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Routine diagnostics and treatment monitoring in patients with primary and secondary 
brain tumors is usually based on contrast-enhanced standard MRI. However, the capac-
ity of standard MRI to differentiate neoplastic tissue from non-specific posttreatment 
effects may be limited particularly after therapeutic interventions such as radio- and/
or chemotherapy or newer treatment options, e.g., immune therapy. Metabolic imaging 
using PET may provide relevant additional information on tumor metabolism, which 
allows a more accurate diagnosis especially in clinically equivocal situations, particularly 
when radiolabeled amino acids are used. Amino acid PET allows a sensitive monitoring 
of a response to various treatment options, the early detection of tumor recurrence, 
and an improved differentiation of tumor recurrence from posttherapeutic effects. In the 
past, this method had only limited availability due to the use of PET tracers with a short 
half-life, e.g., C-11. In recent years, however, novel amino acid PET tracers labeled with 
positron emitters with a longer half-life (F-18) have been developed and clinically vali-
dated, which allow a more efficient and cost-effective application. These developments 
and the well-documented diagnostic performance of PET using radiolabeled amino 
acids suggest that its application continues to spread and that this technique may be 
available as a routine diagnostic tool for several indications in the field of neuro-oncology.

Keywords: Fet Pet, Met Pet, FDOPA Pet, radiolabeled amino acids, pseudoprogression, pseudoresponse, 
radiation necrosis

iNtrODUctiON

To date, structural MRI is the most important diagnostic tool in patients with brain tumors (1). 
Since decades, changes in contrast enhancement extent on MRI are used as an indicator of response 
to a certain therapy or tumor relapse (2, 3), although the reliability in distinguishing tumor tissue 
from treatment effects such as a blood–brain barrier breakdown is limited (4). For instance, reac-
tive transient blood–brain barrier alterations with consecutive contrast enhancement – typically 
after radiotherapy with or without concomitant temozolomide –  can mimic tumor progression 
and occur very early within the first 12  weeks after radiotherapy and is called pseudoprogres-
sion. Clinically, pseudoprogression is of substantial importance in neuro-oncology and occurs 
approximately in 10–30% of patients with malignant glioma (5–7). Other important side effects 
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of radiotherapy are radiation-induced changes with  late onset, 
particularly radiation necrosis, which usually manifests sev-
eral months or even years later than pseudoprogression (8). 
Furthermore, transient blood–brain barrier breakdown may 
also result from cerebral ischemia, postoperative inflammation, 
or epileptic seizures.

After the approval of antiangiogenic drugs (e.g., bevaci-
zumab), the so-called phenomenon “pseudoresponse” has been 
described, which may complicate the assessment of treatment 
response by evaluating changes in contrast enhancement accord-
ing to the Macdonald criteria only (3). Within a few weeks after 
the initiation of treatment, it has been observed that antiangio-
genic drugs, such as bevacizumab, are able to markedly reduce 
contrast enhancement (9), producing response rates consistent 
with partial or even complete responses. Some of these partial 
or complete responses observed on MR images may result from 
a quick normalization of abnormally permeable blood vessels, 
indicating  –  at least in part  –  a restoration of the blood–brain 
barrier integrity. Thus, a decrease in contrast enhancement, 
which indicates a response on MRI, may not reflect true anti-
tumoral effects of antiangiogenic drugs (10). Furthermore, 
following antiangiogenic treatment, MRI suggests, not infre-
quently, an impressive radiological response, which can be in 
clear contrast to the clinical benefit caused by antiangiogenic 
therapy effects. Hence, the use of antiangiogenic drugs, most 
probably, affects the image findings of enhancing tumor portions 
considerably, more effectively than that of non-enhancing parts 
of the tumor (10). In order to overcome the limitations of the 
assessment of tumor response to antiangiogenic treatment by 
evaluation of changes in contrast enhancement only (according 
to the Macdonald criteria), the Response Assessment in Neuro-
Oncology (RANO) group suggested new recommendations for 
evaluating response (2). Particularly, for antiangiogenic drugs, 
FLAIR or T2 signal hyperintensity was recommended as a sur-
rogate marker for non-enhancing tumor to help determine tumor 
progression, and thereby include non-enhancing FLAIR or T2 
signal alterations as criteria for determining tumor response or 
progression (“non-enhancing tumor progression”) (2).

