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Stroke is a leading cause of serious long-term disability worldwide. Functional outcome 
depends on stroke location, severity, and early intervention. Conventional rehabilitation 
strategies have limited effectiveness, and new treatments still fail to keep pace, in part 
due to a lack of understanding of the different stages in brain recovery and the vast 
heterogeneity in the poststroke population. Innovative methodologies for restorative neu-
rorehabilitation are required to reduce long-term disability and socioeconomic burden. 
Neuroplasticity is involved in poststroke functional disturbances and also during rehabil-
itation. Tackling poststroke neuroplasticity by non-invasive brain stimulation is regarded 
as promising, but efficacy might be limited because of rather uniform application across 
patients despite individual heterogeneity of lesions, symptoms, and other factors. 
Transcranial direct current stimulation (tDCS) induces and modulates neuroplasticity, and 
has been shown to be able to improve motor and cognitive functions. tDCS is suited 
to improve poststroke rehabilitation outcomes, but effect sizes are often moderate and 
suffer from variability. Indeed, the location, extent, and pattern of functional network con-
nectivity disruption should be considered when determining the optimal location sites for 
tDCS therapies. Here, we present potential opportunities for neuroimaging-guided tDCS-
based rehabilitation strategies after stroke that could be personalized. We introduce 
innovative multimodal intervention protocols based on multichannel tDCS montages, 
neuroimaging methods, and real-time closed-loop systems to guide therapy. This might 
help to overcome current treatment limitations in poststroke rehabilitation and increase 
our general understanding of adaptive neuroplasticity leading to neural reorganization 
after stroke.

Keywords: tDcs, non-invasive brain stimulation, transcranial current stimulation, multichannel stimulation, 
neuroimaging, near-infrared spectroscopy
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iNtrODUctiON

Although spontaneous poststroke recovery occurs, between 15% 
and 30% of stroke survivors are left permanently disabled (1). 
Poststroke rehabilitation helps relearn skills that are lost when 
part of the brain is damaged. As an adjunct therapy, non-invasive 
brain stimulation (NIBS) techniques, including repetitive 
transcranial magnetic stimulation (rTMS) and transcranial 
current stimulation (tCS) – particularly direct current stimula-
tion (tDCS) – are promising approaches to enhance the effects 
of standardized rehabilitation treatments in selected poststroke 
patients. Like rTMS, tDCS can alter cortical excitability in pre-
dictable ways. tDCS is characterized as neuromodulatory rather 
than neurostimulatory, since the currents delivered during tDCS 
are not sufficient to directly generate action potentials. tDCS-
induced excitability alterations depend on the duration, current 
density, and direction of the current flow. Generally, anodal tDCS 
(a-tDCS) enhances excitability, while cathodal tDCS (c-tDCS) 
reduces it (2–4). Whereas after-effects of single stimulation ses-
sions are in the time range of early-phase long-term potentiation 
and long-term depression (~1  h), repetitive stimulations with 
certain intervals can induce late-phase effects lasting longer than 
24 h after intervention (3–6). tDCS is a well-tolerated technique, 
easily applied over cortical targets leading to adaptive neural 
reorganization and the reduction in maladaptive plasticity during 
behavioral treatment. Further, tDCS is less expensive and likely 
to be better accepted by patients than rTMS (7, 8), making it 
potentially well poised for home therapy.

Currently, the need to target not an isolated cortical region, 
but several functionally correlated cortical hubs involved in 
larger scale intrinsic brain networks is becoming increasingly 
recognized (9, 10). Advances in neuroimaging technology, such 
as functional magnetic resonance imaging (fMRI), diffusion 
tensor imaging, electroencephalography (EEG), and functional 
near-infrared spectroscopy (fNIRS), are allowing us to non-
invasively visualize and quantify brain network connectivity in 
humans with increasing accuracy. Recently, we showed how the 
optimal electrode configuration of a multichannel tDCS system 
can be determined by using neuroimaging data to specify a target 
map on the cortical surface for excitatory or inhibitory stimula-
tion (11). Multichannel tDCS is a new approach highly capable 
of efficiently targeting distributed brain networks to facilitate 
beneficial neuroplasticity and functional connectivity leading to 
poststroke recovery.

