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In addition to difficulties in social communication, current diagnostic criteria for autism 
spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor 
movements, and atypical reactivity to sensory input (1). This paper explores whether 
sensorimotor difficulties are associated with the development and maintenance of 
symptoms in ASC. First, studies have shown difficulties coordinating sensory input into 
planning and executing movement effectively in ASC. Second, studies have shown 
associations between sensory reactivity and motor coordination with core ASC symp-
toms, suggesting these areas each strongly influence the development of social and 
communication skills. Third, studies have begun to demonstrate that sensorimotor 
difficulties in ASC could account for reduced social attention early in development, with 
a cascading effect on later social, communicative and emotional development. These 
results suggest that sensorimotor difficulties not only contribute to non-social difficulties 
such as narrow circumscribed interests, but also to the development of social behaviors 
such as effectively coordinating eye contact with speech and gesture, interpreting others’ 
behavior, and responding appropriately. Further research is needed to explore the link 
between sensory and motor difficulties in ASC and their contribution to the development 
and maintenance of ASC.

Keywords: autism spectrum conditions, sensory, motor, sensorimotor, repetitive behavior, cerebellum,  
gamma-aminobutyric acid, social cognition

introdUCtion

Successful social functioning requires multiple skills, such as quickly seeking out and integrating 
information from pertinent social cues in order to plan and carry out an appropriate response. 
This involves effectively coordinating non-verbal and verbal language including posture, vocal-
tone, facial gesture, and eye contact with speech during a social interchange. Hence, social 
reciprocity requires integrating a variety of sensory information from the environment to plan 
and execute movement effectively. If this ability was impaired, we could predict a whole host 
of difficulties, from performing simple actions (such as reaching for a cup) to having difficulty 
seeking out pertinent social cues and even difficulties interpreting others’ behavior and responding 
appropriately. Furthermore, novel and challenging actions may be avoided and known perfected 
routines preferred.

Abbreviations: ASC, autistic spectrum conditions; GABA, gamma-aminobutyric acid.
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Current DSM-5 criteria (1) refers to Autism as a “disorder,” 
however in this paper, we use the less stigmatizing term “condi-
tion,” recognizing that Autism includes both strengths and weak-
nesses, while still being a medical condition for which individuals 
need support. Individuals with Autism Spectrum Conditions 
(ASC) have difficulties with social interaction and communica-
tion, repetitive behaviors, narrow circumscribed interests, and 
atypical sensitivity to sensory information (1). Three decades of 
research have attempted to uncover the cause of this diverse range 
of difficulties in ASC with little success. Thus some researchers 
have suggested that it is time to give up on finding a single 
unifying theory of ASC, as it may rather consist of a number of 
co-occurring, genetically distinct clusters of symptoms (2–4). 
Progress may have been hampered by lack of research into the 
non-social difficulties seen in ASC; repetitive behaviors, narrow 
circumscribed interests, and sensory difficulties. However more 
recent research, such as that by Gowen and Hamilton (5), has 
started to explore the contribution of sensorimotor difficulties 
(defined as an impairment in the pathway involving motor 
activity triggered by sensory stimuli) to the development and 
maintenance of ASC. This could provide a more parsimonious 
explanation (compared to multi-deficit accounts) of the social and 
non-social difficulties that come to develop in ASC. By examining 
both psychological and biological evidence, this paper therefore 
explores and hypothesises that motor coordination and sensory 
difficulties in ASC may be associated with the development and 
maintenance of ASC symptoms.

