-6273(00)80515-2 

74. Games Collaborative Group ; Ban M, Booth D, Heard R, Stewart G, Goris A, 
et al. Linkage disequilibrium screening for multiple sclerosis implicates JAG1 
and POU2AF1 as susceptibility genes in Europeans. J Neuroimmunol (2006) 
179:108–16. doi:10.1016/j.jneuroim.2006.06.003 

75. Fancy SP, Baranzini SE, Zhao C, Yuk D-I, Irvine KA, Kaing S, et  al. 
Dysregulation of the Wnt pathway inhibits timely myelination and 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1002/jnr.22124
http://dx.doi.org/10.1016/j.mcn.2011.12.004
http://dx.doi.org/10.1007/s12013-013-9727-0
http://dx.doi.org/10.4161/tisb.23272
http://dx.doi.org/10.1016/j.nbd.2014.10.008
http://ClinicalTrials.gov
http://dx.doi.org/10.4049/jimmunol.0802954
http://dx.doi.org/10.1016/j.immuni.2010.03.004
http://dx.doi.org/10.1002/glia.20411
http://dx.doi.org/10.1016/S0002-9440(10)64677-9
http://dx.doi.org/10.1073/pnas.94.16.8830
http://dx.doi.org/10.1038/71555
http://dx.doi.org/10.1523/JNEUROSCI.4267-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.4267-13.2014
http://dx.doi.org/10.1186/s40478-014-0170-2
http://dx.doi.org/10.1002/glia.20546
http://dx.doi.org/10.1007/s00018-008-8059-5
http://dx.doi.org/10.1007/s00018-008-8059-5
http://dx.doi.org/10.1007/s00401-012-1009-1
http://dx.doi.org/10.1002/brb3.174
http://dx.doi.org/10.1016/j.conb.2013.09.008
http://dx.doi.org/10.1038/nature11314
http://dx.doi.org/10.1038/nature11007
http://dx.doi.org/10.1093/brain/awp046
http://dx.doi.org/10.1002/ana.20736
http://dx.doi.org/10.1016/j.brainresrev.2004.12.005
http://dx.doi.org/10.1159/000082141
http://dx.doi.org/10.1016/j.yfrne.2009.04.004
http://dx.doi.org/10.1002/glia.20273
http://dx.doi.org/10.1007/s12263-013-0360-8
http://dx.doi.org/10.1242/dev.092262
http://dx.doi.org/10.1016/j.jns.2008.04.027
http://dx.doi.org/10.1016/j.jns.2008.04.027
http://dx.doi.org/10.1007/s10571-009-9486-z
http://dx.doi.org/10.1038/nn.2333
http://dx.doi.org/10.1038/nn.2172
http://dx.doi.org/10.1016/j.expneurol.2006.05.012
http://dx.doi.org/10.1016/j.expneurol.2006.05.012
http://dx.doi.org/10.2741/3543
http://dx.doi.org/10.1002/glia.22729
http://dx.doi.org/10.1242/dev.00576
http://dx.doi.org/10.1093/brain/awh217
http://dx.doi.org/10.1073/pnas.0902834106
http://dx.doi.org/10.1073/pnas.0902834106
http://dx.doi.org/10.1016/S0896-6273(00)80515-2
http://dx.doi.org/10.1016/j.jneuroim.2006.06.003


December 2015 | Volume 6 | Article 25710

Harlow et al. Remyelination in MS

Frontiers in Neurology | www.frontiersin.org

remyelination in the mammalian CNS. Genes Dev (2009) 23:1571–85. 
doi:10.1101/gad.1806309 

76. Langseth AJ, Munji RN, Choe Y, Huynh T, Pozniak CD, Pleasure SJ. Wnts 
influence the timing and efficiency of oligodendrocyte precursor cell gen-
eration in the telencephalon. J Neurosci (2010) 30:13367–72. doi:10.1523/
JNEUROSCI.1934-10.2010 

77. Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB. Wnt signaling is 
sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci (2009) 
42:255–65. doi:10.1016/j.mcn.2009.07.010 

78. Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, et al. 
Axin2 as regulatory and therapeutic target in newborn brain injury and 
remyelination. Nat Neurosci (2011) 14:1009–16. doi:10.1038/nn.2855 

79. Bercury KK, Dai J, Sachs HH, Ahrendsen JT, Wood TL, Macklin WB. 
Conditional ablation of raptor or rictor has differential impact on oligoden-
drocyte differentiation and CNS myelination. J Neurosci (2014) 34:4466–80. 
doi:10.1523/JNEUROSCI.4314-13.2014 

80. Tyler WA, Gangoli N, Gokina P, Kim HA, Covey M, Levison SW, et  al. 
Activation of the mammalian target of rapamycin (mTOR) is essential for 
oligodendrocyte differentiation. J Neurosci (2009) 29:6367–78. doi:10.1523/
JNEUROSCI.0234-09.2009 

81. Wahl SE, McLane LE, Bercury KK, Macklin WB, Wood TL. Mammalian 
target of rapamycin promotes oligodendrocyte differentiation, initiation 
and extent of CNS myelination. J Neurosci (2014) 34:4453–65. doi:10.1523/
JNEUROSCI.4311-13.2014 

82. Narayanan SP, Flores AI, Wang F, Macklin WB. Akt signals through the mam-
malian target of rapamycin pathway to regulate CNS myelination. J Neurosci 
(2009) 29:6860–70. doi:10.1523/JNEUROSCI.0232-09.2009 

83. Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, et  al. 
Constitutively active Akt induces enhanced myelination in the CNS. J 
Neurosci (2008) 28:7174–83. doi:10.1523/JNEUROSCI.0150-08.2008 

84. Fyffe-Maricich SL, Schott A, Karl M, Krasno J, Miller RH. Signaling 
through ERK1/2 controls myelin thickness during myelin repair in the 
adult central nervous system. J Neurosci (2013) 33:18402–8. doi:10.1523/
JNEUROSCI.2381-13.2013 

85. Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R. ERK1/ERK2 
MAPK signaling is required to increase myelin thickness independent of 
oligodendrocyte differentiation and initiation of myelination. J Neurosci 
(2012) 32:8855–64. doi:10.1523/JNEUROSCI.0137-12.2012 

86. Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH. The ERK2 mitogen-ac-
tivated protein kinase regulates the timing of oligodendrocyte differentiation. 
J Neurosci (2011) 31:843–50. doi:10.1523/JNEUROSCI.3239-10.2011 

87. Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorti-
coids and retinoic acid in timing oligodendrocyte development. Development 
(1994) 120:1097–108. 