Portable neuroimaging solutions, such as EEG and fNIRS, 
can objectively capture individual brain states poststroke, 
which can be used to customize and adapt NIBS in real time 
to facilitate training (12, 13). An EEG–fNIRS-based method 
(14) was recently proposed for screening and monitoring of 
neurovascular coupling functionality in combination with tDCS. 
In this system, neuronal and hemodynamic responses were 
abstractly represented as feedback for tDCS effects. Such innova-
tive portable EEG–fNIRS neuroimaging systems could be used 
to objectively guide and quantify the progress of a tDCS treat-
ment regime in conjunction with neurorehabilitation. Moreover, 
system identification and parameter estimation techniques using 
neuronal and hemodynamic responses to tDCS can be used to 

track the effects, e.g., on corticospinal excitability, for closed-loop 
control of tDCS. Poststroke integrity of task-specific ipsilesional 
and/or contralesional neural pathways can be determined with 
EEG–fNIRS neuroimaging during task performance, which can 
be leveraged toward the optimization of subject-specific tDCS. 
The goal may be to correlate functional outcome with regard to 
EEG–fNIRS brain activation patterns as a marker of the underly-
ing task-specific residual activation such that those residual brain 
activation patterns are facilitated with individualized brain state-
dependent multichannel tDCS as an adjunct treatment during 
stroke rehabilitation.

Here, we introduce the potential of these two methods (11, 14) 
to optimize future multichannel tDCS systems for modulation of 
excitability of brain networks, represented by spatially extended 
cortical targets. Combining both models closely addresses the 
individual determinants of patterns of neuroplastic changes 
both to guide tDCS treatment and to assess functional recovery. 
We present potential novel application opportunities based on 
guided multichannel tDCS in poststroke rehabilitation. Likewise, 
we show how multimodal approaches pairing neuroimaging and 
electrophysiological measures with therapeutic tDCS can extend 
its potential in aiding customized and personalized long-term 
rehabilitation strategies, including post-acute rehabilitation 
after stroke.

tDcs-BAseD POststrOKe 
NeUrOreHABiLitAtiON

Poststroke functional recovery depends on the degree of adap-
tive neuroplasticity in central nervous system reorganization. 
Adaptive neuroplasticity includes changes in synaptic connec-
tivity and excitability in surviving neural cell population in the 
perilesional zone, in remote structures, and in the contralateral 
unaffected hemisphere in case of a mono-hemispheric lesion (15, 
16). In particular, mono-hemispheric stroke is thought to result in 
disinhibition of the contralesional unaffected hemisphere due to 
release from transcallosal inhibition. This may exert an inhibitory 
influence on perilesional areas, negatively affecting spontaneous 
neuroplasticity and interfering with the ability of perilesional 
areas to contribute to functional recovery – with the exception 
of particular cases with extensive stroke lesions. This interhemi-
spheric inhibition model provides the rationale for facilitatory 
stimulation of the peri-stroke areas (hypoactive cortical regions), 
and suppression of the contralesional hemispheric hyperactivity 
with NIBS in order to enhance functional performance in post-
stroke patients (17). Further, a recent bimodal balance-recovery 
model links interhemispheric balancing and functional recovery 
to the structural reserve spared by the stroke lesion (18). This 
new concept raises the question about optimal localizations and 
number of positions to be stimulated with tDCS.