However, present RANO criteria do not provide quantitative 
values of FLAIR or T2 signal change for the diagnosis of tumor 
progression. Various differential diagnoses, such as tumor-related 
edema, radiation injury, demyelination, ischemia, and infection, 
can result in a hyperintense FLAIR or T2 signal alteration, 
which is difficult to distinguish from non-enhancing tumor (10). 
Consequently, alternative diagnostic methods are necessary to 
improve the identification of treatment response, posttherapeutic 
effects, and tumor recurrence.

treAtMeNt resPONse

The feasibility and usefulness of amino acid PET using the tracers 
11C-methyl-l-methionine (MET), O-(2-[18F]fluoroethyl)-l- tyrosine  
(FET), and 3,4-dihydroxy-6-[18F]-fluoro-l- phenylalanine (FDOPA) 
for treatment assessment after radiochemotherapy, stereotactic 
brachytherapy, alkylating chemotherapy, and antiangiogenic 
therapy using bevacizumab and other experimental approaches 
have been demonstrated in several studies and case series. The 

currently available PET data regarding these tracers suggest 
that  both a reduction of amino acid uptake and a decrease of 
the metabolically active tumor volume of a glioma are a sign of 
response to treatment.

radiotherapy
A prospective study evaluated the prognostic value of early 
changes of FET uptake after postoperative radiochemotherapy in 
patients with glioblastoma (11, 12). It could be observed that PET 
responders with a reduction of the maximal tumor/brain ratio at 
least of more than 10% had a significantly longer progression-
free and overall survival than patients with stable or increasing 
tracer uptake after radiochemotherapy. Regarding stereotactic 
brachytherapy using iodine-125 seeds, both tumor/brain ratios 
and metabolically active tumor volumes as determined by FET 
PET were able to differentiate between late posttherapeutic effects 
after 6  months or later and local tumor progression with high 
diagnostic accuracy (13).

Alkylating chemotherapy
A reliable monitoring of alkylating chemotherapy, i.e., temozolo-
mide and nitrosoureas such as lomustine, could be observed with 
MET PET in recurrent or progressive high-grade glioma patients 
(14–16) and both with FET and MET PET in patients with 
recurrent or progressive low-grade glioma (17–19). Particularly, 
response to treatment in low-grade gliomas was associated with 
an earlier reduction of the FET PET tumor volume when com-
pared to FLAIR/T2 signal changes.

Antiangiogenic therapy
More recent studies suggest that especially the decrease of the 
metabolically active tumor volume as assessed by amino acid PET 
using the tracers FET and FDOPA is useful to assess antiangio-
genic therapy failure of bevacizumab earlier than MRI accord-
ing to RANO criteria and, moreover, to identify responders to 
bevacizumab with favorable outcome (20–23).

In a series of 11 patients, FET PET detected failure of antian-
giogenic therapy in 4 patients earlier than standard MRI (22). 
Similar results were observed in another study including 10 
patients (21). In this study, treatment response based on RANO 
criteria was discordant in four patients to FET PET findings, 
indicating pseudoresponse on MRI. Furthermore, FET PET 
was able to detect tumor progression earlier than MRI (median 
time benefit, 10.5 weeks). In these FET PET studies (21, 22), a 
favorable outcome of responders to bevacizumab was observed 
when a decrease of the metabolically active tumor volume of 45% 
or more was present. Furthermore, a cost-effectiveness analysis 
suggests that the additional use of FET PET in the management 
of patients with recurrent high-grade glioma treated with bevaci-
zumab may be cost-effective (24).

Using FDOPA PET, a recent study including 30 patients 
reported that responders based on FDOPA PET data survived 
3.5 times longer than non-responders. In contrast, responders 
based on RANO criteria lived only 1.5 times longer than non-
responders (20). Furthermore, this study also demonstrated that 
changes in the metabolically active tumor volume were highly 
prognostic. The absolute metabolically active tumor volume at 
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FiGUre 1 | example of a 31-year-old patient with an anaplastic astrocytoma in the left parahippocampal region with posttherapeutic effects. 
Previous treatment consisted brachytherapy and external fractionated radiotherapy with concomitant and adjuvant temozolomide. Brain imaging with standard MRI 
and FET PET at recurrence/before initiation of chemotherapy (left column) and 4 months later after two cycles of lomustine chemotherapy (right column). 
Enlargement of contrast enhancement and the T2 signal is suggesting tumor progression, whereas FET PET indicates a reduction of metabolic activity.
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the first follow-up scan (threshold, 18 ml) provided the strongest 
prediction of progression-free and overall survival (20).

Other treatment Options
In various experimental treatment options such as intracavitary 
radioimmunotherapy, convection-enhanced delivery of pacli-
taxel, and adjuvant maintenance therapy with imatinib in 
combination with hydroxyurea (25–27) treatment effects could 
be successfully monitored by PET using MET and FET.

POsttHerAPeUtic eFFects AND 
tUMOr recUrreNce

After neuro-oncological treatment, particularly, non-neoplastic 
increase in contrast enhancement (Figure 1) or a newly diag-
nosed contrast-enhancing lesion on standard MRI have been 
found, which may considerably confuse patient management 
in neuro-oncology because posttherapeutic effects cannot be 
always ruled out. In this setting, the value of amino acid PET 
using the tracers MET, FET, and FDOPA for the identification 
of tumor recurrence or progression in patients with low-grade 
and high-grade glioma has been described in many studies 
(28–35). Overall, a higher diagnostic performance compared to 
standard MRI has been observed. However, in many of these 

studies, early delayed posttherapeutic effects were not further 
specified from late effects.