88. Huang JK, Jarjour AA, Nait-Oumesmar B, Kerninon C, Williams A, Krezel 
W, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. 
Nat Neurosci (2011) 14:45–53. doi:10.1038/nn.2702 

89. Ahlgren SC, Wallace H, Bishop J, Neophytou C, Raff MC. Effects of thyroid 
hormone on embryonic oligodendrocyte precursor cell development in vivo 
and in vitro. Mol Cell Neurosci (1997) 9:420–32. doi:10.1006/mcne.1997.0631 

90. Lin W, Lin Y, Li J, Fenstermaker AG, Way SW, Clayton B, et al. Oligodendrocyte-
specific activation of PERK signaling protects mice against experimental 
autoimmune encephalomyelitis. J Neurosci (2013) 33:5980–91. doi:10.1523/
JNEUROSCI.1636-12.2013 

91. Cunnea P, Mhaille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U. 
Expression profiles of endoplasmic reticulum stress-related molecules in 
demyelinating lesions and multiple sclerosis. Mult Scler J (2011) 17:808–18. 
doi:10.1177/1352458511399114 

92. Hussien Y, Cavener DR, Popko B. Genetic inactivation of PERK signaling in 
mouse oligodendrocytes: normal developmental myelination with increased 
susceptibility to inflammatory demyelination. Glia (2014) 62:680–91. 
doi:10.1002/glia.22634 

93. Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, 
et al. Increased expression of endoplasmic reticulum stress-related signaling 
pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 
(2008) 67:200–11. doi:10.1097/NEN.0b013e318165b239 

94. Starkey ML, Bartus K, Barritt AW, Bradbury EJ. Chondroitinase ABC pro-
motes compensatory sprouting of the intact corticospinal tract and recovery 

of forelimb function following unilateral pyramidotomy in adult mice. Eur J 
Neurosci (2012) 36:3665–78. doi:10.1111/ejn.12017 

95. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et  al. 
Chondroitinase ABC promotes functional recovery after spinal cord injury. 
Nature (2002) 416:636–40. doi:10.1038/416636a 

96. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and 
growth factors enhance activation and oligodendrocyte differentiation of 
endogenous neural precursor cells after spinal cord injury. PLoS One (2012) 
7:e37589. doi:10.1371/journal.pone.0037589 

97. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD. Demyelination 
increases axonal stationary mitochondrial size and the speed of axonal 
mitochondrial transport. J Neurosci (2010) 30:6658–66. doi:10.1523/
JNEUROSCI.5265-09.2010 

98. Zambonin JL, Zhao C, Ohno N, Campbell GR, Engeham S, Ziabreva I, et al. 
Increased mitochondrial content in remyelinated axons: implications for 
multiple sclerosis. Brain (2011) 134:1901–13. doi:10.1093/brain/awr110 

99. Ohno N, Chiang H, Mahad DJ, Kidd GJ, Liu L, Ransohoff RM, et  al. 
Mitochondrial immobilization mediated by syntaphilin facilitates survival 
of demyelinated axons. Proc Natl Acad Sci U S A (2014) 111:9953–8. 
doi:10.1073/pnas.1401155111 

100. Joshi DC, Zhang CL, Lin TM, Gusain A, Harris MG, Tree E, et al. Deletion 
of mitochondrial anchoring protects dysmyelinating shiverer: implica-
tions for progressive MS. J Neurosci (2015) 35:5293–306. doi:10.1523/
JNEUROSCI.3859-14.2015 

101. Setzu A, Lathia JD, Zhao C, Wells K, Rao MS, ffrench-Constant C, et  al. 
Inflammation stimulates myelination by transplanted oligodendrocyte 
precursor cells. Glia (2006) 54:297–303. doi:10.1002/glia.20371 

102. Blakemore WF. Regeneration and repair in multiple sclerosis: the view 
of experimental pathology. J Neurol Sci (2008) 265:1–4. doi:10.1016/j.
jns.2007.03.006 

103. Ding X, Yan Y, Li X, Li K, Ciric B, Yang J, et al. Silencing IFN-gamma binding/
signaling in astrocytes versus microglia leads to opposite effects on central 
nervous system autoimmunity. J Immunol (2015) 194:4251–64. doi:10.4049/
jimmunol.1303321 

104. Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple scle-
rosis: mechanisms and functional consequences. Curr Opin Neurol (2001) 
14:271–8. doi:10.1097/00019052-200106000-00003 

105. Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, 
et  al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence 
of neuroprotection with amiloride. Brain (2013) 136:106–15. doi:10.1093/
brain/aws325 

106. Yu X-W, Hu Z-L, Ni M, Fang P, Zhang P-W, Shu Q, et al. Acid-sensing ion 
channels promote the inflammation and migration of cultured rat microglia. 
Glia (2015) 63:483–96. doi:10.1002/glia.22766 