Some meta-analyses evaluated the efficacy of tDCS on 
poststroke rehabilitation for limb motor impairments, impaired 
balance, hemineglect, aphasia, and dysphagia. In Table  1, we 
summarize studies extracted from recent meta-analyses and sys-
tematic reviews that satisfy the following four criteria. They were 
randomized controlled trials (RCTs) or randomized cross-over 
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tABLe 1 | summary of tDcs-based poststroke neurorehabilitation studies.

study study design Parameters of stimulation Location combined therapy effect (+/Nd)

reference subjects stroke 
phase

stimulation current intensity, 
current density

Duration 
day (min)

Num. 
sessions

target electrode region reference 
region

therapy type Online/
offline

A+/B+/c+/s+

Upper limb motor impairment

Bolognini et al. 
(19)

14 Chr. B/S 2 mA, 0.057 mA/cm2 40 10 A: affected M1, C: unaffected 
M1

Unaffected M1 Constraint-induced 
movement therapy

Online B+ motor 
performance

Celnik et al.  (20) 9 Chr. A/S 1 mA, 0.11 mA/cm2 20 4 Affected M1 (abductor pollicis 
brevis muscle hot-spot)

Contralateral 
supraorbital area

Peripheral nerve 
stimulation

Offline A+

Di Lazzaro et al. 
(21)

20 Acu. B/S 2 mA, 0.057 mA/cm2 40 5 A: affected M1, C: unaffected 
M1 (abductor pollicis brevis 
muscle hot-spot)

Unaffected M1 Constraint-induced 
movement therapy

Online Nd – but B 
reduces II

Fregni et al. (22) 6 Chr. A/C/S 1 mA, 0.028 mA/cm2 20 3 A: affected M1, C: unaffected 
M1 (first dorsal interosseous 
muscle hot-spot)

Contralateral 
supraorbital area

JTT Online A+; C+

Fusco et al. (23) 11 Acu. C/S 1.5 mA, 0.043 mA/
cm2

10 10 Unaffected M1 Right shoulder Traditional motor 
rehabilitation

Offline Nd

Hesse et al. (24) 96 Acu. Sub. A/C/S 2 mA, 0.057 mA/cm2 20 30 A: affected M1, C: unaffected 
M1

Contralateral 
supraorbital area

Robotic arm training Online A+; C+

Khedr et al. (25) 40 Sub. A/C 2 mA, 0.057 mA/cm2 25 6 A: affected M1, C: unaffected 
M1

Contralateral 
supraorbital area

Inpatient daily 
rehabilitation

Offline A+; C+

Kim et al., 2009 
(26)

10 Sub. A/S 1 mA, 0.04 mA/cm2 20 2 Affected M1 (first dorsal 
interosseous muscle hot-spot)

Contralateral 
supraorbital area

Box and block test; 
Finger acceleration

Online A+

Kim et al. (27) 18 Sub. A/C/S 2 mA, 0.08 mA/cm2 20 10 A: affected M1, C: unaffected 
M1 (first dorsal interosseous 
muscle hot-spot)

Contralateral 
supraorbital area

Conventional 
occupational therapy

Online C+

Lefebvre et al. 
(28)

18 Chr. B/S 1 mA, 0.028 mA/cm2 30 2 A: affected M1 (hand muscle 
hot-spot)

C: unaffected 
M1 (hand muscle 
hot-spot)

Motor skill learning 
task

Online B+

Lefebvre et al. 
(29)

19 Chr. B/S 1 mA, 0.028 mA/cm2 30 2 A: affected M1 (hand muscle 
hot-spot)

C: unaffected 
M1 (hand muscle 
hot-spot)

Motor skill learning 
task

Online B+

Lindenberg et al. 
(30)

20 Chr. B/S 1.5 mA, 0.092 mA/
cm2

30 5 A: affected M1 C: unaffected M1 Conventional physical 
and occupational 
therapy

Online B+

Mortensen et al. 
(31)

15 Chr. A/S 1.5 mA, 0.04 mA/cm2 20 5 Affected M1 Contralateral 
supraorbital area

Conventional 
occupational therapy

Online A+

Nair et al. (32) 14 Chr. C/S 1 mA/? 30 5 Unaffected M1 Contralateral 
supraorbital area