Motor Coordination in aUtisM 
speCtrUM Conditions

Unusual motor processing is associated with ASC. Initial 
clinical reports of ASC reported general “clumsiness” in these 
individuals (6–9), and this has been corroborated in more recent 
research (10–15). Furthermore, Fournier et  al. completed a 
robust meta-analysis including 51 comparisons of motor ability 
and deduced that individuals with ASC display a pronounced 
motor impairment compared to neuro-typical controls, with 
their motor skills often fall 1.5 SDs below the typical mean 
(16). Green et  al. (12) and Miyahara et  al. (17) were able to 
quantify the prevalence of motor impairment by administering 
assessments of coordination to children with ASC, conclud-
ing that approximately 80% had definite motor impairment 
with 10% being borderline. The prevalence of impaired motor 
processing in coordination, praxis, balance, and muscle tone 
in ASC is also echoed in a range of other studies (5, 18–21). 
More narrowly, Ming, Brimacombe, and Wagner went on to 
identify the prevalence of specific deficits in motor skills, with 
hypotonia (low muscle tone) and apraxia (impaired ability to 
execute planned movement) being the most common deficit 
(51 and 34%, respectively). Additionally, a review written by 
Gowen and Hamilton (5) demonstrated how a number of fine 
and gross motor movements had been identified and reported, 
such as: slower repetitive hand and foot movement, slower and 
less accurate manual dexterity, poorer ball skills (e.g., aiming 
and catching), unstable balance, impaired gait (e.g., tandem gait, 

heel, or toe walking), reduced coordination of locomotor skills 
(e.g., running and jumping), and hypotonia.

Motor abnormalities in ASC are present from early infancy 
(22–24), such as head lag in infants (defined as the head lagging 
behind the trunk in a pull-to-sit position) (25). Motor delays are 
significantly more likely to be reported by parents as the first 
area of concern at a mean age of 14.7  months (26). However, 
Teitelbaum et al. (22) also described, in detail, coordination dif-
ferences between babies with and without ASC from as young as 
6 months old, such as persistent asymmetry when lying and early 
impairments in rolling over from back to stomach.

sensory reaCtiVity in aUtisM 
speCtrUM Conditions

Atypical sensory reactivity, as defined here as the psychological 
reaction that occurs when a person is exposed to sensory stimuli, 
is also associated with ASC. Pioneering reports of ASC described 
sensory “intrusions” (6, 7). Studies corroborate these initial 
clinical descriptions, showing that the prevalence of sensory 
reactivity problems in ASC is high. Caminha and Lampreia (27) 
reported a 69–80% occurrence of sensory dysfunction symptoms 
in ASC, while (28) noted that 95% of their sample had some 
degree of sensory processing difficulties. Findings from sensory 
symptoms in ASC, such as hypersensitivity and hyposensitivity, 
vary depending on modality tested, level of analysis, and method 
used. Research has, for example, shown the existence of basic 
sensory reactivity symptoms such as: hypersensitivity across 
visual (29), tactile (30–32), auditory (33–36) and olfactory (37) 
domains as well as hyposensitivity to olfactory and gustatory 
stimuli (38, 39); differences in perceptual function (40); and 
proprioceptive impairment (ability to determine where the body 
is in space) (41, 42).

More narrowly with respect to visual processing, although vis-
ual acuity seems to be typical in individuals with ASC (43, 44, 45), 
children with ASC statistically; (a) score higher on the Embedded 
Figures test, thereby demonstrating greater field independence, 
or the ability to see objects as discrete and distinct from their 
background as opposed to central coherence (46, 47); (b) exhibit 
faster visual search times (47, 48), have enhanced discrimination 
ability (48); and (c) detect more unattended changes in natural 
stimuli when compared to typical developing children (49). Such 
findings of an apparent superior performance in basic sensory 
perception led Mottron et  al. (50) to suggest that individuals 
with ASC have “enhanced perceptual functioning” (51). There 
is however evidence to demonstrate diminished performance 
on higher order visual processing tasks such as visual spatial and 
visual motion processing (52–54). Some studies have indicated 
that adults with ASC are impaired at motion processing but 
retain intact form processing (perhaps reflecting selective dys-
function of the magnocellular pathway – the motion processing 
pathway) (52, 54–56). Other studies have found atypical visual 
global processing within the dorsal visual pathway (57), or have 
found that attentional and cognitive demands of the tasks might 
contribute to differing results (58). For a comprehensive review 
of vision in ASC, see Ref. (53). Taken together, basic early stage 
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visual processing seems to be similar to or superior in individu-
als with ASC; however, there appears to be compromised higher 
order visual processing, which could be linked to difficulties with 
temporal sensorimotor skills, such as motion processing.

