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There is a critical need for new analytics to personalize behavioral data analysis across 
different fields, including kinesiology, sports science, and behavioral neuroscience. 
Specifically, to better translate and integrate basic research into patient care, we need 
to radically transform the methods by which we describe and interpret movement 
data. Here, we show that hidden in the “noise,” smoothed out by averaging movement 
kinematics data, lies a wealth of information that selectively differentiates neurological 
and mental disorders such as Parkinson’s disease, deafferentation, autism spectrum 
disorders, and schizophrenia from typically developing and typically aging controls. In 
this report, we quantify the continuous forward-and-back pointing movements of par-
ticipants from a large heterogeneous cohort comprising typical and pathological cases. 
We empirically estimate the statistical parameters of the probability distributions for each 
individual in the cohort and report the parameter ranges for each clinical group after 
characterization of healthy developing and aging groups. We coin this newly proposed 
platform for individualized behavioral analyses “precision phenotyping” to distinguish it 
from the type of observational–behavioral phenotyping prevalent in clinical studies or 
from the “one-size-fits-all” model in basic movement science. We further propose the 
use of this platform as a unifying statistical framework to characterize brain disorders 
of known etiology in relation to idiopathic neurological disorders with similar phenotypic 
manifestations.

Keywords: precision phenotyping, sensory–motor noise, autism spectrum disorders, Parkinson’s disease, 
schizophrenia, deafferentation
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INtRodUCtIoN

Precision medicine is a new approach to acquire and integrate 
knowledge from biomedical research and clinical practice (1). It 
is a computation-enabled platform poised to radically transform 
the ways in which we currently conduct biomedical research and 
patient care by integrating personal information across many 
layers, from genes to behavior (Figure  1A). The personalized 
approach has been successful in areas such as cancer research and 
treatment. In contrast, the disciplines of mental health and social 
sciences tend to follow a “one-size-fits-all” approach and rely 
primarily on the bottom layers of the knowledge network – self-
reports and clinical ratings and their interpretation  –  but not 
as much on objective physical measurements tailored to the 
individual.

In recent years, the need to shift from symptom- and inter-
pretation-based approaches in neurological disorders and mental 
illnesses to more objective methods has been voiced in a various 
ways. One such method is the Precision Psychiatry initiative of 
the National Institute of Mental Health (NIMH), where various 
task forces have been created to achieve more objective science 
that unveils biological signatures of core dimensions of function-
ing (e.g., cognition, positive valence systems, and arousal), as 
they are expressed across neuropsychological and neurological 
disorders on a spectrum. More explicitly, the Research Domain 
Criteria (RDoC) initiative (2) is one of the various attempts to 
bring basic research on mental illness to a new level of rigor that 
also helps accelerate progress. Surprisingly, however, the current 
RDoC matrix does not include a dimension of sensory–motor 
function (3). Here, we argue that movement and its sensation 
could be a great ally in tailoring research and treatment to the 
patient’s needs and inherent predispositions. As such, it may be 
a good idea to include sensory–motor function as a dimension 
within RDoC and to incorporate objective and movement-based 
outcomes into research on brain disorders. For the remainder of 
this paper, we demonstrate a novel quantitative method that we 
believe is particularly useful in this regard.

A simple experimental paradigm is presented, with a new 
statistical method for individualized behavioral analyses and a 
new kinematic data type (explained in Section “New Data Type 
and Different Assessment of Motor Variability”). Both form 
the basis of a unifying platform to help personalize research 
and patient care within the field of disorders of the central and 
peripheral nervous systems. More specifically, we address data 
analyses differently from traditional approaches (Figure 1B) and 
use the new platform (Figure  1C) to empirically estimate the 
individualized stochastic signatures of the moment-by-moment 
fluctuations in performance across several clinical and nonclini-
cal populations. These populations range from typical controls 
of various age groups (children, young college students, middle-
aged, and elderly participants) to patients of various types. The 
latter include Parkinson’s disease (PD) at mild and severe stages, 
schizophrenia (SZ) patients of different ages, and individuals with 
a diagnosis of autism spectrum disorder (ASD), from various age 
groups. In addition, we include parents of individuals affected 
by ASD to investigate whether their motor patterns fall within 
the signatures uncovered in the normal control groups. Finally, 

we describe the data from a patient who lost peripheral sensory 
inputs from touch, pressure, and movements, resulting in loss of 
proprioception from the neck down, but whose motor nerves are 
unaffected. We provide an overview of the statistical parameters 
that are empirically estimated from the movement kinematics of 
all participants and demonstrate that these reveal fundamentally 
different features across disorders, as well as overlapping features. 
Results are discussed in the context of Precision Medicine and 
Precision Psychiatry. In particular, we emphasize that these ana-
lytic methods produce fine-grained variables that are well-suited 
to bridging the gap between coarse behavioral descriptors and 
genetic factors, which may underlie some sensory–motor noise 
signatures across disorders.

Methods

subjects
To empirically estimate the ranges of statistical parameters 
underlying kinematics data, we use data from various subject 
groups. All subjects provided written informed consent on forms 
approved by The Rutgers University Institutional Review Board 
(IRB) or Indiana University IRB. All protocols were approved by 
the IRB committees, in compliance with the Helsinki Act. Clinical 
records were obtained in compliance with the Health Insurance 
Portability and Accountability Act (HIPAA). Parents of the sub-
jects with ASD signed the IRB approved consent on behalf of their 
child/adult participant with ASD. Table S1 in Supplementary 
Material summarizes the demographic characteristics of the 176 
participants.

The control subjects were subdivided into four broad groups 
including young children (CT1), young college students (CT2), 
middle-aged subjects (CT3) and the elderly subjects. In line with 
previous research indicating maturity of pointing kinematics 
after 4  years of age (4), we further subdivided the CT1 group. 
Within CT1, we examined individuals between 3 and 4  years 
of age (CT1a) and those between 5 and 10 years of age (CT1b). 
Another control group was the parents of a subset of the children 
affected by ASD. The latter control group had no ASD diagnosis 
but their movements were visibly different from those of other 
control middle-aged individuals. This prompted us to perform 
this comparison, despite a lack of clinical diagnosis. From a sub-
set of the parents, we estimated that the age of the cohort ranged 
between 32 and 39 for mothers and 32 and 44 for fathers.

The demographic information and clinical scores for the ASD 
group are shown in Table S2 in Supplementary Material. Within 
this group, ASD1 was composed of 3–12-year-old participant and 
ASD2 was comprised of 13–25-year-old participants.