Conventional 
occupational therapy

Online C+

Rocha et al. (33) 21 Chr. A/C/S 2 mA, 0.057 mA/cm2 A: 13 C: 9 12 A: affected M1, C: unaffected 
M1

Contralateral 
supraorbital area

Constraint-induced 
movement therapy 
(modified)

Offline A+; C+

Triccas et al. (34) 23 Sub. Chr. A/S 1 mA, 0.028 mA/cm2 20 18 Affected M1 Contralateral 
supraorbital area

Robotic therapy Online Nd

Viana et al. (35) 20 Chr. A/S 2 mA, 0.057 mA/cm2 13 15 Affected M1 Contralateral 
supraorbital area

Virtual reality therapy Offline Nd (A+; S+)

(Continued)
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study study design Parameters of stimulation Location combined therapy effect (+/Nd)

reference subjects stroke 
phase

stimulation current intensity, 
current density

Duration 
day (min)

Num. 
sessions

target electrode region reference 
region

therapy type Online/
offline

A+/B+/c+/s+

Wu et al. (36) 90 Sub. Chr. C/S 1.2 mA, 0.26 mA/cm2 20 20 Affected primary sensorimotor 
cortex

Unaffected 
shoulder

Conventional physical 
therapy

Offline C+

Lower limb motor impairment and poor balance

Chang et al. (37) 24 (12/12) Acu. A/S 2 mA, 0.28 mA/cm2 10 10 Affected tibialis anterior muscle 
hot-spot

Contralateral 
supraorbital area

Conventional physical 
therapy

Online A+

Madhavan et al. 
(38)

9 Chr. A/S 0.5 mA, 0.06 mA/cm2 15 3 Unaffected and affected lower 
limb primary motor cortex

Contralateral 
supraorbital area

Tracking task 
sinusoidal waveform

Online A+

Sohn et al. (39) 11 Sub. A/S 2 mA, 0.08 mA/cm2 10 2 Affected quadriceps femoris 
muscle hot-spot

Contralateral 
supraorbital area

Standard 
rehabilitation

Offline A+

Tanaka et al. (40) 8 Chr. A/S 2 mA, 0.057 mA/cm2 10 2 Affected tibialis anterior muscle 
hot-spot

Contralateral 
supraorbital area

Knee extension task Online A+

Hemineglect

Ko et al. (41) 15 Sub. A/S 2 mA, 0.08 mA/cm2 20 2 Right PPC Contralateral 
supraorbital area

No Offline A+

Làdavas et al. 
(42)

30 Sub. Chr. A/C/S 2 mA, 0.057 mA/cm2 20 10 A: right PPC C: left PPC Contralateral 
supraorbital area

Prism adaptation 
treatment

Online A+ > C+

Sparing et al. (43) 10 Sub. Chr. A/C/S 1 mA, 0.04 mA/cm2 10 3 A: right PPC and left PPC, C: 
left PPC

Cz No Offline A+ over r-PPC; 
C+

Sunwoo et al. 
(44)

10 Sub. Chr. A/B/S 1 mA, 0.04 mA/cm2 20 3 A: right PPC, C: left PPC Contralateral 
supraorbital area

No Offline B+ > A+

Aphasia

Fiori et al. (45) 7 Chr. A/S 1 mA, 0.028 mA/cm2 20 10 Broca’s and Wernicke’s area Contralateral 
frontopolar cortex

Video naming Online A+

Flöel et al. (46) 12 Chr. A/C/S 1 mA, 0.028 mA/cm2 40 3 Right temporo-parietal cortex Contralateral 
supraorbital area

Picture naming Online A+ > C+

Kang et al. (47) 10 Chr. C/S 2 mA, 0.08 mA/cm2 20 5 Right Broca’s homolog Contralateral 
supraorbital area

Picture naming Online C+

Marangolo et al. 
(48)