Regarding auditory processing, findings are similar in nature 
with intact or enhanced basic auditory perception and potential 
difficulties with processing higher order complex sounds. For 
example, individuals with ASC show superior pitch processing 
(55, 59, 60). O’Riordan and Passetti (61) also report greater audi-
tory discrimination ability in children with ASC, and Järvinen-
Pasley et al. (62) show superior perceptual processing of speech 
in children with ASC. However individuals with ASC also show 
difficulties in filtering complex auditory sound such as speech 
from background noise and therefore can often have difficulty 
attending to or registering auditory information (63, 64).

In tactile processing results have also been mixed, showing 
hypersensitivity (31, 65, 66) to basic stimuli, as well as no dif-
ferences (61). Another line of research shows differences in 
adaptation toward touch; Tommerdahl et  al. (66) showed that 
participants with ASC outperformed controls in tactile acuity 
after short adaptation to a vibrotactile stimulus period of 0.5 s. 
In addition, they demonstrated that individuals with ASC do not 
show enhanced spatial localization after being adapted to tactile 
stimulus, which occurs in typical controls. A more recent study 
also showed differences in tactile processing in children and 
adults with ASC (67). Differences in auditory and tactile process-
ing might be associated with sensorimotor difficulties in ASC as 
well as visual differences.

The chemical senses have been investigated less than other 
senses, showing mostly impaired or intact processing in ASC 
depending on measure used (38, 39). Suzuki et al. (39) for exam-
ple, reported impaired odor identification using the University 
of Pennsylvania Smell Identification Test in adults with ASC. A 
second study by Bennetto et  al. (38) reported that adolescents 
(10–18 years) with ASC were less accurate in olfactory identifica-
tion. However olfactory detection thresholds seem to be intact in 
individuals with ASC (39, 68). Regarding taste processing, iden-
tification seems to be impaired in individuals with ASC. Bennetto 
et al. (38) found that adolescence with ASC are less accurate in 
identifying sour and bitter tastes but showed similar identifica-
tion for sweet and salty tastes. In line with this, Tavassoli and 
Baron-Cohen (68) found that adults with ASC had difficulties in 
identifying bitter, sour, and sweet tastes. Moreover, on sensory 
questionnaires, individuals with ASC are reported to show more 
olfaction and taste sensitivity compared to individuals without 
ASC (28, 69–72). Individuals with ASC (55%) for example 
present with more clinical symptoms in smell/taste sensitivity 
on the Short Sensory Profile compared to children with Sensory 
Processing Disorder (32%) (73).

Kern et al. (74) reported that abnormal responsivity in each 
of the main sensory modalities (auditory, visual, touch, and oral) 
was not independent, showing significant correlations between 
them; suggesting that sensory responsivity dysfunction in ASC is 
global in nature. This is further supported by the recognition of 
increased rates of synesthesia in ASC (a condition in which a sen-
sation in one sensory modality triggers a perception in another) 
(75). Additionally, a study by Stevenson et  al. (76) recently 

demonstrated reduced multisensory integration [described as 
the process whereby information from all the different sensory 
modalities are combined to influence perception, decision and 
behavior (77)] in ASC, by using a sound-induced flash illusion 
as a measure. However, sensory abnormalities in ASC appear to 
have the potential to reduce with age: a cross-sectional, linear 
regression analysis with 104 participants, aged 3–56 years, sug-
gested that sensory difficulties become similar to typical controls 
by the age of 33  years (78). A meta-analysis also showed that 
sensory symptoms seem to be most prevalent between the ages 
of 6–9 years of age (79).