107. Biogen. 215ON201 BIIB033 in acute optic neuritis (AON) (RENEW). In: 
ClinicalTrials.gov [Internet]. Bethesda, MD: National Library of Medicine (US) 
(2000). Available from: https://clinicaltrials.gov/ct2/show/NCT01721161

108. Biogen. Study to assess the efficacy, safety, tolerability, and pharmacokinetics 
of BIIB033 in participants with relapsing forms of multiple sclerosis when 
used concurrently with Avonex (SYNERGY). In: ClinicalTrials.gov [Internet]. 
Bethesda, MD: National Library of Medicine (US) (2000). Available from: 
https://clinicaltrials.gov/ct2/show/NCT01864148

109. Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, et al. 
A regenerative approach to the treatment of multiple sclerosis. Nature (2013) 
502:327–32. doi:10.1038/nature12647 

110. Way SW, Podojil JR, Clayton BL, Zaremba A, Collins TL, Kunjamma RB, 
et al. Pharmaceutical integrated stress response enhancement protects oli-
godendrocytes and provides a potential multiple sclerosis therapeutic. Nat 
Commun (2015) 6:6532. doi:10.1038/ncomms7532 

111. National Institute of Neurological Disorders and Stroke (NINDS); National 
Institutes of Health Clinical Center (CC). Oral guanabenz for multiple 
sclerosis. In: ClinicalTrials.gov [Internet]. Bethesda, MD: National Library 
of Medicine (US) (2000). Available from: https://clinicaltrials.gov/ct2/show/
NCT02423083

112. Brück W, Pförtner R, Pham T, Zhang J, Hayardeny L, Piryatinsky V, 
et  al. Reduced astrocytic NF-κB activation by laquinimod protects from 
cuprizone-induced demyelination. Acta Neuropathol (2012) 124:411–24. 
doi:10.1007/s00401-012-1009-1 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1101/gad.1806309
http://dx.doi.org/10.1523/JNEUROSCI.1934-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.1934-10.2010
http://dx.doi.org/10.1016/j.mcn.2009.07.010
http://dx.doi.org/10.1038/nn.2855
http://dx.doi.org/10.1523/JNEUROSCI.4314-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.0234-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.0234-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.4311-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.4311-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.0232-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.0150-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.2381-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.2381-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.0137-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.3239-10.2011
http://dx.doi.org/10.1038/nn.2702
http://dx.doi.org/10.1006/mcne.1997.0631
http://dx.doi.org/10.1523/JNEUROSCI.1636-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1636-12.2013
http://dx.doi.org/10.1177/1352458511399114
http://dx.doi.org/10.1002/glia.22634
http://dx.doi.org/10.1097/NEN.0b013e318165b239
http://dx.doi.org/10.1111/ejn.12017
http://dx.doi.org/10.1038/416636a
http://dx.doi.org/10.1371/journal.pone.0037589
http://dx.doi.org/10.1523/JNEUROSCI.5265-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.5265-09.2010
http://dx.doi.org/10.1093/brain/awr110
http://dx.doi.org/10.1073/pnas.1401155111
http://dx.doi.org/10.1523/JNEUROSCI.3859-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.3859-14.2015
http://dx.doi.org/10.1002/glia.20371
http://dx.doi.org/10.1016/j.jns.2007.03.006
http://dx.doi.org/10.1016/j.jns.2007.03.006
http://dx.doi.org/10.4049/jimmunol.1303321
http://dx.doi.org/10.4049/jimmunol.1303321
http://dx.doi.org/10.1097/00019052-200106000-00003
http://dx.doi.org/10.1093/brain/aws325
http://dx.doi.org/10.1093/brain/aws325
http://dx.doi.org/10.1002/glia.22766
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://dx.doi.org/10.1038/nature12647
http://dx.doi.org/10.1038/ncomms7532
http://ClinicalTrials.gov
http://dx.doi.org/10.1007/s00401-012-1009-1


December 2015 | Volume 6 | Article 25711

Harlow et al. Remyelination in MS

Frontiers in Neurology | www.frontiersin.org

113. Vollmer TL, Sørensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, 
et  al. A randomized placebo-controlled phase III trial of oral laquin-
imod for multiple sclerosis. J Neurol (2014) 261:773–83. doi:10.1007/
s00415-014-7264-4 

114. Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, et  al. 
Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI 
evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 
(2014) 85(8):851–8. doi:10.1136/jnnp-2013-306132 

115. Teva Pharmaceutical Industries. A phase 2 clinical study in subjects with 
primary progressive multiple sclerosis to assess the efficacy, safety and tol-
erability of two oral doses of laquinimod either of 0.6 mg/day or 1.5mg/day 
(experimental drug) as compared to placebo. In: ClinicalTrials.gov [Internet]. 
Bethesda, MD: National Library of Medicine (US) (2000). Available from: 
https://clinicaltrials.gov/ct2/show/NCT02284568

116. Comi G, Pulizzi A, Rovaris M, Abramsky O, Arbizu T, Boiko A, et al. Effect 
of laquinimod on MRI-monitored disease activity in patients with relaps-
ing-remitting multiple sclerosis: a multicentre, randomised, double-blind, 
placebo-controlled phase IIb study. Lancet (2008) 371:2085–92. doi:10.1016/
S0140-6736(08)60918-6 

117. Mishra MK, Wang J, Keough MB, Fan Y, Silva C, Sloka S, et al. Laquinimod 
reduces neuroaxonal injury through inhibiting microglial activation. Ann 
Clin Transl Neurol (2014) 1:409–22. doi:10.1002/acn3.67 

118. Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, et  al. 
Drug-based modulation of endogenous stem cells promotes functional 
remyelination in vivo. Nature (2015) 522:216–20. doi:10.1038/nature14335 

119. Magalon K, Zimmer C, Cayre M, Khaldi J, Bourbon C, Robles I, et  al. 
Olesoxime accelerates myelination and promotes repair in models of demye-
lination. Ann Neurol (2012) 71:213–26. doi:10.1002/ana.22593 