A PD cohort was also included. They were recruited from the 
PD support group of the Rutgers-Robert Wood Johnson Medical 
School’s Movement Disorders Center. The PD group was sub-
divided into 9 subjects with mild-to-moderate disease severity 
(PD1) who were ambulatory, independent, and with some visible 
resting tremor but without visible action tremor at the time of 
the visit, and 17 subjects (severe PD2) who had very impaired 
mobility, some of whom were ataxic and some with freezing of 
gait. The latter group generally needed assistance to walk and 
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FIGURe 1 | toward true personalized medicine in behavioral sciences. (A) “An inflection point marks an opportunity or moment of dramatic change between 
the first, or incumbent curve, marking steady progress, and a second, or nascent, curve, indicating transformation and accelerated progress. In biomedical 
research, health, and health care, we are at an inflection point, poised for precision medicine,” quoted from Hawgood et al. (1). (B) In the behavioral and mental 
health sciences personalized medicine needed to achieve the inflection point leading to accelerated transformation is not yet possible. Traditional statistics in use 
today prevent the development of Precision Psychiatry and call for a disruptive methodology that changes the course of current basic research and patient care in 
the mental health and behavioral disciplines. Example shows the current “state-of-the-art” approach to motion analyses in behavioral sciences. Under this approach, 
researchers may take a handful of trials and average a certain parameter (e.g., the speed values) under assumption of normality. Critically, subtle fluctuations in 
behavioral performance are smoothed out as noise. That average behavior is used as a model to compare performance of individual participants. Note that the 
assumed theoretical Gaussian distribution leads to a one-size-fits-all treatment of behavioral data, making this statistical approach incompatible with key tenets of 
precision medicine. (C) New statistical platform for individualized behavioral analyses. Continuous behavioral markers (e.g., physiological motion signals) naturally 
show fluctuations in performance (e.g., amplitude and timing) that accumulate information toward an expected value, then shift signatures in non-stationary fashion 
[bar indicates snapshot of behavior in (B) along the continuous stream]. The probability distribution function (PDF) is continuously empirically estimated. A given 
individual is rather characterized by a family of PDFs with individualized rate of accumulation and change of these stochastic parameters as a function of treatment 
and disease progression.
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had visible action and resting tremor. Table S3 in Supplementary 
Material shows the demographics of both groups.

A group of eight elderly individuals (ages 75–77  years old) 
with no formal diagnosis of a movement disorder was included 

as a control group for the PD groups comprising a broad range 
of ages (46–77 years old). These subjects were part of an earlier 
study (4) where we had aimed to statistically characterize action 
tremor during pointing behavior in typically aging individuals.
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A group of 23 patients with SZ was included in the study 
to ascertain their motor signatures in relation to the other 
cohorts and to age- and sex-matched controls. SZ patients were 
recruited from Rutgers University Behavioral Health Care clin-
ics. Patients were either enrolled in a daily partial hospital pro-
gram (PHP) or were outpatients who only required biweekly or 
monthly visits to health-care providers. There were 10 patients 
enrolled in the PHP and 13 patients in the outpatient program. 
Table S4 in Supplementary Material reports demographics 
and Table S5 in Supplementary Material reports the Frontal 
System Behavior Scale (FrSBE) self-rating scores for executive 
dysfunction.

Finally, a special subject (IW) without proprioception, 
secondary to deafferentation (5) was included. This subject suf-
fered a lack of proprioception and touch from the C3 level down 
due to acute sensory neuronopathy syndrome. This syndrome 
led to irreversible sensory nerve destruction at the dorsal root 
ganglia level of fibers conducting touch, pressure, and movement 
information from the periphery to the central control centers 
of the brain. The motor nerves and the movement output of the 
deafferented subject were unaffected. This particular participant 
has learned to move in a controlled manner again using mental 
concentration on movements with visual supervision to help 
close the feedback loops. The signal that we are capturing in 
most subjects contains a blend of motor and sensory noise. This 
participant provides an example of motor noise in the absence of 
sensory afferents conducting movement information. We use the 
locations of his estimated signatures of speed profile-dependent 
variability during visual feedback and in the dark. These points 
located on the Gamma parameter plane (see Methods below) 
serve as a reference to anchor the data from other patients.

Due to the individualized nature of this approach, whereby 
each participant is their own control [i.e., examined with respect 
to its own empirically estimated family of probability distribution 
functions (PDFs) from the motion parameters], it is not neces-
sary to match the number of participants in each clinical category 
to the exact number of controls of a given age/sex. However, the 
controls included a broad range of ages from both sexes, spanning 
the age and sex range of the participants with a clinical diagnosis. 
In this sense, the aim of the age- or disease-stage subdivisions was 
to use the new methods to show how to obtain the statistical sum-
maries for the kinematic parameters of interest for representative 
cross-sections of the typical population. However, we emphasize 
that the individualized scatterplots that we provide can also be 
examined blindly (i.e., without a priori imposed clinical labels).

experimental setup
Figure  2A depicts the basic experimental paradigm consisting 
of a full pointing motion forward to the target and back to rest. 
The forward segment toward the target is instructed and goal 
directed. As such, it results in a deliberate pointing action. In 
contrast, the retraction away from the target, after the pointing 
action ended, is spontaneously performed without instructions. 
Pointing accuracy was not required, as the continuously periodi-
cally alternating nature of this motor action was more relevant to 
our analyses than the accuracy of the pointing act. The experi-
ment took place under conditions of visual feedback.

In the case of the deafferented subject, we studied the pointing 
movements across several conditions. These included pointing in 
complete darkness while relying only on the memory of the target 
(flashed for a second); pointing in the dark with a light-emitting-
diode (LED) attached to the moving finger but no visual feedback 
from the target; and pointing in the dark with no LED on the 
finger but with continuous visual guidance from the target ON 
throughout the motion. We separated this subject’s performance 
according to visual feedback conditions: dark vs. vision.

Instructions to the Participants
Participants sat in a chair facing the target location at a comfortable 
distance for reaching (i.e., they did not have to completely stretch 
the arm; see schematics in Figure 2A). They were instructed to 
touch the target when it was presented. The forward motions 
toward the target were explicitly instructed with the words “Touch 
the target when it appears.” In marked contrast, the retracting 
motions from the target back to rest were not instructed – partici-
pants spontaneously performed these movements. In this sense, 
we underscore that the retracting motions were automatically 
performed without any explicit visual target. Our previous work 
had demonstrated striking differences between the kinematics of 
the instructed forward motions and the spontaneous retractions. 
These differences manifest in families of reaching motions such 
as pointing (6–8), reach-to-grasp (9), and also in martial arts 
routines requiring forward and back motions (10, 11). Building 
on these previous results, we examined the spatiotemporal fea-
tures of these two separate movement types in order to assess 
how such differences may manifest across neuropsychiatric and 
neurological disorders.