iMpaCt oF Motor Coordination 
and sensory reaCtiVity in asC

Difficulties in motor coordination and sensory reactivity have 
both separately been associated with the severity of symptoms 
in ASC. Research and primary observations indicate that the 
range of motor difficulties experienced by children with ASC 
appear to affect the development and maintenance of their social 
and communicative difficulties. Examples of this include the 
significant impairments shown by children with ASC in skilled 
motor gestures, including imitation (80) and development of 
speech sound production (20). Children with motor coordina-
tion difficulties are less competent at recognizing emotions in 
others (81) and are more likely to have increased anxiety on the 
playground due reduced social interaction (24). Furthermore, 
research has shown a correlation between motor and praxis 
performance and social communication skills in ASC (82–87). 
Piek and Dyck expands on the correlation and long recognized 
comorbidity of Developmental Coordination Disorders (DCD) 
and ASC, suggesting that as the disorders typically occur 
together, they either have overlapping causes or that one disorder 
is a direct cause of the other (88). However, research also suggests 
that impairments in movement could be a fundamental cause 
of the social and communicative difficulties seen in ASC, as 
opposed to a peripheral feature of the condition [see Ref. (89)]. 
This theory is consistent with recent evidence that suggests 
children who display fine motor difficulties early in childhood 
(from 7 months old) are significantly more at risk of developing 
an ASC by 36  months (90). Cross syndrome studies have also 
shown that children with ASC have more difficulties in basic 
(91) and gestural motor skills (92) compared to children with 
Attention-Deficit Hyperactivity Disorder (ADHD) and/or DCD. 
These results suggest that early motor difficulties are associated 
with the development of social and communicative difficulties 
later in life. Accordingly, as autism severity is based on social 
communication impairments in current DSM-5 criteria (1), this 
may be of paramount importance in the development of ASC.

In addition to the challenging sensory hypersensitivity/over-
load and hyposensitivity experienced by individuals with ASC, 
research has also linked sensory reactivity disorders to social 
communication difficulties (85, 93, 94). Fitzgibbon et  al. (95) 
proposed that both physical pain and social pain are processed 
atypically in individuals with ASC and insensitivity to pain, for 
example, could in turn limit empathy and understanding of 
pain in others. Recent research has also identified associations 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Hannant et al. Sensorimotor Difficulties in Autism Spectrum Conditions

Frontiers in Neurology | www.frontiersin.org August 2016 | Volume 7 | Article 124

between sensory reactivity and the severity of autism such as 
Tavassoli et  al. (33) who reported that autistic traits defined 
by the Autism Spectrum Quotient, correlated positively with 
sensory over-responsivity, and Boyd et al. (96) specifically noted 
high levels of hyper responsive behavior predicted high levels of 
repetitive behavior. Other such studies include: Ashwin et al. (37), 
Kern et al. (74), Hilton et al. (85), Ben-Sasson et al. (79), Lane 
et al. (97), Siaperas et al. (98), and Tavassoli et al. (99).

sensoriMotor inteGration in asC

The evidence reviewed so far show that sensory and motor diffi-
culties are prevalent in ASC and impact on social functioning (86, 
93). Evidence also suggests that these difficulties are present from 
birth, e.g., pre-social skill deficits (29, 100), and increase the risk 
of developing ASC by aged 3 years (90). This indicates that there is 
a possible impairment in the process of sensorimotor integration 
[a brain process that allows, by complex neural operations, the 
connection of the sensory and motor domains (101), p. 427] that 
plays a fundamental role in the development of ASC. Although 
further studies are needed to explore whether sensorimotor 
integration difficulties are unique to ASC, Gowen and Hamilton 
(5) also proposed that altered sensory input and variability 
in motor execution “together” may play a pivotal role in ASC. 
Researchers have linked weaker praxis and motor performance 
to sensory reactivity in ASC (98, 102–104). Additionally, Siaperas 
et al. (98) found that children with ASC demonstrated significant 
impairment in both motor performance and proprioceptive and 
vestibular processing and thus suggested that sensory difficulties 
are not a peripheral, but a core feature of ASC.