120. Trophos; Hôpital de la Timone; SGS; STRAGEN Services. Safety study of 
olesoxime in patients with stable relapsing remitting multiple sclerosis 
treated with interferon beta (MSREPAIR). In: ClinicalTrials.gov [Internet]. 
Bethesda, MD: National Library of Medicine (US) (2000). Available from: 
https://clinicaltrials.gov/ct2/show/NCT01808885

121. Zhornitsky SWYV. Quetiapine fumarate for the treatment of multiple sclero-
sis: focus on myelin repair. CNS Neurosci Ther (2013) 19:737–44. doi:10.1111/
cns.12154 

122. University of Calgary; Multiple Sclerosis Society of Canada. Safety and tol-
erability of quetiapine in multiple sclerosis. In: ClinicalTrials.gov [Internet]. 
Bethesda, MD: National Library of Medicine (US) (2000). Available from: 
https://clinicaltrials.gov/ct2/show/NCT02087631

123. Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. 
A recombinant human IgM promotes myelin repair after a single, very low 
dose. J Neurosci Res (2007) 85:967–76. doi:10.1002/jnr.21217 

124. Pirko I, Ciric B, Gamez J, Bieber AJ, Warrington AE, Johnson AJ, et al. A 
human antibody that promotes remyelination enters the CNS and decreases 
lesion load as detected by T2-weighted spinal cord MRI in a virus-induced 
murine model of MS. FASEB J (2004) 18:1577–9. doi:10.1096/fj.04-2026fje 

125. Acorda Therapeutics; PRA Health Sciences. An intravenous infusion study 
of rHIgM22 in patients with multiple sclerosis immediately following a 
relapse. In: ClinicalTrials.gov [Internet]. Bethesda, MD: National Library of 
Medicine (US) (2000). Available from: https://clinicaltrials.gov/ct2/show/
NCT02398461

126. Mei F, Fancy SP, Shen YA, Niu J, Zhao C, Presley B, et al. Micropillar arrays as 
a high-throughput screening platform for therapeutics in multiple sclerosis. 
Nat Med (2014) 20:954–60. doi:10.1038/nm.3618 

127. De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM. Muscarinic 
receptor subtypes as potential targets to modulate oligodendrocyte progenitor 
survival, proliferation, and differentiation. Dev Neurobiol (2012) 72:713–28. 
doi:10.1002/dneu.20976 

128. University of California, San Francisco. Assessment of clemastine fumarate 
as a remyelinating agent in multiple sclerosis (ReBUILD). In: ClinicalTrials.
gov [Internet]. Bethesda, MD: National Library of Medicine (US) (2000). 
Available from: https://clinicaltrials.gov/ct2/show/NCT02040298

129. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 
negatively regulates myelination by oligodendrocytes. Nat Neurosci (2005) 
8:745–51. doi:10.1038/nn1460 

130. Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, et al. Promotion of central 
nervous system remyelination by induced differentiation of oligodendrocyte 
precursor cells. Ann Neurol (2009) 65:304–15. doi:10.1002/ana.21581 

131. Stoffels JMJ, de Jonge JC, Stancic M, Nomden A, van Strien ME, Ma D, et al. 
Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. 
Brain (2013) 136:116–31. doi:10.1093/brain/aws313 

132. Watzlawik JO, Wootla B, Painter MM, Warrington AE, Rodriguez M. Cellular 
targets and mechanistic strategies of remyelination-promoting IgMs as part 
of the naturally occurring autoantibody repertoire. Expert Rev Neurother 
(2013) 13:1017–29. doi:10.1586/14737175.2013.835601 

133. Acorda Therapeutics; PRA Health Sciences. An intravenous infusion study of 
rHIgM22 in patients with multiple sclerosis. In: ClinicalTrials.gov [Internet]. 
Bethesda, MD: National Library of Medicine (US) (2000). Available from: 
https://clinicaltrials.gov/ct2/show/NCT01803867

134. Baum T, Shropshire AT. Studies on the centrally mediated hypo-
tensive activity of guanabenz. Eur J Pharmacol (1976) 37:31–44. 
doi:10.1016/0014-2999(76)90005-4 

135. Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regu-
latory subunit of protein phosphatase 1 restores proteostasis. Science (2011) 
332:91–4. doi:10.1126/science.1201396 

136. Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, et  al. 
Identification and characterization of cholest-4-en-3-one, oxime 
(TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J 
Pharmacol Exp Ther (2007) 322:709–20. doi:10.1124/jpet.107.123000 

137. Ben-Hur T, Fainstein N, Nishri Y. Cell-based reparative therapies for 
multiple sclerosis. Curr Neurol Neurosci Rep (2013) 13:397. doi:10.1007/
s11910-013-0397-5 

138. University College, L Medical Research Council; National Institute for 
Health Research; United Kingdom MS Society; University of Edinburgh; 
Queen Mary University of London; Keele University; University of Sheffield; 
University of Leeds; University of Warwick London; In: ClinicalTrials.
gov [Internet]. Bethesda, MD: National Library of Medicine (US). (2000). 
Available from: https://clinicaltrials.gov/ct2/show/NCT01910259

139. Toubi E, Nussbaum S, Staun-Ram E, Snir A, Melamed D, Hayardeny L, 
et al. Laquinimod modulates B cells and their regulatory effects on T cells 
in multiple sclerosis. J Neuroimmunol (2012) 251:45–54. doi:10.1016/j.
jneuroim.2012.07.003 

140. Wegner C, Stadelmann C, Pfortner R, Raymond E, Feigelson S, Alon R, 
et al. Laquinimod interferes with migratory capacity of T cells and reduces 
IL-17 levels, inflammatory demyelination and acute axonal damage in mice 
with experimental autoimmune encephalomyelitis. J Neuroimmunol (2010) 
227:133–43. doi:10.1016/j.jneuroim.2010.07.009 