New data type and different Assessment 
of Motor Variability
Since Bernstein’s work on the importance of motor variability 
(12) to central control of self-produced movements, many stud-
ies have assessed the variability of kinematic parameters. In the 
reaching domain, these have included end point error (13, 14), 
speed (15), and joint angles (16, 17), among many others. In 
all cases, the noise-to-signal balance has been examined under 
the assumption of normality. Variability is thus described rela-
tive to a central value (the assumed mean). Often, only a small 
number of trials are used to determine the fluctuations of a 
given parameter around that mean. To this end, the average 
of that parameter is obtained, and the ±deviations around the 
central value are computed assuming the symmetric (theoreti-
cal) Gaussian PDF. This is illustrated for the case of the speed 
profile taken as a set of movement parameters in Figure  1B. 
The assumptions of Gaussian PDF extend to stochastic models 
of motor control (13, 18) and Bayesian estimation-based mod-
els (19). To the best of our knowledge, the PDFs most likely 
underlying kinematic parameters of hand movements across 
disorders of the nervous systems have not been empirically 
estimated. Furthermore, estimations of such PDF in cross-
sections of the normal population as a function of age groups 
have not been performed either. Such estimations are necessary 
to assess the noise-to-signal ratios of movement parameters 
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FIGURe 2 | Basic experimental paradigm, sample raw data and methods. (A) Full forward and back pointing loops continuously measured as they unfold in a 
forward segment deliberately intended toward the target and a spontaneous (uninstructed) retraction away from the target. Touch screen is used to automatically 
register the end of the goal directed motion (when the hand speed is at near zero velocity and its position is at near zero-distance to target). At this point, the 
target-hand distance and the speed increase as the hand starts retracting away from the target. This position-speed hand configuration marks the beginning of 
retraction movement segments. The ending of those segments are determined by near zero-velocity criteria marking pauses in the continuous motions. (B) 
Trajectories and corresponding speed profiles from continuous motions of a young child naturally performing the task without constraints. Data extraction relies as 
previously described on hand positional distance and speed criteria. Sample trajectories for two sample forward (black) and backwards (blue) movement trajectories 
that were automatically detected using these criteria are shown. Notice that end point errors can be large in young children, particularly those in the spectrum. 
Therefore, no restrictions are imposed on target accuracy. The focus is rather on the spread of the moment-by-moment peak velocity (i.e., fluctuations in 
performance) during a full pointing loop. (C) Discrete segments of speed profiles from the 3D hand trajectories are color coded to identify the ones marked on the 
3D plot in (B) and on the continuous speed plot in (C) (black forward, blue backwards). Numbers mark these segments, aligned at movement onset. Landmarks of 
the continuous motions are the peak speeds (stars) between local minima (circles). (d) Examples of speed profiles from retractions aligned to movement onset in a 
child with ASD (top) and a CT1 child (bottom) with inset histograms showing the corresponding normalized frequency of the time to reach the local maxima. (e) 
Sample speed profiles continuously taken from a representative elderly participant with landmarks (speed minima, speed maxima, and screen touches) zoomed in 
for clarity. (F) Hand trajectories forward to the target from a young representative control (CT2 group) and corresponding speed profiles aligned to movement onset. 
Black dots mark the spread of the speed maxima along the forward trajectories and their temporal speed profile from trial to trial (for clarity, only forward segments 
are shown aligned to movement onset but backwards are similar in the opposite direction). (G) Analytical steps to empirically estimate the statistical signatures of 
these motions (see text for detailed explanation).
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across the general population. This is in contrast to assuming 
a theoretical PDF a priori to describe the normal subset of the 
population without empirically estimating it. Specifically, we 
do not know how sensory–motor priors develop under normal 
or atypical conditions, how they may shift with typical aging, 

or how they may change with a degenerative disorder of the 
nervous system.

We assess the continuous time series of movement speed 
to empirically estimate the noise-to-signal ratios of velocity-
dependent parameters from hand movement trajectories. The 
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raw data in this case are the speed profile (such as that depicted 
in Figure 1C) continuously tracked by motion capture sensors. 
The waveform of the speed temporal profile from point-to-point 
varies, as it depends on the curvature of the underlying positional 
trajectory, tied as well to internal parameters such as the rotation 
of joints and the changes in muscle states (20, 21). Yet, regardless of 
the shape of the hand path, the speed rises during the acceleration 
phase to reach a maximum value and then generally decays in the 
deceleration phase to a stop or pause en route to the target. In the 
motor control literature such submovements and their variability 
around the assumed mean are commonly studied [e.g., Ref. (22)]. 
For highly automated straight point-to-point hand movements, 
their shape is approximately symmetric (23, 24).

Our interest, however, is not in the variations of the hand’s 
submovements around a mean value obtained under the assump-
tion of a theoretical symmetric (e.g., Gaussian) distribution. 
Instead, we are interested in the accumulation (and the rate of 
change) of minute fluctuations in performance that occur from 
moment to moment in the parameters associated with the speed 
of motion. These include (among others) the fluctuations in 
maxima and those in the time to reach the velocity peak from the 
last pause or stop instance. As the motion of the arm-hand link-
age is repeated, these minute fluctuations in speed accumulate 
and give rise to various frequency distributions. The shape and 
scale (dispersion – see Step 3 below) of these distributions can 
be estimated with high confidence to empirically approximate, 
along a continuum, the family of PDFs most likely describing 
the underlying random process. Once again, this is in contrast to 
assuming a theoretical PDF a priori.

To experimentally measure fluctuations in the speed ampli-
tude from moment to moment, we accumulate the changes in 
the speed maximum [termed here peak velocity (PV)]. Since 
the speed waveform localized between two minima within the 
time series of speed (e.g., Figure  1C) may change the shape 
and amplitude from local speed minima to local speed minima, 
we must first normalize it (25). To this end, we obtain for each 
minima-to-minima segment the following index:

 
nPVindex PV

PV Average min to min

=
+ ( )V  

Here, PV denotes the peak velocity (speed maximum) and the 
denominator contains the sum of the PV and the average speed 
between two consecutive local speed minima. We term this the 
normalized PV index. This normalization process also avoids 
possible allometry effects due to differences in the sizes of the 
limbs of the subjects (e.g., children vs. adults) (26). Larger values 
of this index indicate slower movements on average, since smaller 
averaged speed values in the denominator result in higher values 
of the index. These would be expected in the PD population that 
suffers from bradykinesia but not in the typical controls (for 
example).

The fluctuations in the overall profile, as determined by the 
changes in amplitude and timing of each peak, provide informa-
tion about the individual rate of change of these variables as the 
nervous system of the person generates and then experiences 
them. Examples of the accumulation of variations in amplitude 

and timing in the time series of speed profiles are depicted in 
Figure 1C. We emphasize that this treatment of the variability 
problem fundamentally differs from traditional approaches, 
whereby it is assumed that the speed parameters follow a Gaussian 
distribution with known mean and variance. Therefore, further 
statistical analyses typically involve testing shifts in the mean/
variance above chance and the use of parametric models assum-
ing population statistics under a “one-size-fits-all” approach 
(Figure 1B).

Analytical techniques
In a series of papers, we have described these statistical techniques 
[e.g., Ref. (8, 11)]. A brief summary for the purposes of this report 
has four main stages, as detailed in Figure 2G:

  (Step 1) Acquire time-series data (e.g., kinematics) from 
continuous trajectories of unconstrained target-directed 
pointing movements in three dimensions. Figure 2B shows 
sample data from the naturalistic hand trajectories of a young 
child. Figure 2C shows temporal speed profiles and the main 
landmarks used to study some of the patterns of velocity-
dependent variability. These include the velocity peaks (meter 
per second) and the time (milliseconds) to reach those peaks 
from the local minima, among others. Sample speed profiles 
automatically extracted from the continuous data are also 
shown in Figure 2D for ASD and CT1 children of comparable 
age. Sample data from adults are shown in Figure 2E (elderly 
participants) and Figure 2F (young CT2).

  (Step 2) Plot the frequency histograms (Figure  2G step 1) 
of the parameter of interest (e.g., the normalized PV index) 
using optimal binning (27, 28) and estimate the underlying 
family of probability distributions of speed profile-dependent 
parameter that best characterizes the trial-to-trial fluctua-
tions in performance for each individual (Figure 2G step 2). 
Besides individual estimation, this procedure can also be done 
for cohorts of participants with a neurological disorder or 
typically developing individuals.

  (Step 3) Use maximum likelihood estimation empirically to 
obtain – from the data – the values and ranges of the shape (a) 
and scale (b) parameters of the continuous Gamma family of 
probability distributions. The Gamma PD F is given by:

 
y f x a b

b a
x e= = −

−

( | , )
( )

1 1
a

a
x

b

Γ  

  in which a is the shape parameter, b is the scale parameter, 
and γ is the Gamma function (29). We then plot the estimated 
Gamma parameters for each participant with 95% confidence 
intervals on the (a, b)-Gamma parameter plane. Using this 
method, we localize the individual participant and can 
compare each subject’s location to those of the other subjects 
(Figure 2G step 3). Here, we also look at the overall data to 
identify self-emerging clusters and patterns, particularly in 
relation to a participant with a disorder of known etiology. 
For example, one could use this methodology to identify 
clusters or patterns across participants with a disorder that is 
clinically diagnosed based on symptoms alone vs. participants 
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with the same clinical disorder, but with known genetic ori-
gins. By color coding the scatterplot points based on clinical 
criteria, we may be able to help with interpretation. In such 
cases clusters of participants with idiopathic diagnosis and 
similar symptoms may be studied in relation to those whose 
symptoms are of known etiology.