Sensory feedback and movement are intrinsically connected 
(105), as the ability to plan and execute a simple movement 
effectively (such as reaching for a cup), requires sensory feedback 
(such as your position in relation to the cup as you reach for it) 
in order to effectively coordinate movement while performing 
the action (5, 105). Any error signal (such as missing the cup) at 
the final stage of movement is then processed and corrected. As 
movements are repeated in this fashion, they become automatic, 
and the delay caused by continuous sensory feedback is reduced, 
as the motor command (feedforward program) rapidly generates 
a prediction of the sensory consequences of the action (106, 107). 
For this reason, when sensory guidance is unreliable, slow, or 
associated with negative effect, both the ability to first acquire 
a motor command, in addition to regulating a stored motor 
command, would be impaired, leading to limited accuracy and 
flexibility (105). Therefore, deficiencies in sensorimotor integra-
tion would present as difficulties in effectively utilizing sensory 
feedback to correct movements, resulting in coordination diffi-
culties and sensory reactivity abnormalities comparable to those 
seen in ASC (100, 105–112).

A number of studies have shown difficulties in sensorimotor 
integration in ASC. For example, Ronconi et  al. (113) demon-
strated that visual attention was impaired in children due to an 
imbalance of sensorimotor feedforward and feedback programs, 
by demonstrating a slower zoom-in and zoom-out mechanism in 
the eye. Schmitt et al. (114) and Mosconi et al. (115) demonstrated 
that those with ASC were significantly less accurate when moving 

their eyes from a central fixation to a peripheral target, showing 
increased saccade variability and difficulties in decelerating sac-
cades. Wilkes et  al. (116) also showed that children with ASC 
were delayed in initiating a saccade when following a moving 
light with their eyes compared to controls. Price et al. (117) dem-
onstrated compromised visual sensitivity to human motion, and 
Glazebrook et al. (118) showed that adults with ASC had difficulty 
coordinating both hand and eye movements, taking significantly 
longer to complete integrated tasks than typical controls. These 
low level difficulties in initiating and adjusting saccades, and 
coordinating hand and eye movements, could explain a range of 
social and communication difficulties seen in ASC. For example, 
delay in looking to pertinent social cues (119–121), particularly 
for fast paced dynamic stimuli (122–125), with resulting difficul-
ties in early social engagement and later ability to interpret others 
emotions and behavior (122, 123, 126, 127).

Studies have also shown that those with ASC have difficulty 
integrating sensory information in motor learning. For example, 
when children with ASC performed a motor learning task on a 
touch screen, the presence of a visual distractor did not impact 
their performance like with typical controls (109). Gepner 
suggested a correlation between visuo-postural detuning and 
ASC severity, whereby individuals with ASC had weaker pos-
tural stability and reactivity to environmental motion (128). 
Similarly, children with ASC are significantly less able to correct 
movements from visual compared to proprioceptive feedback 
(128–131). Studies have also shown difficulties specifically with 
motor movements, which require integrating visual cues or other 
sensory signals (18, 103, 132), and children with ASC have dif-
ficulty specifically when tracing shapes using feedback from a 
mirror image, and imitating others actions (133). These results 
all suggest that those with ASC do not tend to incorporate other 
sensory inputs, particularly visual feedback, into motor learning 
and have difficulty coordinating visual and motor movements. 
These difficulties could particularly impact social learning from 
imitation and integration of eye movements with gesture dur-
ing social communication in ASC. However, further research is 
needed to explore this possibility.