Pseudoprogression
After the implementation of chemoradiation with concurrent 
temozolomide for glioblastoma patients representing the cur-
rent standard of care, there has been an increasing awareness of 
progressive contrast-enhancing lesions on conventional MRI, 
which are not related to a true disease progression, but which 
are most probably due to a treatment effect and are called pseu-
doprogression. This phenomenon occurs usually within the first 
12  weeks after chemoradiation with concurrent temozolomide 
or radiotherapy alone (2, 5, 36), and this time, frame has been 
implemented into the RANO criteria (2). If histology is not 
available, pseudoprogression is usually retrospectively diagnosed 
and is based on increasing contrast enhancement on MRI sug-
gesting tumor progression that eventually remains stable or even 
regresses during further follow-up MRI imaging without any 
change in treatment (37) (Figure 2). However, cases with a later 
onset of pseudoprogression have been observed, particularly after 
chemoradiation, using temozolomide in combination with nitro-
soureas such as lomustine (CCNU) (38, 39). In high-grade glioma 
patients, the rate of pseudoprogression seems to be between 10 
and 30% (5–7) and is clinically of great importance because an 
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FiGUre 2 | Fet Pet and conventional Mr imaging in a 47-year-old patient prior to histological confirmation of glioblastoma diagnosis (left column), 
and 8 weeks (middle column) and 3 months after completion of radiochemotherapy with temozolomide (right column). The follow-up MR images 
8 weeks after completion of radiochemotherapy suggests markedly tumor progression (middle column). In contrast, the FET PET image shows decreased metabolic 
activity compared to initial FET PET (maximum tumor/brain ratio 3.3 vs. 4.7) indicating pseudoprogression. Correspondingly, follow-up MRI, 3 months after 
radiochemotherapy, shows an improvement with regressive findings without change in the treatment regimen (right column).
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effective therapy might be erroneously terminated, potentially 
and negatively impacting the outcome.

Unfortunately, standard MR imaging does not allow a reli-
able differentiation of tumor relapse from pseudoprogression. 
Several studies have suggested that, within a narrow time frame 
of 12  weeks after completion of radiochemotherapy, FET PET 
might be helpful for this distinction (11, 40, 41). Subsequently, 
in a larger patient cohort with glioblastomas (n  =  22), the 
diagnostic accuracy for FET PET of more than 90% for dif-
ferentiating pseudoprogression from true tumor progression 
after chemoradiation with concurrent temozolomide has been 
observed (42). In line with this study, FDOPA PET may also be 
useful for diagnosing patients with pseudoprogression. A study 
with glioblastoma patients (n = 110) revealed an accuracy of 82% 
for FDOPA PET for the correct diagnosis of true tumor progres-
sion or recurrence (32). However, in this study, early and late 
delayed treatment-induced changes, such as pseudoprogression 
or radiation necrosis, were not further specified. Thus, despite 
the lack of subsequent PET studies with a higher number of 
patients evaluating this particular time window of 12 weeks after 
chemoradiation, the present data on amino acid PET suggest that 
this technique is helpful for the diagnosis of pseudoprogression 
following chemoradiation of glioblastoma.

radiation Necrosis
This phenomenon is an important side effect of radiotherapy and 
belongs to radiation-induced changes with late onset and usually 
manifests several months or even years later than pseudoprogres-
sion (8). A radiation necrosis may occur after radiotherapy of a 
glioma as well as brain metastasis.

In view of both the sociodemographic changes with an 
increasing elderly population and a wider spectrum of treatment 
options for extracranial tumors resulting in an improvement of 
outcome, an increasing number of patients diagnosed with brain 
metastasis can be expected (43, 44). Besides neurosurgical resec-
tion, radiotherapy options, such as brachytherapy, radiosurgery, 
and whole-brain radiation therapy, are frequently used to treat 
patients with brain metastasis. In this group of patients, neuro-
oncologists are often confronted with the clinical problem that 
after radiation therapy, and, in particular, after radiosurgery, 
standard MRI cannot reliably differentiate brain metastasis recur-
rence or progression from radiation necrosis.

Following radiosurgery in brain metastasis patients, a consid-
erable rate of radiation necrosis (24% of 310 cerebral metastases) 
has been reported (45). Depending on the irradiated volume 
receiving a critical radiation dose, the risk of radiation necrosis 
may increase up to 47% (45). Moreover, some studies in patients 
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with primary brain tumors suggest that radiation necrosis occurs 
in approximately 5–25% of patients receiving standard radio-
therapy (4, 46).