The noise-to-signal ratio [i.e., the Fano Factor (30), 
FF  =  empirically estimated Gamma variance/empirically 
estimated Gamma mean] is also obtained. The Gamma 
mean is given by μ  =  a  ×  b and the Gamma variance is 
given by σ = a × b2. Notice that the noise-to-signal ratio, the 
Fano Factor is also in this case the Gamma scale parameter 

b a b
a b

= =
×
×

σ
µ

2 2

 (29). This is important as we are assessing the 

levels of noise in relation to the empirical estimation of the 
Gamma parameters from the data as a function of clinical 
group type. Higher levels of noise correspond to an increase 
in the b scale parameter along the vertical axis of the Gamma 
plane, whereas lower levels of noise correspond to lower 
values of the scale parameter.

It is also important to emphasize that when the shape 
parameter a of the Gamma family is equal to 1 (a = 1), the 
data follow the memoryless exponential probability distribu-
tion, a special case in the Gamma family. This is the most 
random distribution, coined as “memoryless” because events 
in the past do not accumulate information predictive of events 
in the future (29). Larger values toward the right of the shape 
axis on the Gamma (a, b)-plane tend toward the symmetric 
distributions, with a various skewed distributions in between 
the two extremes (31).

In the text, we will refer to the level of randomness by 
examining the value of the empirically estimated shape 
parameter. When close to a  =  1, the shape denotes the 
memoryless Exponential distribution. When increasing the 
shape value to the right of the horizontal axis, we will refer 
to the accumulation of information toward the prediction 
of an expected value, away from a = 1, toward the Gaussian 
range of the Gamma plane. Likewise, we will refer to higher 
or lower noise levels according to the empirically estimated b 
Gamma-scale parameter value, which is the FF.

  (Step 4) Repeat this estimation procedure to characterize the 
rate of change of the Gamma parameters’ stochastic trajectory. 
This step can detect conditions and stimuli that accelerate the 
change in the parameters down and to the right (i.e., to the 
right along the shape axis) away from random regimes of the 
Gamma plane (i.e., when a = 1) and down along the scale axis, 
away from high noise-to-signal ratio values. Figure 2G step 4 
marked with stars indicates the largest step, which illustrates 
a stochastic trajectory that is moving in the abovementioned 
statistically desirable direction. Results featured in this panel 
demonstrate this evolution within an ASD vs. CT experimen-
tal intervention (32). By examining large incremental steps 
in the stochastic signatures that lower the noise and increase 
the shape value toward Gaussian models, we can infer a range 
of implications, including which context is most appropriate 
to improve motor output within sensory manipulations? 

What effect a psychotropic medication dosage may have on 
each person? or Which therapeutic exercise, among a set of 
routines, is the most beneficial to the persons’ statistical motor 
patterns?

ResULts

Figure 4 provides a color-coded map of the summary statistics of 
all participants. Figure 5 summarizes the p-values from pairwise 
statistical comparisons in matrix form across all neuropsy-
chiatric/neurological disorders within the study. Tables  S6–S9 
in Supplementary Material summarize the statistical results 
of this study. Each supplementary table is accompanied by a 
Figures S3–S6 in Supplementary Material that helps visualize the 
results for each patient subgroup. Moreover, Figures S1 and S2 in 
Supplementary Material examine ensemble temporal kinematics 
data as per clinical diagnosis in relation to healthy controls. Below 
we discuss each finding separately.

typical Controls May shift statistical 
signatures across the Life span
The cross-sectional data under examination revealed that 
participants with no clinical diagnosis had different statistical 
signatures across ages, suggesting that even during typical devel-
opment these signatures of fluctuations in motor performance 
may shift. Table S6 in Supplementary Material reports the ranges 
of the estimated summary statistics (first, second, third, and 
fourth moments), for the normalized PV index corresponding 
to the control participants grouped by age. The results of the 
pairwise comparisons of the medians of each moment, using 
the nonparametric Wilcoxon rank sum test, are also reported in 
Table S6 in Supplementary Material. Here, the young children 
(CT1a) aged 3–4 years old showed the highest levels of noise-
to-signal ratio, but this was not significantly different from those 
of children aged 5–10 years old (CT1b). The mean value of the 
normalized PV index did differ significantly between the two 
groups of children (p < 0.01), whereby the older children were 
significantly faster on average. Figure  3A (leftmost top panel) 
shows the estimated PDFs of the two groups superimposed and 
contrasts them to those of the young college participants (CT2 
aged 18–25 years old) in the right panel. Figure 3A also shows 
the PDFs for the CT3 groups (aged 30–57) superimposed on 
those of the parents of children affected by ASD in this study 
(green traces). The latter group ranged in age from 32 to 44 years 
old, overlapping with those of members of the CT3 group, yet 
their estimated PDF’s fall closer to those of the elderly group 
(75–77 years old). Indeed, the statistical comparisons reported 
in Table S6 in Supplementary Material revealed no differences 
between the ASD parents and the elderly group across all 
moments, despite the large gap in these groups’ ages. Both the 
elderly groups and the ASD parents move at comparable speeds 
on average and have comparable levels in the accumulation of 
noise (Figure S3B in Supplementary Material). Yet ASD parents 
and the elderly groups do show differences in the time range of 
reaching the peaks (Figure S3C in Supplementary Material). 
Specifically, the probability plots of the time to reach the PV 
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FIGURe 3 | Characterization of the stochastic signatures of the normalized peak velocity index estimated from fluctuations in this parameter across 
individualized task performance as well as for the group patients under consideration. (A) Estimated PDFs for control groups. Top-left panel is the group of 
typically developing (control) children CT1 between 3 and 10 years old. Top-right panel CT2 contains the young participants (18–15 years old). Bottom-left panel 
CT3 is from 30- to 57-year-old participants. This panel also contains PDFs estimated from the parents of ASD children (green traces). Bottom-right panel is elderly 
participants between 75 and 77 years old. (B) Estimated PDFs from neuropsychiatric and neurological disorders: top-left is ASD (3–25 years old). Top-right is SZ 
(22–57 years old, see Table S1 in Supplementary Material for age break down). Bottom-left is mild PD and bottom-right is severe PD. All PDFs are plotted against 
those of the deafferented subject (yellow trace is from the condition with visual feedback and black trace from the dark condition.) (C) Power law relation (see text 
for fit exponent value and goodness of fit) on the log–log Gamma parameter plane between the estimated shape and the estimated scale parameters of the 
continuous Gamma family of PDFs. Each dot corresponds to an individual participant. (d) Notice the mean values taken across participants in each group whereby 
the ASD group falls apart with the highest noise and the value of the shape parameter tending away from the Gaussian distribution case.
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shows these differences. When examining the normalized PV 
index, the parents line up with the deafferented subject under 
visual guidance and with the elderly participants. There in 
Figure S3B in Supplementary Material, one can appreciate that 
the elderly participants move slower than the other controls. 
Yet, when we examine their timing to reach the peak, the elderly 
participants fall within the ranges of the younger controls. This 
suggests that under similar timing scale, it is the noise in the 
distance traveled by the hand up to PV that most likely account 
for their bradykinesia. This is in contrast to ASD parents who 
move slower than controls under a timing scale that rather aligns 
with that of the subject without proprioception (Figure S3C in 
Supplementary Material). The ASD parents are as slow as the 
elderly participants, but in their case, both the distance traveled 
to the PV and the time to cover that distance are problematic.