141. Ruffini F, Rossi S, Bergamaschi A, Brambilla E, Finardi A, Motta C, et  al. 
Laquinimod prevents inflammation-induced synaptic alterations occur-
ring in experimental autoimmune encephalomyelitis. Mult Scler J (2013) 
19:1084–94. doi:10.1177/1352458512469698 

142. Moore CS, Cui Q-L, Warsi NM, Durafourt BA, Zorko N, Owen DR, et al. 
Direct and indirect effects of immune and central nervous system-resident 
cells on human oligodendrocyte progenitor cell differentiation. J Immunol 
(2015) 194:761–72. doi:10.4049/jimmunol.1401156 

143. Comi G, Jeffery D, Kappos L, Montalban X, Boyko AN, Rocca MA, et  al. 
Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J 
Med (2012) 366:1000–9. doi:10.1056/NEJMoa1104318 

144. Houdayer E, Comi G, Leocani L. The neurophysiologist perspective into MS 
plasticity. Front Neurol (2015) 6:193. doi:10.3389/fneur.2015.00193 

145. Niklas A, Sebraoui H, Hess E, Wagner A, Then Bergh F. Outcome measures 
for trials of remyelinating agents in multiple sclerosis: retrospective longitu-
dinal analysis of visual evoked potential latency. Mult Scler (2009) 15:68–74. 
doi:10.1177/1352458508095731 

146. Grecescu M. Optical Coherence Tomography versus Visual Evoked Potentials 
in detecting subclinical visual impairment in multiple sclerosis. J Med Life 
(2009) 7:538–52. doi:10.1212/WNL.0b013e3181aaea32 

147. Gabelić T, Krbot Skorić M, Adamec I, Barun B, Zadro I, Habek M. The 
vestibular evoked myogenic potentials (VEMP) score: a promising tool for 
evaluation of brainstem involvement in multiple sclerosis. Eur J Neurol (2015) 
22:261–9. doi:10.1111/ene.12557 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1007/s00415-014-7264-4
http://dx.doi.org/10.1007/s00415-014-7264-4
http://dx.doi.org/10.1136/jnnp-2013-306132
http://ClinicalTrials.gov
http://dx.doi.org/10.1016/S0140-6736(08)60918-6
http://dx.doi.org/10.1016/S0140-6736(08)60918-6
http://dx.doi.org/10.1002/acn3.67
http://dx.doi.org/10.1038/nature14335
http://dx.doi.org/10.1002/ana.22593
http://ClinicalTrials.gov
http://dx.doi.org/10.1111/cns.12154
http://dx.doi.org/10.1111/cns.12154
http://ClinicalTrials.gov
http://dx.doi.org/10.1002/jnr.21217
http://dx.doi.org/10.1096/fj.04-2026fje
http://ClinicalTrials.gov
http://dx.doi.org/10.1038/nm.3618
http://dx.doi.org/10.1002/dneu.20976
http://dx.doi.org/10.1038/nn1460
http://dx.doi.org/10.1002/ana.21581
http://dx.doi.org/10.1093/brain/aws313
http://dx.doi.org/10.1586/14737175.2013.835601
http://dx.doi.org/10.1016/0014-2999(76)90005-4
http://dx.doi.org/10.1126/science.1201396
http://dx.doi.org/10.1124/jpet.107.123000
http://dx.doi.org/10.1007/s11910-013-0397-5
http://dx.doi.org/10.1007/s11910-013-0397-5
http://dx.doi.org/10.1016/j.jneuroim.2012.07.003
http://dx.doi.org/10.1016/j.jneuroim.2012.07.003
http://dx.doi.org/10.1016/j.jneuroim.2010.07.009
http://dx.doi.org/10.1177/1352458512469698
http://dx.doi.org/10.4049/jimmunol.1401156
http://dx.doi.org/10.1056/NEJMoa1104318
http://dx.doi.org/10.3389/fneur.2015.00193
http://dx.doi.org/10.1177/1352458508095731
http://dx.doi.org/10.1212/WNL.0b013e3181aaea32
http://dx.doi.org/10.1111/ene.12557


December 2015 | Volume 6 | Article 25712

Harlow et al. Remyelination in MS

Frontiers in Neurology | www.frontiersin.org

148. Simpson M, Macdonell R. The use of transcranial magnetic stimulation in 
diagnosis, prognostication and treatment evaluation in multiple sclerosis. 
Mult Scler Relat Disord (2015) 4:430–6. doi:10.1016/j.msard.2015.06.014 

149. Coman I, Aigrot M-SS, Seilhean D, Reynolds R, Girault JA, Zalc B, et  al. 
Nodal, paranodal and juxtaparanodal axonal proteins during demyelin-
ation and remyelination in multiple sclerosis. Brain (2006) 129:3186–95. 
doi:10.1093/brain/awl144 

150. Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. 
Molecular changes in neurons in multiple sclerosis: altered axonal expression 
of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl 
Acad Sci U S A (2004) 101:8168–73. doi:10.1073/pnas.0402765101 

151. Giovannoni G. Cerebrospinal fluid analysis. Handbook of Clinical Neurology 
(2014) 122:681–702. doi:10.1016/B978-0-444-52001-2.00029-7 

152. Kroksveen AC, Opsahl JA, Guldbrandsen A. Cerebrospinal fluid proteomics 
in multiple sclerosis. Biochim Biophys Acta (2015) 1854:746–56. doi:10.1016/j.
bbapap.2014.12.013 

153. Brown RA, Narayanan S, Arnold DL. Imaging of repeated episodes of demy-
elination and remyelination in multiple sclerosis. Neuroimage Clin (2014) 
6:20–5. doi:10.1016/j.nicl.2014.06.009 