8 Chr. B/S 2 mA, 0.057 mA/cm2 20 10 A: Broca’s area C: right Broca’s 
homolog 

Word repetition 
training

Online B+

Monti et al. (49) 9 Chr. A/C/S 2 mA, 0.057 mA/cm2 10 10 Broca’s area Right shoulder Picture naming Online C+
You et al. (50) 21 Sub. A/C/S 2 mA, 0.057 mA/cm2 30 10 A: Wernicke’s area, C: right 

Wernicke’s homolog
Contralateral 
supraorbital area

Auditory verbal 
comprehension

Offline C+ > A+

Dysphagia

Kumar et al. (51) 14 Sub. A/S 2 mA, 0.13 mA/cm2 30 5 Unaffected swallowing motor 
cortex

Contralateral 
supraorbital area

SSM Online A+

Shigematsu et al. 
(52)

20 Chr. A/S 1 mA, 0.028 mA/cm2 20 10 Affected pharyngeal motor 
cortex

Contralateral 
supraorbital area

SSM Online A+

Yang et al. (53) 14 Sub. A/S 1 mA, 0.04 mA/cm2 20 10 Affected pharyngeal motor 
cortex

Contralateral 
supraorbital area

SSM Online A+ only after 
follow-up

Studies have been extracted from recent meta-analyses following aforementioned criteria.
+, improves the effect on task performance after tDCS intervention; ?, not mentioned; A, a-tDCS; Acu., acute; B, bilateral a- and c-tDCS; C, c-tDCS; Chr., chronic; II, interhemispheric imbalance; JTT, Jebsen–Taylor Hand Function 
Test; M1, primary motor cortex; Nd, no differences; PPC, posterior parietal cortex; S, sham-tDCS; SSM, standardized swallowing maneuvers; Sub., subacute.

tABLe 1 | continued
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trials (with sham controls), with mono-hemispheric poststroke 
adult patients (no chronicity limits), that received tDCS combined 
with standardized therapy, and reported outcome measures.

Upper Limb Motor impairment
More than 50% of stroke survivors exhibit some degree of motor 
impairment and require partial assistance in activities of daily 
living (ADL). Restriction of the upper limb motor function can 
limit ADL performance, directly influencing quality-of-life. 
Most tDCS interventional trials with poststroke patients with 
arm and hand impairments showed favorable results on upper 
limb motor function (Table 1), influencing muscle strength (31) 
and muscle tone (36), too. Yet, combination of tDCS with robotic 
(34) or virtual reality therapy (35) was not found to improve the 
effect of recovery outcome. According to some systematic reviews 
(54–56), the effectiveness of tDCS on upper limb motor function 
varies, showing only small to moderate effects. A dose–response 
relationship was observed (57) between upper extremity motor 
recovery and application of tDCS dependent on electrode size, 
charge density, and current density.

Lower Limb Motor impairment and Poor 
Balance
Gait impairment includes speed, endurance, and stability. About 
57–63% of stroke survivors cannot walk independently at symp-
tom onset and 22–50% after gait rehabilitation (58). Most studies 
using NIBS focused on the recovery of the paretic upper extremity 
rather than on the recovery of lower limb function and balance. 
This might be due to functional and anatomical limitations, since 
the lower limb motor cortex and the cerebellum may not be 
easily reached by NIBS techniques. Nevertheless, some studies 
demonstrated that tDCS protocols are able to enhance lower limb 
motor function (37, 38), motor cortex excitability (37), and mus-
cle strength (39, 40) (Table 1). Considering balance impairment, 
static postural stability was observed to significantly improve 
after tDCS (39, 59). Some studies have investigated the effect of 
cerebellar tDCS on balance in healthy subjects and neurological 
patients (e.g., Parkinson), but no study so far evaluated the effects 
of cerebellar tDCS on poor balance in poststroke patients.