The ASD parents significantly differed from age-matched 
controls in CT3 in terms of average movement speed and noise 
levels (p  <  10−6). The summary statistics map for all control 
participants, along with their median values, are shown in 

Figure S3A in Supplementary Material accompanying Table 
S6 in Supplementary Material. Likewise, the probability plots 
comparing all control groups are shown in Figures  S3B,C in 
Supplementary Material. Notice the overlap of the parents’ sig-
natures with those of the elderly controls (Figures 3C,D), as well 
as the separation between the deafferented subject and the CT3 
control group who are of a similar age as this subject. CT2 is the 
ideal group in the sense that their distribution is normal (along 
the line of unity in the probability plot).

The lowest levels of noise-to-signal were registered in the 
young-to-mid age controls of the CT2 and CT3 groups. Figure 3C 
shows an emergent power relation between the estimated Gamma 
shape and scale parameters with model f(x) = a × xb common 
to all groups (fit with 95% confidence bounds), where a = 0.794 
(0.747, 0.841); b = −1.031 (−1.043, −1.019) and goodness of fit: 
sum squared error: 9.433e−07; adjusted R-squared: 0.9982; root 
mean squared error: 9.57e−05.

All participants fall on this line with CT2–3 having the 
lowest noise-to-signal (scale) levels and the largest shape 
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FIGURe 4 | summary of empirically estimated statistical parameters across all conditions. (A) Parameter plane spanned by the estimated mean and 
estimated variance across groups (see legend). (B) The mean values of each group. (C) Four-dimensional plot with skewness along the Z-axis and kurtosis 
represented by the size of the marker. The marker color defines the group type in the legend. (d) Mean values from each group.
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values  –  indicating distributions tending toward the Gaussian 
shape. The average parameter values per group are shown in 
Figure 3D. The middle-aged participants in CT3 showed the larg-
est kurtosis values (see Figure 4C). Figure 4D summarizes the 
mean for each group, showing as well the shifts of these statistical 
signatures with normal development and aging. Along this map, 
the surprising finding was the overlapping of the signatures of the 
ASD parents with those of the elderly participants and away from 
those in age-matching CT3.

highest speed-dependent Noise in Asd Is 
Accompanied by Low Average speed 
Values
Across all groups with neuropsychiatric/neurological disorders 
and the control groups, the ASD group generated the lowest 
values for the shape parameter and the highest values of the 
noise-to-signal ratio along the scale axis for the normalized PV 
index under examination.

Figure 3B shows the empirically estimated PDFs with those 
of the deafferented participant superimposed (yellow and black 
traces, see legend). Figure  3C shows that all ASD subjects 
have higher noise, even more so than the deafferented subject, 
whether pointing in the dark or using visual feedback. The ASD 
highest variability level is shown in the two-dimensional plot of 
Figure 4A. The averaged summary statistics of these parameters 
in Figures 4B,D also demonstrate this. These participants also 
move at the slowest rate regardless of age. Further information 
about this group can be seen in the four-dimensional plot, in 

which the skewness and kurtosis of their empirically estimated 
distributions are also shown. There the performance of the 
deafferented participant, while pointing in the dark, falls within 
the distribution ranges of the ASD participants, specifically 
closer to those in the younger ASD subgroup. This can also 
be seen in Figure S4 in Supplementary Material accompanying 
Table S7 in Supplementary Material with a focus on the ASD 
cohort. For clarity, this figure isolates the ASD participants in 
relation to the controls of similar ages. Very little overlapping 
between controls and ASD can be detected in this parameter 
space. Table S7 in Supplementary Material provides the ranges 
and outcome of statistical comparisons, whereas Figure 5 pro-
vides a summary in matrix form of the p-values from pairwise 
comparisons.

Table S7 in Supplementary Material reveals significant sta-
tistical differences (p < 0.01) across all pairwise comparisons of 
noise levels between both ASD groups and controls subgroups 
with overlapping ages. This was also the case for the estimated 
mean with the exception of ASD1 and the elderly participants, 
and ASD2 and their parents.

Figure 3B also shows the largest dispersion for ASD across the 
cohort of patients and controls – comparable to the deafferented 
participant in the dark condition (black curve). However, the 
ASD group shows a mean value of the index that is shifted to 
the left, indicating faster movements on average than the deaf-
ferented participant (recall the denominator involving larger 
average speeds leads to a left shift of the index toward smaller 
values). In the ASD groups, as the average speed decreases (i.e., 
the normalized PV index increases), the variance increases.
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FIGURe 5 | Log of p-values from the non-parametric Wilcoxon ranksum test performed on the four moments of the empirically estimated PdF, taken 
pairwise across neurological conditions as divided by age (Asd and sZ) and severity (Pd). (A) Empirically estimated mean. (B) Empirically estimated 
variance. (C) Empirically estimated skewness. (d) Empirically estimated kurtosis. Values of p > 0.05 are not statistically significantly different (ignore diagonal). Color 
bar are reflecting 10−number, the log of the p-values.
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Parkinson’s disease Patients have speed 
statistics Comparable to those of Asd 
Parents
A surprising result in the analyses of the typical controls was that 
ASD parents, who are young to middle aged, showed statistical 
features of the elderly group. Here, we also found unexpected 
similarities in the noise levels between the young ASD parents 
and the severe PD patients. The empirically estimated PDFs 
of the parents are seen in Figure  3A in the bottom-left panel, 
superimposed with the CT3 group of comparable age. Notice 
the disparity in dispersion between these groups; indeed the 
parents of children with ASD show results that are comparable 
to the elderly group of healthy adults. A further graphical view of 
this result is shown in Figures 3C,D, which illustrate the scatter 
across all participants and the groups’ averaged shape and scale 
parameter planes respectively. Figure  4A shows the scatter of 
the summary statistics for the ASD parents, overlapping mostly 
with the elderly and the severe PD participants. In Figure 4B, 

the average values taken across these three groups (elderly par-
ticipants, ASD parents, and severe PD) are localized next to that 
of the deafferented participant pointing under visual feedback. 
Figures 4C,D show the 4D plots of the scatter and averaged val-
ues, with an additional plane, lifting the points according to the 
empirically estimated distribution of skewness and kurtosis (the 
size of the marker). This graphical illustration indicates that the 
signatures of the normalized velocity index of the ASD parents 
fall within the ranges of the elderly and severe PD patients, but 
farther away from the deafferented participant. In all plots, the 
ASD parents are not overlapping with the CT3 group who are 
within their age range. Figure S5C in Supplementary Material 
also shows a difference between the timing of the reaches of the 
ASD parents and the age-matched CT3. The probability plots of 
the time to reach the PV are shown in this figure for the ASD 
parents. They align with those of the mild PD patients and the 
deafferented subject under visual guidance. In contrast, the 
severe PD patients align their timing with that of the deafferented 
subject pointing in the dark.
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summary statistics Unambiguously 
separate Pd subjects with different 
Clinical severity Levels
Table S3 in Supplementary Material reports the demographic 
and clinical information concerning the PD patients. Table S8 in 
Supplementary Material reports the ranges for the estimated sta-
tistical summary for PD patients of severe and mild-to-moderate 
stages according to clinical scores in Table S3 in Supplementary 
Material. These subgroups differ significantly in noise levels, 
estimated mean, and estimated variance of the normalized PV 
index (all rank sum tests on the medians p < 0.001) according 
to the empirically estimated distributions. The estimated PDF’s 
for the severe and mild PD groups are shown in Figure 3B lower 
panels (see legend). Note the broad dispersion of the severe 
group in contrast to the sharper PDFs of the mild-to-moderate 
group. These differences in mean and variance are also visible 
in Figure  3D summarizing the mean values of the estimated 
Gamma shape and scale parameters.