154. Simon JH, Bermel RA, Rudick RA. Simple MRI metrics contribute to optimal 
care of the patient with multiple sclerosis. AJNR Am J Neuroradiol (2014) 
35:831–2. doi:10.3174/ajnr.A3937 

155. Polak P, Magnano C, Zivadinov R, Poloni G. 3D FLAIRED: 3D fluid 
attenuated inversion recovery for enhanced detection of lesions in multiple 
sclerosis. Magn Reson Med (2012) 68:874–81. doi:10.1002/mrm.23289 

156. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A 
longitudinal study of abnormalities on MRI and disability from multiple 
sclerosis. N Engl J Med (2002) 346:158–64. doi:10.1056/NEJMoa011341 

157. Kolind S, Matthews L, Johansen-Berg H, Leite MI, Williams SC, Deoni S, 
et al. Myelin water imaging reflects clinical variability in multiple sclerosis. 
Neuroimage (2012) 60:263–70. doi:10.1016/j.neuroimage.2011.11.070 

158. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, 
Bergmann M, et al. Cortical demyelination and diffuse white matter injury 
in multiple sclerosis. Brain (2005) 128:2705–12. doi:10.1093/brain/awh641 

159. Kipp M, Victor M, Martino G, Franklin RJM. Endogeneous remyelin-
ation: findings in human studies. CNS Neurol Disord Drug Targets (2012) 
11:598–609. doi:10.2174/187152712801661257 

160. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. 
Curr Opin Neurol (2002) 15:239–45. doi:10.1097/00019052-200206000-00003 

161. Mallik S, Samson RS, Wheeler-Kingshott CAM, Miller DH. Imaging out-
comes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg 
Psychiatr (2014) 85:1396–404. doi:10.1136/jnnp-2014-307650 

162. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et  al. 
Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 
(2001) 13:534–46. doi:10.1002/jmri.1076 

163. Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, Ontaneda D, et al. Measuring 
myelin repair and axonal loss with diffusion tensor imaging. AJNR Am J 
Neuroradiol (2011) 32:85–91. doi:10.3174/ajnr.A2238 

164. Schmierer K, Wheeler-Kingshott CA, Boulby PA, Scaravilli F, Altmann 
DR, Barker GJ, et  al. Diffusion tensor imaging of post mortem mul-
tiple sclerosis brain. Neuroimage (2007) 35:467–77. doi:10.1016/j.
neuroimage.2006.12.010 

165. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. 
Dysmyelination revealed through MRI as increased radial (but unchanged 
axial) diffusion of water. Neuroimage (2002) 17:1429–36. doi:10.1006/
nimg.2002.1267 

166. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, et al. Demyelination 
increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 
(2005) 26:132–40. doi:10.1016/j.neuroimage.2005.01.028 

167. DeBoy CA, Zhang J, Dike S, Shats I, Jones M, Reich DS, et al. High resolution 
diffusion tensor imaging of axonal damage in focal inflammatory and demy-
elinating lesions in rat spinal cord. Brain (2007) 130:2199–210. doi:10.1093/
brain/awm122 

168. Wang Y, Wang Q, Haldar JP, Yeh FC, Xie M, Sun P, et  al. Quantification 
of increased cellularity during inflammatory demyelination. Brain (2011) 
134:3590–601. doi:10.1093/brain/awr307 

169. Wheeler-Kingshott CA, Cercignani M. About “axial” and “radial” diffusivi-
ties. Magn Reson Med (2009) 61:1255–60. doi:10.1002/mrm.21965 

170. Laule CEA. Magnetic resonance imaging of myelin. Neurotherapeutics (2007) 
4:460–84. doi:10.1016/j.nurt.2007.05.004 

171. Wheeler-Kingshott CA, Ciccarelli O, Schneider T, Alexander DC, Cercignani 
M. A new approach to structural integrity assessment based on axial and 
radial diffusivities. Funct Neurol (2012) 27:85–90. 

172. Pagani E, Bammer R, Horsfield MA, Rovaris M, Gass A, Ciccarelli O, et al. 
Diffusion MR imaging in multiple sclerosis: technical aspects and challenges. 
AJNR Am J Neuroradiol (2007) 28:411–20. 

173. Jespersen SN, Bjarkam CR, Nyengaard JR, Chakravarty MM, Hansen B, 
Vosegaard T, et  al. Neurite density from magnetic resonance diffusion 
measurements at ultrahigh field: comparison with light microscopy 
and electron microscopy. Neuroimage (2010) 49:205–16. doi:10.1016/j.
neuroimage.2009.08.053 

174. Wolff SD, Balaban RS. Magnetization transfer imaging: practical aspects 
and clinical appications. Radiology (1994) 192:593–9. doi:10.1148/
radiology.192.3.8058919 

175. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue 
water proton relaxation in  vivo. Magn Reson Med Sci (1989) 10:135–44. 
doi:10.1002/mrm.1910100113 

176. van Waesberghe JH, Kamphorst W, De Groot CJ, van Walderveen MA, Castelijns 
JA, Ravid R, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance 
imaging insights into substrates of disability. Ann Neurol (1999) 46:747–54. 
doi:10.1002/1531-8249(199911)46:5<747::AID-ANA10>3.0.CO;2-4 

177. Mottershead JP, Schmierer K, Clemence M, Thornton JS, Scaravilli F, Barker 
GJ, et al. High field MRI correlates of myelin content and axonal density in 
multiple sclerosis – a post-mortem study of the spinal cord. J Neurol (2003) 
250:1293–301. doi:10.1007/s00415-003-0192-3 