Despite the possible interpretations of perceptual feedback 
being incorrect, Vandenbroucke et al. (134), by using a forced-
choice texture segregation task, went on to suggest that with 
considerable practice individuals with ASC were able to compen-
sate for the imbalance in feedback and build on a feedforward 
program. Larson et al. (135) also noted that the mechanisms of 
acquisition and adaptation of feedforward programs are indistin-
guishable between children with ASC and typically developing 
children. Furthermore, Gowen et al. (132) demonstrated that in 
comparison to neurotypical controls, individuals with ASC rely 
to a greater extent on a goal directed pathway, established in part 
by a feedforward program. Similarly, Rinehart et al. (136) dem-
onstrated an intact ability to execute programed movement but 
atypical movement preparation. Nazarali et al. (137) demonstrated 
that individuals with ASC have difficulty reprograming already 
planned movements when given additional sensory information, 
and Glazebrook et al. (118) showed that individuals with ASC can 
use sensory input such as vision and proprioception, although the 
greater visual-proprioceptive integration required the more time 
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was taken by the ASC group to perform the movements. Thus, 
with age, through continual practice, coping strategies and natu-
ral development, known, repetitive movements and feedforward 
motor programs appear to improve in ASC.

BioLoGiCaL Basis oF iMpaired 
sensoriMotor inteGration in asC

In addition to psychological research given above linking senso-
rimotor integration to ASC, there is a substantial amount of bio-
logical evidence that collaborates this relationship. For example, 
difficulties in sensorimotor integration in ASC have been linked 
to the cerebellum, such as saccadic accuracy being connected 
to impairment of the error-reducing function of the cerebellum 
(114). Other examples include a correlation in the magnitude 
of cerebellar hypoplasia with decreased exploration in children 
with ASC (138), and an association of cerebellum volume with 
specific difficulties incorporating visual cues in motor learning 
(129). The cerebellum is reported to contain pathways that link 
sensory signals to motor areas in the brain (139), and these are 
important in controlling and coordinating movement (140). 
Stoodley and Schmahmann (141) specifically showed an anterior 
sensori-motor versus posterior cognitive/emotional dichotomy 
in the cerebellum. Research has also shown that the cerebellum 
has a fundamental role in maintaining the equilibrium between 
feedback and feedforward programs in sensorimotor integra-
tion, for example, Kawato et al. (142) found that the cerebellum 
was the most likely site for feedforward programs to be stored, 
by using functional magnetic resonance imaging (fMRI) to 
measure specific brain activity during coordinated and planned 
movement; Brooks (105) and Mostofsky et al. (143) noted that 
the cerebellum was responsible for triggering learned movement 
(feedforward programs); and Fuentes and Bastian (144) sug-
gested that the cerebellum is intrinsic to predicting movement 
outcomes.

Abnormalities in the cerebellum of individuals with ASC 
are one of the most consistent neuroanatomical findings (145). 
McAlonan et al. (146) found structural abnormalities in the cer-
ebellum with deficits in gray and subcortical white matter. Using 
fMRI, atypical patterns of both cerebral activation (indirectly 
detected by increased cerebral blood flow) and deactivation 
(signaled by decreased cerebral blood flow) have been noted in 
ASC: where cerebral activations during a simple motor move-
ment were found to be mainly confined to the anterior cerebel-
lum in TD adults but also spread to the posterior cerebellum in 
ASC adults (147–149). Additionally, 95% of autistic cerebella 
examined at autopsy showed clearly defined anatomic abnor-
malities; most commonly a significantly decreased number of 
Purkinje cells, a large inhibitory neuron thought to regulate 
motor function (145, 150, 151).

Moreover, the basal ganglia, which is considered to be 
reciprocally connected to the cerebellum (152), is also reputed 
to play a functional role in both motor and sensory control and 
integration (152, 153). More specifically, it is hypothesized that 
within the basal ganglia, there are two distinct striatal pathways 
that facilitate both movement and sensory representation. 
Although it is unclear whether these are distinct or seemingly 

intertwined (154), a direct pathway appears to be responsible for 
facilitating movement whereas an indirect pathway is thought 
to inhibit both competing motor programs and afford sensory 
control by filtering and gating sensory input (155). The basal 
ganglia have been shown to have decreased volume in ASC 
(156). Furthermore, the striatum, one of the largest components 
of the basal ganglia, is reported as having excess functional con-
nectivity in ASC (157).