The mild PD patients are closer in speed to the middle-aged 
CT3 group (nonsignificant differences in mean value) and to the 
younger CT2 group (nonsignificant differences in mean value and 
skewness level). Thus these patients are not yet bradykinetic, but 
their noise levels are significantly higher than younger controls in 
CT2 and CT3 groups. The mild PD significantly differ (p < 0.001) 
from the ASD parents (Table S8 in Supplementary Material) but 
surprisingly, the severe PD cohort has comparable statistics in 
noise, variance, and skewness close to those of the much younger 
ASD parents and to the elderly controls between 75 and 77 years 
old. Note here again that the ASD parents are closer in age to 
the middle-aged CT3 group, much younger than these PD and 
elderly participants. Further differences between groups can be 
observed in the 4D plots of Figures 4C,D. Here, one can see that 
the mild-to-moderate PD group falls closer to controls than to 
the severe PD. The latter falls closer instead to the deafferented 
participant when he moves aided by visual guidance.

The estimated PDFs for the severe PD in Figure  3B (bot-
tom right) show the overlap with the PDFs of the deafferented 
participant without vision. Likewise, Figure S5 in Supplementary 
Material accompanying Table S8 in Supplementary Material 
shows the summary statistics for these two groups of PD patients 
in relation to age-matched controls and to the ASD parents. Notice 
as well the probability plots whereby the probability distributions 
of the controls tend to normal (close to the line of unity), while 
those of the patients deviate from the line of unity.

statistical Ranges of sZ Patients show 
heterogeneity Relative to other 
Neurological disorders
Patients with SZ did not significantly differ in stochastic signa-
tures across ages. This is shown in matrix form in Figure 5 for 
all moments. Furthermore, the younger SZ patients (22–30 years 
old) are closer to middle-aged CT3 adults than to young CT2 
adults, despite overlapping ages with the latter group. Table S9 
in Supplementary Material reports the ranges of all estimated 
signatures along with the statistical comparisons. Note that the 
estimated means of CT2 and CT3 do not significantly differ from 

SZ1, but the older SZ2 and SZ3 have noise levels comparable 
to those of the ASD parents and the elderly controls. Figure 
S6 in Supplementary Material, corresponding to Table S9 in 
Supplementary Material, shows the scatters of CT2, CT3, SZ1–3, 
and those of the ASD parents and the elderly group, all in rela-
tion to the deafferented participant pointing in the dark and 
pointing with visual guidance. Despite the overlap between some 
SZ and ASD parents, as well as the overlap of some SZ with the 
elderly participants, the average SZ groups stand on their own 
with the highest kurtosis in the estimated distributions. Figure 
S6 in Supplementary Material also shows the probability plots of 
SZ as a group (including all ages) in relation to CT3. Notice the 
deviation from the line of unity indicating departure from the 
normal distribution. Further, using the chi-square goodness of 
fit test for each individual age subgroup yielded significant devia-
tions from normality (p < 0.05, p < 0.01, and p < 0.01 for young 
SZ1, middle-aged SZ2, and older SZ3 patients, respectively). The 
separation between SZ statistics and those of the deafferented 
participant in both pointing conditions is also evidence in this 
plot. The difference between the subjects with SZ and the ASD 
parents is also shown (parents divided by sex – red females and 
blue males). In summary, the statistics of SZ patients are atypical, 
highly heterogeneous, and different from those of other disorders.

temporal differentiation between Forward 
and Retraction Movement segments differ 
across Neuropsychiatric/Neurological 
disorders and typical Cross-sections of 
the Population
Examination of the normalized PV index, as a function of the 
proportion of time to reach the PV for each group within the 
study, revealed differences between the forward and the backward 
segments of the pointing loop. These differences for the control 
groups CT1, CT2, CT3, elderly participants, and ASD parents 
can be appreciated in Figures S1A in Supplementary Material 
(forward) and Figure S1B in Supplementary Material (retraction 
with the shift from the forward case). As the parents of individu-
als with ASD demonstrate the largest shift, we divided the group 
by sex into mothers and fathers. The legend provides information 
on the group type.

In this graph, along the x-axis, we plot the proportion of time 
to reach PV. Along the y-axis, we plot the normalized PV index. 
Typical ranges along the horizontal axis are about 0.5, where the 
peak tends to occur (midway between the two local minima). 
Lower values indicate reaching the speed maximum earlier, 
whereas higher values indicate reaching it later.

The graph in Figure S1A in Supplementary Material shows 
a separation between the younger CT1–3 groups and the 
remaining subjects, whereby the latter are slower on average 
(with higher normalized PV index). Along the time axis, these 
younger participants fall near 0.5, while the elderly participants 
and the parents vary. The elderly participants reach the peak 
earlier than half-way to the pause, and in the parents the moth-
ers are similar to the younger controls but the fathers reach 
PV later. Indeed, the fathers of this cohort showed the largest 
difference in the proportion of time to reach the PV between 
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the forward and the backwards reaches. The retractions peaked 
much earlier and the value of the normalized PV index dropped. 
This indicates a much faster retraction (as with the deafferented 
subject) whereby the end effector is retracted under less control. 
Specifically, the fathers were the slowest of the cohort to reach 
the velocity peak during the forward reach phase, but the retrac-
tion phase was almost a jerky, nonsmooth motion, suggesting 
poor motor control of these spontaneous, uninstructed reaches. 
The signatures of the deafferented participant are plotted for the 
cases of pointing in the dark and pointing when aided by visual 
feedback. In the dark, the deafferented participant reaches the 
PV earlier and moves faster on average than when guided by 
vision. This is expected and consistent with his description of 
feedforward strategies to initiate the motion and rely on visual 
feedback to compensate for the lack of proprioception. Evidence 
for feedforward control in IW was also shown in a mirror draw-
ing task (33).

In the parameter plane of Figure S1B in Supplementary 
Material, we also plot the shifts comparing the timing in forward 
and back movements of the participants. Here, the ASD parents 
have the largest shifts in the retraction movements, toward the 0.5 
values of the proportion of time and toward faster average speed 
along the y-axis. They perform more similar to controls in the 
retraction than in the forward segment. IW also shows changes 
in these patterns, with shifts in the opposite direction for the two 
conditions that he performed. Notice that the youngest group of 
children and the elderly participants show no discernible shift 
between forward and backwards reaches in these plots. Figure S1 
in Supplementary Material also shows the distributions of these 
two parameters per group along each axis.

Figures S1C,D in Supplementary Material show similar plots 
for the patient groups under study in relation to the deafferented 
subject. All patients have slower average speeds than controls but 
the mild PD group shifts toward typical levels in the retractions. 
The severe PD group is, as expected, the slowest and tends to 
reach the PV earlier than the mild PD group. The distributions 
(color coded as in the legend) also show the differences across 
groups.