Hemineglect
Patients suffering from hemineglect do not attend or respond to 
information on the contralesional side of space (60). Several studies 
indicate that poststroke hemineglect constitutes a predictive factor of 
poor functional prognosis (61–63). In recent studies of hemineglect 
rehabilitation (16), tDCS was applied to either facilitate the right 
(affected) or suppress the left (unaffected) posterior parietal cortex 
(PPC) activation, based on the aforementioned interhemispheric 
inhibition model. Accordingly, a-tDCS over the right PPC was 
shown to improve hemineglect rehabilitation (41–44) and c-tDCS 
over the left PPC to reduce hemineglect symptoms (43). Further, 
bilateral tDCS is considered to induce stronger effects (44) (Table 1).

Aphasia
Even after speech and language therapy, 12% of poststroke 
survivors are left with some degree of chronic communication 

deficit (64–66). Following the model of interhemispheric 
inhibition, c-tDCS over right-hemispheric Broca’s homolog 
was demonstrated to significantly improve naming accuracy 
(47). Bihemispheric a-tDCS over left Broca’s area and c-tDCS 
over right Broca’s homolog was suggested to improve recovery 
in different language tasks (48). In contrast, a-tDCS over the 
right temporoparietal cortex was shown to stronger enhance 
the overall training effect in naming ability in comparison to 
c-tDCS (46). These and other tDCS trials [(45–50), Table 1] were 
evaluated in a meta-analysis (67) showing a moderate, but non-
significant, pooled size effect favoring tDCS. This might be due to 
heterogeneity among study protocols and insufficient numbers of 
study subjects, since all trials favored tDCS. When pooling rTMS 
and tDCS studies that suppress activation of right-hemispheric 
homologous language regions, a significant effect of the interven-
tion was identified (68).

Dysphagia
At least one out of two stroke patients experiences swallow-
ing problems (69, 70) or dysphagia, which is potentially fatal. 
Recently, two meta-analyses (71, 72) have independently evalu-
ated the effects of NIBS (rTMS and tDCS) on dysphagia with the 
aim to encourage more efficient rehabilitation techniques. Both 
meta-analyses included the same three tDCS studies (51–53). All 
three studies used a-tDCS, but two studies stimulated the affected 
hemisphere (52, 53), whereas one study stimulated the unaffected 
hemisphere (51) (Table 1). There was a moderate, but non-signifi-
cant, pooled size effect favoring tDCS intervention vs. sham-tDCS. 
When pooling rTMS and tDCS studies together, a meta-analysis 
(71) found that stimulating the unaffected hemisphere improved 
swallowing significantly. Bilateral tDCS – though not explored so 
far – might be especially attractive for dysphagia therapy because 
swallowing is bilaterally innervated.

MULticHANNeL tDcs FOr DistriBUteD 
cOrticAL tArGets

Heterogeneous statements about efficacy of tDCS are highly likely 
to be due to the variability of study protocols and the limited num-
ber of participants. Stroke is a heterogeneous disease with regard 
to lesion size and location requiring customized rehabilitation 
strategies to result in optimal effects. Here, we present methods 
to tackle this issue, such as a methodological tool for optimizing 
multichannel tDCS montages and efficiently targeting complex, 
distributed cortical areas (11). With a constraint on the maximal 
number of electrodes and currents, an optimal multichannel 
tDCS montage solution (electrode currents and locations) can be 
obtained by using neuroimaging data. The present implementa-
tion of this method (Stimweaver) relies on the fast calculation of 
multichannel tDCS electric fields (including components normal 
and tangential to the cortical boundaries) using a five-layer finite 
element model of a realistic head (73). Solutions are found using 
constrained least squares to optimize current intensities, with 
electrode number and location selected using a genetic algorithm.