In addition to anatomical differences of the cerebellum and 
basal ganglia being associated with sensorimotor impairment 
in ASC, both brain regions contain large GABAergic inhibitory 
neurones. More specifically, Purkinje cells, considered the sole 
output of all motor coordination in the cerebellar cortex (158) 
and “medium spiny neurons,” thought to form 95% of the stria-
tum in the basal ganglia (159). The inhibitory neurotransmitter 
GABA (gamma-aminobutyric acid) and the main excitatory 
neurotransmitter glutamate released by these neurones also play 
an important role in sensory discrimination in ASC (160). GABA 
is known to decrease the firing of neurons (161), thereby reducing 
and inhibiting sensory feedback. Alterations in GABAergic trans-
mission have been associated with sleep disorders (melatonin 
production) (162), mood disorders, anxiety and other hyper-
excitable states such as epilepsy (163, 164). GABA levels have 
also been shown to be lower in the auditory and motor cortices 
of children with ASC with a mean deficiency of GABA equating 
to 22 and 11%, respectively, in comparison to TD peers (165) 
GABAergic functioning has been implicated in tactile reactivity 
(166, 167). Moreover, reductions in GABAergic system have 
been discovered in ASC brain tissue: with significant reductions 
in GABAA receptors, 63% reduction in comparison to controls 
(168), and a reduction by 61% of the glutamic acid decarboxylase 
protein (the enzyme responsible for converting glutamate into 
GABA) (169). Similarly, increased glutamate levels (excitatory 
neurotransmitter) in blood and platelets have been found in 
ASC subjects, suggesting impaired conversion of glutamate to 
GABA, consequently increasing the excitatory state of the brain 
(169, 170). A GABA receptor gene, GABRB3, is one of the key 
candidate genes for ASC as found in humans as well as in animal 
models (171, 172). A study by Green et al. (173) demonstrated 
that participants with ASC also showed stronger activation of the 
amygdala toward sensory stimuli, which is thought to perform 
a pivotal role in emotion processing and decision-making; 
GABAergic neurons are also present in the amygdala.

Further evidence of an imbalance in these vital neurotrans-
mitters in ASC arise from treatments for hyperactive disorders of 
the auditory system, such as tinnitus and hyperacusis (a lowered 
threshold for discomfort from sounds that typical individuals 
do not find unpleasant) (174), where the administration of 
benzodiazepines such as Clonazepam (an allosteric modulator 
of the GABAA receptor) have been used to restore the balance 
between inhibition and excitation in the brain (174). Banji 
et al. (175) also demonstrated that induced cerebellar damage 
in mice instigated motor clumsiness, similar to that seen in 
ASC, the motor clumsiness was then reduced by treating the 
mice with green tea extract (Camellia sinensis). l-Theanine is 
a major amino acid component found almost exclusively in 
green tea (176–178) and blocks the binding of l-glutamic acid 
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to glutamate receptors in the brain (176, 178, 179), thereby 
perhaps aiding the improvement in motor activity by increasing 
inhibition of movement.