178. Vavasour IM, Laule C, Li DK, Traboulsee AL, MacKay AL. Is the magneti-
zation transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson 
Imaging (2011) 33:713–8. doi:10.1002/jmri.22441 

179. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Magnetisation 
transfer ration and mean diffusivity of normal appearing white and grey 
meeter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatr 
(2001) 70:311–7. doi:10.1136/jnnp.70.3.311 

180. Filippi M, Campi A, Dousset V, Baratti C, Martinelli V, Canal N, et  al. A 
magnetization transfer imaging study of normal-appearing white matter in 
multiple sclerosis. Neurology (1995) 45:478–82. doi:10.1212/WNL.45.3.478 

181. Filippi M, Iannucci G, Tortorella C, Minicucci L, Horsfield MA, Colombo 
B, et  al. Comparison of MS clinical phenotypes using conventional and 
magnetization transfer MRI. Neurology (1999) 52:588–94. doi:10.1212/
WNL.52.3.588 

182. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization 
transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 
(2004) 56:407–15. doi:10.1002/ana.20202 

183. Barkhof F, Brück W, De Groot CJA, Bergers E, Hulshof S, Geurts J, et  al. 
Remyelinated lesions in multiple sclerosis: magnetic resonance image 
appearance. Arch Neurol (2003) 60:1073–81. doi:10.1001/archneur.60.8.1073 

184. Chen JT, Collins DL, Atkins HL, Freedman MS, Arnold DL; Canadian MS/
BMT Study Group. Magnetization transfer ratio evolution with demyelin-
ation and remyelination in multiple sclerosis lesions. Ann Neurol (2008) 
63:254–62. doi:10.1002/ana.21302 

185. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, 
Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis 
patients. Brain (2006) 129:3165–72. doi:10.1093/brain/awl217 

186. Laule C, Kozlowski P, Leung E, Li DK, MacKay AL, Moore GR. Myelin 
water imaging of multiple sclerosis at 7 T: correlations with histopathology. 
Neuroimage (2008) 40:1575–80. doi:10.1016/j.neuroimage.2007.12.008 

187. Levesque IR, Sled JG, Narayanan S, Giacomini PS, Ribeiro LT, Arnold DL, 
et al. Reproducibility of quantitative magnetization-transfer imaging param-
eters from repeated measurements. Magn Reson Med (2010) 64:391–400. 
doi:10.1002/mrm.22350 

188. Schmierer K, Wheeler-Kingshott CA, Tozer DJ, Boulby PA, Parkes HG, 
Yousry TA, et al. Quantitative magnetic resonance of postmortem multiple 
sclerosis brain before and after fixation. Magn Reson Med (2008) 59:268–77. 
doi:10.1002/mrm.21487 

189. Ou X, Sun SW, Liang HF, Song SK, Gochberg DF. Quantitative magnetization 
transfer measured pool-size ratio reflects optic nerve myelin content in ex 
vivo mice. Magn Reson Med (2009) 61:364–71. doi:10.1002/mrm.21850 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1016/j.msard.2015.06.014
http://dx.doi.org/10.1093/brain/awl144
http://dx.doi.org/10.1073/pnas.0402765101
http://dx.doi.org/10.1016/B978-0-444-52001-2.00029-7
http://dx.doi.org/10.1016/j.bbapap.2014.12.013
http://dx.doi.org/10.1016/j.bbapap.2014.12.013
http://dx.doi.org/10.1016/j.nicl.2014.06.009
http://dx.doi.org/10.3174/ajnr.A3937
http://dx.doi.org/10.1002/mrm.23289
http://dx.doi.org/10.1056/NEJMoa011341
http://dx.doi.org/10.1016/j.neuroimage.2011.11.070
http://dx.doi.org/10.1093/brain/awh641
http://dx.doi.org/10.2174/187152712801661257
http://dx.doi.org/10.1097/00019052-200206000-00003
http://dx.doi.org/10.1136/jnnp-2014-307650
http://dx.doi.org/10.1002/jmri.1076
http://dx.doi.org/10.3174/ajnr.A2238
http://dx.doi.org/10.1016/j.neuroimage.2006.12.010
http://dx.doi.org/10.1016/j.neuroimage.2006.12.010
http://dx.doi.org/10.1006/nimg.2002.1267
http://dx.doi.org/10.1006/nimg.2002.1267
http://dx.doi.org/10.1016/j.neuroimage.2005.01.028
http://dx.doi.org/10.1093/brain/awm122
http://dx.doi.org/10.1093/brain/awm122
http://dx.doi.org/10.1093/brain/awr307
http://dx.doi.org/10.1002/mrm.21965
http://dx.doi.org/10.1016/j.nurt.2007.05.004
http://dx.doi.org/10.1016/j.neuroimage.2009.08.053
http://dx.doi.org/10.1016/j.neuroimage.2009.08.053
http://dx.doi.org/10.1148/radiology.192.3.8058919
http://dx.doi.org/10.1148/radiology.192.3.8058919
http://dx.doi.org/10.1002/mrm.1910100113
http://dx.doi.org/10.1002/1531-8249(199911)46:5 < 747::AID-ANA10 > 3.0.CO;2-4
http://dx.doi.org/10.1007/s00415-003-0192-3
http://dx.doi.org/10.1002/jmri.22441
http://dx.doi.org/10.1136/jnnp.70.3.311
http://dx.doi.org/10.1212/WNL.45.3.478
http://dx.doi.org/10.1212/WNL.52.3.588
http://dx.doi.org/10.1212/WNL.52.3.588
http://dx.doi.org/10.1002/ana.20202
http://dx.doi.org/10.1001/archneur.60.8.1073
http://dx.doi.org/10.1002/ana.21302
http://dx.doi.org/10.1093/brain/awl217
http://dx.doi.org/10.1016/j.neuroimage.2007.12.008
http://dx.doi.org/10.1002/mrm.22350
http://dx.doi.org/10.1002/mrm.21487
http://dx.doi.org/10.1002/mrm.21850