Further analyses of the temporal features for each group were 
performed on the actual time to reach the PV. The results are 
shown for each group in Figure S2 in Supplementary Material. 
Here, the axes are not adjusted, so as to allow for greater appre-
ciation of the shapes and dispersions of the histograms within 
each group and in the forward and back condition. Note that the 
differences in scale along the x-axis of the time to reach the peak 
would prevent clarity if all graphs were set to the same scale. The 
Gamma plane summarizes the estimated Gamma parameters for 
each group and set of conditions under analysis (forward and 
retraction). The legend shows the color-coded data correspond-
ing to the frequency histogram (each data set comprises 1000 data 
points randomly selected from the estimated Gamma parameters 
of the entire set). The ASD group is by far the most skewed, con-
sistent with previous analyses of their temporal kinematics while 
performing other tasks (8, 32). The probability plot in Figure S2B 
in Supplementary Material (right panel) accompanying Table S7 
in Supplementary Material captures the departure from normal-
ity of this temporal parameter in the ASD cohort. Note that in the 

Gamma parameter plane of Figure S2 in Supplementary Material, 
the temporal stochastic signatures of the ASD group (located at 
[2, 0.2]) in the shape, scale parameter plane, separate from the 
controls their age (located at [7, 0.1]), but close to the signatures 
from the elderly participants (located at [2, 0.1]) and the SZ 
patients (overlapping with the elderly participants).

As with the normalized PV index, this graph also shows that 
control groups CT2 and CT3 have the lowest noise-to-signal ratio 
and the largest shape values tending toward the Gaussian ranges 
of the Gamma plane. In stark contrast the temporal signatures of 
the subjects with severe PD and the deafferented participant are 
located far from the ideal controls.

dIsCUssIoN ANd sUGGested FURtheR 
stePs

This work characterized the statistical ranges of velocity-depend-
ent fluctuations in pointing performance across a large heteroge-
neous cohort of human participants. Besides characterizing the 
signatures of cross-sections of the typical population across the 
life span, such signatures were also empirically estimated for 
individuals with neuropsychiatric and neurological disorders. 
These included neurodevelopmental (ASD) and neurodegenera-
tive (PD) disorders. We also studied the performance patterns of 
patients with SZ, a syndrome with onset of its characteristic set of 
features (i.e., psychotic symptoms) in early adulthood (in contrast 
to ASD and PD), and for which very little motor control research 
exists. Finally, we included a deafferented participant who lacks 
proprioception due to damage in afferent fibers conducting 
touch, pressure, and movement information from the periphery 
to the brain.

The main purpose of this work was to estimate statistical 
ranges across the population so as to initiate a path of change in 
statistical analyses from the current “one-size-fits-all” model, to 
a more personalized approach in line with current NIMH initia-
tives. Here, we have shown that the typical patterns differ across 
different groups within the population, with ideal Gaussian-like 
shape and the lowest noise-to-signal ratio in the control subjects 
from college to middle age. The younger children and the elderly 
participants at the extreme of the bell curve of the human life span 
have different distribution shapes and dispersion that give rise 
to different summary statistics. In contrast to the ideal statistics 
from the young typical controls, the ASD, PD, SZ, and the elderly 
groups had marked differences along at least one of the moments’ 
axes that we empirically estimated here. Such differences were 
detected (Tables S6–S9 in Supplementary Material) above chance 
across the clinical groups.

In addition to the grouped data analyses, we also showed 
that the summary statistics spaces localize each individual 
with respect to other individuals. Without color coding the 
scatter by disorder or age, we can see a gradient of differences 
with clear separation between ASD and controls. Likewise, we 
can see a separation between mild and severe PD that is quite 
unambiguous. However, the SZ patients were more heterogene-
ous than the other groups with brain disorders, as can be seen 
in Figures  4A,C, where overlap with other groups is evident. 
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They are mixed with the elderly participants, the middle-aged 
CT3, the ASD parents, the mild-to-moderate PD, and the severe 
PD groups. Two SZ patients fell at the tail of the ASD cluster. 
Of note, we know that other kinematic parameters unambigu-
ously separate SZ from matched controls (Nguyen et al., under 
review1), which suggests that including more dimensions in the 
data representation across disorders would be more illuminating 
than projecting all information on one plane, or restricting our 
analyses to one set of parameters. Likewise, there is an impera-
tive need to report psychotropic medication intake to researchers 
who study motor control in order to assess motor variability as 
a function of dosage, time under medication, and medication 
combinations, among other factors. It is broadly reported that 
psychotropic medications are known to have variable side effects 
on movement patterns. In the present cohort whether or not 
patients were on medication, motor noise signatures were differ-
ent from those of controls. Yet the present personalized methods 
allow more detailed analyses based on medication status. This is 
an important additional dimension that needs to be explored at 
the individual level in future analyses.

The velocity-dependent parameters used here could unam-
biguously detect differences in levels of severity in PD and unique 
levels of noise in ASD. Regardless of age, sex, or medication status, 
these patterns were distinguishable in this cohort when labeling 
the locations by clinical condition. Likewise, taken as a group, 
the SZ had radically different distributions from the groups 
with overlapping ages, CT2, and CT3. At the individual level 
though, the data from the SZ patients also emphasize the need 
for a personalized approach to this devastating yet heterogeneous 
disorder. In this sense, the case of PD is relevant as it shows that 
the clinical diagnosis already does a good job at characterizing the 
emergence of relatively homogeneous subgroups as the disease 
progresses. The utility of these analytical tools in ASD has yet 
to be clinically confirmed as at present the diagnosis does not 
include motor symptoms at all. Likewise in ASD and SZ, it will be 
important to ascertain the effects of medication intake on motor 
patterns, a task that is now possible with this statistical platform.

A surprising result emerged from the data on ASD parents. 
Specifically, the signatures of ASD parents did not match those 
of typical controls their age. Instead, their signatures matched 
those of the elderly and the PD groups. There are many possible 
reasons and combinations of reasons for this result that we shall 
investigate in future work. One reason could be due to overall 
parental stress levels. Other reasons could include symptom-
based medication intake (e.g., antidepressants, stimulants, etc.) 
and/or genetic predisposition. Given their much younger ages 
than the elderly and severe PD groups, it may be useful to study 
the rate of change of these patterns in ASD parents. In particular, 
tracking the evolution of the motor signatures with age may 
illustrate whether the signatures of their motor patterns are in an 
atypical accelerated state of change.

These data sets provide insights into the general motor 
statistics of these populations, and underscore the need for a 

1Nguyen J, Majmudar U, Papathomas TV, Silverstein SM, Torres EB. Schizophrenia: 
the micro-movements perspective. (under revision, Neuropsychologia, 2015).

personalized medicine approach to psychiatric and neurological 
disorders. In particular, the case of PD, a disorder that is diag-
nosed and tracked based on visible changes in motor patterns, 
beautifully illustrates the potential utility of motor noise-based 
biomarkers to characterize each person relative to the rest of 
the population. The two cohorts of PD, mild-to-moderate 
and severe, could serve as anchors to reference other more 
heterogeneous disorders such as SZ. Some of the SZ patients 
had patterns comparable to those of severe PD while others fell 
closer to those of the mild-to-moderate PD group, and yet oth-
ers were overlapping with CT3 participants. Statistical distance 
metrics based on this type of sensory–motor noise may help us 
discern alterations in motor feedback as a function of anxiety, 
dopamine receptor-blocking medications, and other factors in 
these populations.

One of the most striking features in the data from subjects 
with SZ, besides its heterogeneity in the motor domain, is the 
lack of similarity with the deafferented participant. Unlike the 
ASD and severe PD groups, who were close to the deafferented 
participant pointing in the dark, the SZ patients fell far from IW 
in the statistics parameter space. Subject IW lacks feedback from 
the fibers that transmit touch, pressure, and movement informa-
tion but has temperature and pain channels spared. The result 
is noteworthy given the reports in the SZ literature of problems 
with thermoregulation (34–36) and higher thresholds for pain 
perception across patients relative to controls (37–40). It will be 
interesting to investigate velocity-dependent motion parameters 
as a function of those autonomic signals in SZ. The present results 
demonstrate that proper statistical analytics applied to continuous 
recordings are required to provide more meaningful answers to 
basic research questions and establish the nature of the relation-
ships between these afferent inputs and specific sensory–motor 
deficits in anticipatory behavior and volitional control.