In order to address this highly relevant clinical problem, 
amino acid PET has been recently used. For instance, simple 
semiquantitative regions-of-interest (ROI) analyses were used 
in MET PET studies for the calculation of tumor-to-brain ratios 
and revealed a sensitivity and specificity of 70–80% for the dif-
ferentiation of local brain metastasis recurrence from radiation-
related effects (47, 48). Similarly, a FDOPA PET study revealed a 
sensitivity and specificity of more than 80% (49). Another study 
has compared the diagnostic performance of FDOPA PET with 
that of perfusion-weighted MRI (PWI) in patients with brain 
metastases after stereotactic radiosurgery. In this study, the 
accuracy of FDOPA PET was 91% and superior to PWI metrics, 
which yielded an accuracy of 76% (50). In line with this, a similar 
diagnostic performance has also been observed for FET PET: 
using tumor/brain ratios in combination with the evaluation 
of time-activity curves derived from kinetic FET PET scans, a 
sensitivity and specificity of about 90% could be observed (51).

cONcLUsiON AND PersPectives

In summary, the use of amino acid PET imaging is helpful 
to provide an early assessment of therapy efficacy and for the 
differentiation of posttherapeutic effects from tumor recur-
rence. This technique aids oncologists to optimize therapeutic 
management of brain tumors and has the potential to evalu-
ate response to newer treatment options such as immune or 
targeted therapy.

Regarding the tracer selection it has to be considered that, in 
comparison to MET labeled with C-11 (half-life, 20  min), the 
main advantage of FET is the longer half-life of the F-18 label 
(110  min), which allows a widespread clinical distribution. In 
addition, FET uptake appears to be more specific for neoplastic 
tissue, because there is a higher uptake of MET in inflammatory 
cells and tissues. The lower specificity of MET may be explained 
by its higher affinity for macrophages compared with FET as 
demonstrated in animal experiments (52). Of great interest is the 
presence of differential FET uptake kinetics in malignant gliomas 
and low-grade gliomas, which have not been observed in other 
amino acid tracers (53, 54), and the lack of physiological uptake in 
the basal ganglia when compared with FDOPA PET (44). Hence, 
FET seems to be the most promising amino acid tracer for PET 
imaging in brain tumor patients and should be considered for 
prospective studies (55).

It has to be noted that amino acid PET tracers eventually may 
show uptake in non-tumoral brain lesions. In contrast to MET, 
experiments in animal models have shown that FET exhibits no 
uptake in inflammatory lymph nodes and in inflammatory cells. 
However, false positive tracer uptake has been observed for MET 

as well as for FET in patients with brain abscesses, demyelinat-
ing processes, hematomas, cerebral ischemia, or in cases with 
pronounced radionecrosis (56–58). Additionally, in glioma 
patients with seizure clusters or status epilepticus, a transient FET 
uptake in cortical brain areas has been observed, which were not 
affected by tumor tissue (44). Therefore, increased uptake of the 
tracers is not thoroughly specific for cerebral gliomas although 
increased amino acid uptake has a high positive predictive value 
for cerebral gliomas (59). In clinical practice, false positive uptake 
in non-tumoral lesions is rare (30, 42, 60) and usually mild, thus 
affecting the diagnostic performance of amino acid PET imaging 
insignificantly.

Furthermore, the diagnostic performance of amino acid 
PET needs to be compared with advanced MRI techniques, e.g., 
diffusion- and perfusion-weighted imaging, sodium MRI, and 
chemical exchange saturation transfer (CEST) imaging. There 
is evidence that these methods may be helpful to differentiate 
tumor relapse from posttherapeutic effects (61–63). In order 
to provide the optimal diagnostic work-up to the individual 
patients, multimodal imaging studies should be on the basis of 
reader-independent image evaluation. From these imaging stud-
ies, surrogate parameters need to be derived, which can then be 
used in clinical routine.

In order to identify these surrogate imaging markers, the use 
of hybrid PET/MR imaging technology may be helpful. This tech-
nique allows the simultaneous acquisition of valuable diagnostic 
information. For example, recent studies support the acquisition 
of dynamic FET PET, standard anatomical MRI sequences, and 
PWI MRI in a single session (“one-stop-shop”) on a hybrid PET/
MR scanner in glioma patients (64, 65). Moreover, this technol-
ogy helps to minimize the patients’ discomfort (e.g., considerable 
reduction of scanning time, only a single transport to the imaging 
facility, avoidance of sedation or anesthesia, particularly in chil-
dren) and helps to optimize co-registration of various imaging 
modalities. However, the MRI-based attenuation correction can 
be very challenging.

As we move forward with new technologies and innovations 
in neuroimaging, the challenge of determining pseudoprogres-
sion from true tumor progression may be resolved. Combining 
the efforts and knowledge of interested researchers in this way 
will hasten the solution to this problem.
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