A key aspect is the definition of the problem to be optimized. 
This is done by specifying two cortical surface maps. The first 
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map provides a target electric field – in the form of the electric 
field component normal to the cortical surface – at each location 
(e.g., En = −0.25 V/m in region 1 and En = +0.25 V/m in region 
2). Our current understanding of the effects of tDCS focuses on 
the orientation of the electric field in relation to the orientation 
of neurons, and in particular, pyramidal neurons in the cortex 
(11, 74). Based on the approximation that the effects of current 
stimulation are due to the linear interaction of electric fields with 
populations of elongated cortical neurons, we argue that the 
optimization problem for tDCS can be defined in terms of the 
component of the electric field orthogonal to the cortical surface 
(generally, the same methodology and logic applicable to TMS). 
According to this model, “inward” directed fields are excitatory 
and “outward” directed fields inhibitory. This (signed) target map 
may specify several discrete areas or just a continuous function. 
The second map is a cortical weight map taking positive values, 
specifying the importance of each target area with a weight. This 
methodology is particularly appropriate for the neuromodulation 
of cortical (distributed) networks. In the following sections, we 
provide two examples of the application of this methodology to 
the case for poststroke network modulation.

Multichannel tDcs for Poststroke Lower 
Limb Motor rehabilitation
For development of multichannel tDCS on a rational basis, iden-
tification of areas relevant for rehabilitation of motor function 
after stroke is crucial. Following recent longitudinal studies after 
stroke, Figure 1A.1 targets at tDCS-induced facilitatory activity 
on the ipsilesional primary sensorimotor cortex (75, 76) and on 
contralesional cerebellum (77), which are areas associated with 
functional improvement. Based on a recent review (8), we also 
aim to upregulate excitability of ipsilesional M1 and to down-
regulate excitability of contralesional M1 (Figure 1A.1). For the 
premotor cortex (PMC), some functional brain-imaging studies 
have demonstrated increased activation of the ipsilesional area 
during movement of the affected limb after stroke (78). This 
activity improvement might however be dysfunctional, since the 
inhibitory function of the PMC was found disturbed in stroke 
patients with poor motor function (79). Takeuchi et  al. (80) 
hypothesized that disinhibition of the ipsilesional PMC causes 
a dysbalanced activity distribution of motor cortex proximal 
limb representations, which results in a proximal-dominant 
competitive interaction between ipsilesional M1 and PMC. This 
widespread maladaptive activity will result in poor control of 
the paretic distal parts of the limb in stroke patients. To avoid 
such widespread disinhibition of motor-related areas that may 
lead to maladaptive plasticity, we attributed a high priority to “no 
stimulation” of the PMC in the first row of Figure 1.

Multichannel tDcs for Poststroke Aphasia 
rehabilitation
Recent neuroimaging studies on poststroke aphasia reveal 
neuroplastic cortical changes in both hemispheres, yet how the 
areas of the structural and functional language neural network 
contribute to language relearning success is still controversial 
(81). An optimized multichannel tDCS montage may allow 

us to facilitate and suppress activation of specifically selected 
language-relevant cortical areas (82, 83) aiming at individual-
izing optimal parameters for each poststroke aphasic patient in 
the near future. Figure 1A.2 presents the results of a general-
ized montage targeting those areas of the language network, 
in which tDCS had a beneficial effect on language functions 
in previous studies (Table  1). To improve naming ability, we 
target to suppress right pars triangularis activation over Broca’s 
homolog (47, 84), but try to minimize stimulation over the right 
pars opercularis (84). Further, we induce facilitatory tDCS over 
left Broca’s and Wernicke’s areas (45), and also over the right 
temporoparietal cortex (46).