December 2015 | Volume 6 | Article 25713

Harlow et al. Remyelination in MS

Frontiers in Neurology | www.frontiersin.org

190. Giacomini PS, Levesque IR, Ribeiro L, Narayanan S, Francis SJ, Pike GB, et al. 
Measuring demyelination and remyelination in acute multiple sclerosis lesion 
voxels. Arch Neurol (2009) 66:375–81. doi:10.1001/archneurol.2008.578 

191. Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization 
of myelin water in brain by magnetic resonance. Magn Reson Med (1994) 
31:673–7. doi:10.1002/mrm.1910310614 

192. Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR. Magnetization transfer and mul-
ticomponent T2 relaxation measurements with histopathologic correlation 
in an experimental model of MS. J Magn Reson Imaging (2000) 11:586–95. 
doi:10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V 

193. Nguyen TD, Wisnieff C, Cooper MA, Kumar D, Raj A, Spincemaille P, 
et  al. T2 prep three-dimensional spiral imaging with efficient whole brain 
coverage for myelin water quantification at 1.5 tesla. Magn Reson Med (2012) 
67:614–21. doi:10.1002/mrm.24128 

194. Prasloski T, Rauscher A, MacKay AL, Hodgson M, Vavasour IM, Laule C, et al. 
Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. 
Neuroimage (2012) 63:533–9. doi:10.1016/j.neuroimage.2012.06.064 

195. Lankford CL, Does MD. On the inherent precision of mcDESPOT. Magn 
Reson Med (2013) 69:127–36. doi:10.1002/mrm.24241 

196. Laule C, Vavasour IM, Moore GR, Oger J, Li DK, Paty DW, et  al. Water 
content and myelin water fraction in multiple sclerosis. A T2 relaxation study. 
J Neurol (2004) 251:284–93. doi:10.1007/s00415-004-0306-6 

197. Laule C, Vavasour IM, Zhao Y, Traboulsee AL, Oger J, Vavasour JD, 
et  al. Two-year study of cervical cord volume and myelin water in 
primary progressive multiple sclerosis. Mult Scler J (2010) 16:670–7. 
doi:10.1177/1352458510365586 

198. Vargas WS, Monohan E, Pandya S, Raj A, Vartanian T, Nguyen TD, et al. 
Measuring longitudinal myelin water fraction in new multiple sclerosis 
lesions. Neuroimage Clin (2015) 12:369–75. doi:10.1016/j.nicl.2015.09.003

199. Vavasour I, MacKay A, Li D, Laule C, Traboulsee A. Advanced imaging in 
lesion and normal-appearing white matter over 2 years in MS patients treated 
with alemtuzumab (S29.009). Neurology (2015) 69:S29.009. 

200. Rabinovici GD, Furst AJ, O’Neill JP, Racine CA, Mormino EC, Baker SL, 
et  al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal 
lobar degeneration. Neurology (2007) 68:1205–12. doi:10.1212/01.
wnl.0000259035.98480.ed 

201. Zhang S, editor. 11C-PIB-PET for the Early Diagnosis of Alzheimer’s Disease 
Dementia and Other Dementias in People with Mild Cognitive Impairment 
(MCI). Chichester: John Wiley & Sons, Ltd (1996).

202. Stankoff B, Wang Y, Bottlaender M, Aigrot M-SS, Dolle F, Wu C, et  al. 
Imaging of CNS myelin by positron-emission tomography. Proc Natl Acad 
Sci U S A (2006) 103:9304–9. doi:10.1073/pnas.0600769103 

203. Stankoff B, Freeman L, Aigrot M-SS, Chardain A, Dolle F, Williams A, et al. 
Imaging central nervous system myelin by positron emission tomography 
in multiple sclerosis using [methyl-(1)(1)C]-2-(4’-methylaminophenyl)-6-
hydroxybenzothiazole. Ann Neurol (2011) 69:673–80. doi:10.1002/ana.22320 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Harlow, Honce and Miravalle. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://dx.doi.org/10.1001/archneurol.2008.578
http://dx.doi.org/10.1002/mrm.1910310614
http://dx.doi.org/10.1002/1522-2586(200006)11:6 < 586::AID-JMRI3 > 3.0.CO;2-V
http://dx.doi.org/10.1002/mrm.24128
http://dx.doi.org/10.1016/j.neuroimage.2012.06.064
http://dx.doi.org/10.1002/mrm.24241
http://dx.doi.org/10.1007/s00415-004-0306-6
http://dx.doi.org/10.1177/1352458510365586
http://dx.doi.org/10.1016/j.nicl.2015.09.003
http://dx.doi.org/10.1212/01.wnl.0000259035.98480.ed
http://dx.doi.org/10.1212/01.wnl.0000259035.98480.ed
http://dx.doi.org/10.1073/pnas.0600769103
http://dx.doi.org/10.1002/ana.22320
http://creativecommons.org/licenses/by/4.0/

	Remyelination Therapy in Multiple Sclerosis
	Introduction
	Factors That Contribute to Remyelination Failure in Ms
	Proposed Mechanisms of CNS Repair and Remyelination in the Context of MS
	Modulation of Intrinsic Signaling Pathways
	Altering the Extracellular Environment
	Enhancement of Cell Survival

	Remyelination Therapies in the Pipeline for the Treatment of MS
	Remyelination Therapies
	Neuroprotective Strategies

	Assessment of Remyelination in Clinical Studies
	Assessment of Remyelination by Advanced Imaging
	Diffusion Tensor Imaging
	Magnetization Transfer Imaging
	Myelin Water Fraction Imaging
	Positron Emission Tomography

	Conclusion
	Funding
	References