In the context of internal models for action (IMA), it is pos-
sible that across these neurological disorders there are differenti-
able and selective disruptions in various components of forward 
planning linked to different levels motor noise. Among brain 
areas that are thought to be important for forward computations 
within the framework of IMA are the cerebellum (41, 42) and the 
posterior parietal cortex (PPC) (43). The cerebellum is known to 
be a problematic brain structure in all of these disorders (44–51). 
Likewise, connectivity issues between parietal and motor cortices 
have been reported in all these patient types. In SZ, this has been 
the case (52, 53). In ASD, connectivity problems are also reported 
(49), and in PD, striatofrontal regions seem to be affected (54) 
possibly impacting parietofrontal loops involved in forward 
planning and decisions. Notwithstanding issues with imaging 
studies (55), in the light of problems with the velocity-dependent 
signals that we have quantified here at the motor output level, it 
is possible that communication between these key nodes of the 
brain and the periphery may be corrupted by excess motor noise 
partly impeding the continuous afferent and reafferent flows from 
the periphery and possibly disabling predictive coding.

Velocity-dependent peripheral input signals from self-
produced, goal-directed motions are an important source 
of guidance to the brain. They help compensate for synaptic 
transductions and transmission delays. In the context of visually 
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guided reaching, areas in the PPC are known to be important for 
the planning and execution of such actions. Regions in the PPC 
receive eye position and velocity afferent inputs via ascending 
prepositothalamocortical pathways (56). Proprioceptive inputs 
required for proper visuomotor geometric transformations for 
reaches (57) have also been found to converge to the PPC (58) 
from the dorsal column nuclei and the postcentral somatosensory 
cortex. Given the putative roles of the PPC in forward prediction 
(43, 59, 60), trajectory formation (61–63), and geometric visuo-
motor transformations (64, 65) along with its cerebellar inputs 
to the lateral and medial intraparietal (LIP and MIP) cortical 
areas (66), we suggest that the motor–PPC–cerebellar networks 
may be selectively disrupted across these disorders, and that part 
of this disruption is due to poor continuous updating involving 
afferent sensory guidance from more than one sensory–motor 
channel.

Afferent sensory channels convey reafferent kinesthetic signals 
from mechanoreceptors involving touch, pressure, and ongoing 
self-produced movements. They also convey pain signals from 
nociceptors and temperature-related signals from thermorecep-
tors (67). The present work identifies interference with kinesthetic 
reafference from ongoing movements, but it will be important 
to examine afferent deficits concerning thermoregulation and 
pain perception, as these contribute to corporeal self-awareness. 
Corporeal self-awareness is critical in forward computations and 
geometric transformations bound to be disrupted in the face of 
excess motor noise found here in all disorders.

The new analyses reveal striking statistical differences between 
mild-to-moderate and severe stages of PD. In particular, these 
two cohorts have selectively overlapping features with the deaf-
ferented subject IW. In the case of the mild PD, the signatures 
overlap with those of IW under conditions of visual guidance. 
Interestingly, an overreliance on visual feedback has been reported 
in PD (7, 68–70), along with a new view that proprioceptive coor-
dination may become impeded as the disease progresses (71, 72). 
In a previous study, an egocentric frame of reference for visual 
guidance (anchored at the moving finger), but not an allocentric 
frame of reference (anchored at the external target), helped mild 
PD patients improve many aspects of their pointing trajectories 
(7). Vision alone is not useful to the patients with mild PD, but 
vision aligned with self-generated motion shifts their movement 
statistics to typical ranges (7). Given the statistical similarity of 
the mild PD and IW with vision, it is possible that in mild PD 
patients, the signatures of reafferent minute motor fluctuations 
that we found to be corrupted by noise and randomness may 
improve when guided by vision. In the case of severe PD, their 
signatures rather overlapped with IW as he pointed in the dark. 
This is also interesting as timing in their bradykinetic motions 
was comparable to those of the ASD parents. This was a rather 
surprising finding given the age disparity and the lack of any kind 
of neurological diagnosis. This result suggests further study of 
familial ASD.

Traditional studies of motor control assume normality in the 
distributions of kinematic parameters. This work shows that there 
is a range of skewed distributions, from the memoryless exponen-
tial to the symmetric Gaussian in the velocity-dependent code 
of pointing behaviors. This result underscores the importance of 

providing an empirical characterization of the statistical proper-
ties underlying human movements. By assuming normality and 
smoothing out as noise the motor output fluctuations, we miss 
important information in the data from both typical and patho-
logical conditions. This work also highlights the significance of 
individualized statistical assessments that may enable the discov-
ery of self-emerging patterns inherent in the data. Analyzed as an 
ensemble using clinical labels, the data are very revealing when 
empirical statistical estimation is used, rather than theoretical 
assumptions and homogeneous treatment of the data. The clinical 
literature of motor control makes a number of assumptions that 
may blur the true features of the kinematics data from neuropsy-
chiatric and neurological disorders. This work emphasizes the 
importance of reconsidering those traditional practices and 
researchers teaming up with clinicians to better inform data-
driven approaches.

Implications of the Characterization of 
Motor Noise for Genetics Research
We have demonstrated here the importance of providing empirical 
estimation of the statistical features underlying motor behaviors. 
Across different disorders of the nervous systems, we were able to 
characterize the ranges of statistical parameters that are tradition-
ally treated as homogeneous under the assumption of normality 
in the movement data. The noise that is traditionally smoothed 
out through data averaging and the retracting movement seg-
ments that are often discarded as nuisances in the data revealed 
fundamental differences across neurological disorders that may 
be of use to genetics research. Specifically, classification of differ-
ent types of sensory–motor noise may be possible and may aid in 
linking specific genetic factors that give rise to selectively different 
levels of synaptic noise with differentiable levels of sensory–motor 
noise. The specificity of these biometrics has yet to be tested, and 
better instrumentation discerning motor from sensory noise in 
electromyography combined with high dimensional kinematic 
signals will be required. We need to unveil the origins of synaptic 
noise in the first place before understanding different gradients 
of sensory–motor noise. Yet, the same personalized statistical 
platform presented here can be used to examine time series of 
other related signals. In disorders of known etiology, it should 
be possible to investigate these questions so as to build similar 
statistical maps to those presented here, whereby genetic factors 
and their resulting synaptic noise would be another data dimen-
sion. Such questions can be addressed using the present statistical 
platform.

As presented here with the deafferented subject in different 
contexts, we could assess the patterns of sensory–motor noise 
from individuals that go on to receive a diagnosis of ASD, SZ, 
or PD but for whom a genetic history is available. One such a 
group is the Fragile X-related disorders, where premutation 
carriers may receive an ASD diagnosis at an early age or a PD 
misdiagnosis at a later stage in life, or a diagnosis of mood and 
other psychiatric disorders in the case of female premutation 
carriers (73). We suggest a new research program linking these 
disorders and deafferentation whereby the same statistical plat-
form that we term “precision phenotyping” in this work could be 
used to better characterize this family of disorders in the human 
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population at large. In this sense, the present results may be an 
important step toward developing a new analytical platform for 
Precision Psychiatry.
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