reAL-tiMe fNirs–eeG FeeDBAcK FOr 
MULticHANNeL tDcs

During neural activation, the electric currents from excit-
able membranes of brain tissue superimpose in the extracellular 
medium and generate a potential on the scalp (i.e., EEG). Neural 
activity has been shown to be closely related, spatially and 
temporally, to cerebral blood flow (CBF) that supplies glucose 
via neurovascular coupling. The hemodynamic response can 
be captured by fNIRS, which enables continuous monitoring 
of cerebral oxygenation and blood volume. This neurovascular 
coupling phenomenon led to the concept of the neurovascular 
unit (NVU), which consists of the endothelium, glia, neurons, 
pericytes, and the basal lamina. Recent work suggests NVU as an 
integrated system working in concert using feedback mechanisms 
to enable proper brain homeostasis and function. Capturing 
these mostly non-linear spatiotemporal interactions within 
NVU remains a challenge (85). The dynamic nature of functional 
connectivity may be in part due to spatiotemporal interactions 
between neuro- and hemodynamics. We postulate that fusing of 
EEG and fNIRS data provides a more robust real-time tracking 
of the dynamic functional connectivity during task performance. 
Further, multivariate machine learning methods (86) can be 
leveraged for fusing multimodal functional neuroimaging data.

In EEG and fNIRS, the sensors measuring brain activity are 
located outside of the head, thus a source space representation 
of the sensor readings (inverse problem) has to be inferred 
from a physical model that maps cortical (source) activity to 
the sensors (forward problem). MRI-based fast individualized 
quasistatic bioelectromagnetic forward simulations can be per-
formed using open source software developed for EEG analysis 
[e.g., OpenMEEG (87)]. In the case of fNIRS, the MRI-based 
individualized physical model involves optical properties, such 
as absorption and scattering coefficients of different tissue 
types, and describes the photon transport through the tissue 
(88). Diffuse optical tomography (89) extends fNIRS by apply-
ing overlapping “high density” measurements, thus providing 
three-dimensional imaging with improved spatial resolution. 
In the source space, the multimodal (EEG–fNIRS) functional 
connectivity needs to be analyzed in real time for closed-loop 
control of multichannel tDCS.

Computational methods to investigate the dynamic functional 
connectivity in the source space can be developed based on prior 
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works in fMRI–EEG (90, 91). Moreover, for motor tasks, sparse 
linear regression analysis has been shown to be well suited to 
reconstruct the electromyogram from human cortical activations 
using fMRI (92) and EEG (93). Thus, multichannel tDCS sys-
tems (11) can be optimized to target relevant cortical activations 
(source space) – related to functional connectivity hubs – found 
from EEG–fNIRS joint neuroimaging during task performance 
to facilitate poststroke rehabilitation (94). The real added value 
to the neuroimaging-guided multichannel tDCS paradigm is that 
EEG–fNIRS data can be used to individualize NIBS protocols not 
only based statically on the “hot spots” of beneficial neuroplas-
ticity in a given patient but also to adjust stimulation protocols 
dynamically based on physiological feedback to approach optimal 
activation of the target regions in the time domain.

cONcLUsiON

Transcranial direct current stimulation is a promising evolving 
adjunctive therapy in stroke rehabilitation based on enhancement 
of beneficial and reduction of maladaptive plasticity. However, 
the current state of the art suffers from relevant limitations, 
which hinder the full integration of tDCS methodology in clinical 
practice. First, small sample sizes, heterogeneity of samples (e.g., 
lesion type, poststroke severity, and time after stroke), and differ-
ences between stimulation protocols might be the main reasons 
for so far limited magnitude of tDCS effects and heterogeneity of 
results. Second, efficacy of stimulation might be relevantly limited 

by current restriction to stimulation of one or two target areas 
in most studies, not taking into account the complex networks 
involved in respective functions. Third, in a disease characterized 
by heterogeneous lesions, largely ignoring individual differences of 
lesion size, location, and baseline activation, as well as anatomical 
factors relevant for the efficacy of intervention, e.g., head size and 
brain anatomy, might furthermore limit the efficacy of current 
stimulation approaches. Larger controlled studies are necessary 
to determine the best parameters of stimulation (including the 
optimal cortical target locations) according to each subtype of 
stroke, the time course of stroke recovery, and individual factors. 
With the introduction of neuroimaging-guided multichannel 
tDCS protocols, most of these problems may be solved, and these 
approaches might relevantly help to determine the real potential 
of tDCS to improve clinical symptoms after stroke.
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