iMpaCt oF sensoriMotor 
diFFiCULties in asC

Further evidence to support our hypothesis can be found in 
studies that have demonstrated sensorimotor difficulties and 
associated biological markers specific to ASC. In particular, dif-
ficulties with accuracy, speed, and initiation of eye movements; 
coordination of eye and body movements; and the ability to 
integrate visual information into motor learning could all have 
a profound impact on social learning opportunities during 
development and maintenance of social and communication 
difficulties in ASC. For example, difficulty quickly moving and 
correcting saccades could explain the well-established lack of 
attention to social cues in young children who go onto develop 
ASC (180, 181), with a cascading effect on later social develop-
ment and learning (124). Difficulties integrating eye movements 
with body movements could account for social communication 
and interaction difficulties in ASC such as integrating eye con-
tact with gesture and speech (1). Difficulties integrating other 
cues, particularly visual information in motor learning, could 
explain the challenges faced in social imitation in ASC [e.g., 
Ref. (182)]. Social imitation is key for social learning and could 
also contribute to the development and maintenance of social 
difficulties in ASC. Sensorimotor impairment could also explain 
other autistic traits such as echolalia and repetitive behaviors. 
A major study in brain anatomy using MRI by McAlonan et al. 
put forward that the impaired inhibition of sensory feedback 
through defective sensory gating (the brain’s selective processing 
of sensory stimuli) found in ASC, could lead to difficulties where 
the individual is unable to inhibit repetitive thoughts, actions, 
or speech (146). Indeed, non-ASC related research has already 
demonstrated links between sensorimotor control and social 
behavior. Skewes et al. (183), by noting how the size and preci-
sion of a visual illusion may influence visual motor behavior, 
suggest that potentially, the way in which sensorimotor control 
adapts to the opinions of others may help facilitate smoother 
social interaction. Hoke et al. (184) identified that the integra-
tion of sensory and motor processing underlies social behavior 
in tungara frogs.

A number of theories have attempted to explain the develop-
ment of ASC, including ability to understand mental states to 
predict others behavior (Theory of Mind) (185); impaired eye 
gaze detection (186) or lack of early social attention in favor 
of objects (124). These theories have failed to explain the wide 
range of difficulties seen in ASC from social communication to 
sensory reactivity and repetitive motor movements. Sensory and 
motor difficulties have also been considered largely peripheral to 
ASC, with atypical sensory reactivity only recently being added 
to DSM-5 diagnostic criteria (1). However, the wide range of dif-
ficulties in ASC could be explained by using a wider perspective: 
a central theory of sensorimotor integration impairment and 
the ensuing “chain” of likely misalignments and misjudgments 
that follow. Early development theories such as Jean Piaget’s 

developmental stage theory proposed that sensorimotor integra-
tion was central to neurotypical development and where a child 
struggles to coordinate their initial sensory experiences, further 
stages of development will be impaired (187).

FUtUre direCtions

To the authors’ knowledge, there are no studies that have explored 
the impact of sensorimotor difficulties (such as saccades or 
impaired motor learning) on the development or maintenance 
of core ASC symptoms. Sensory feedback and feedforward 
programs are seemingly pivotal to successful sensorimotor 
integration. A greater understanding of these systems and the 
impact of sensorimotor integration in ASC may be a crucial way 
forward to understanding the development and maintenance of 
this condition. For example, research that identifies a significant 
correlation between motor coordination, sensory reactivity, and 
the severity of ASC could demonstrate that these are fundamental 
and pervasive difficulties associated with and reflective of the 
scale of the condition. Similarly, further research into the varying 
degrees of sensorimotor difficulties and more specifically at the 
level the difficulties occur, such as the more complex higher order 
level including anticipation and timing, may also be crucial in 
identifying if and which area the sensorimotor chain is affected in 
ASC. There also appears to be a critical window for the impact of 
such sensorimotor deficits on cognitive and social development: 
below the age of two. Consequently, interventions incorporating 
both structured physical tasks and sensory environments below 
this age should have particular focus. Such intervention is also 
recommended in Barenek’s review of the efficacy of sensory and 
motor interventions in ASC (2002), where it is noted converging 
evidence would suggest beginning sensorimotor inventions at an 
early age may be beneficial. Similarly, sensorimotor integration 
difficulties in comorbid conditions, such as dyslexia and dyscal-
culia should also be explored, as finding a recurrent thread to 
specific learning difficulties in ASC could alter the type and time 
of intervention.

Additionally, the apparent deficiency of the inhibitory neuro-
transmitter GABA in the cerebellum of ASC individuals should 
also be an area for consideration, as this could have a global 
impact on sensorimotor planning, cognitive and social develop-
ment. The introduction of a non-evasive GABA substitute, such 
as oolong tea, could therefore lead to a decrease in sensory feed-
back, supporting an equilibrium with feedforward programing 
and ultimately moderate planned movement.

ConCLUsion

To conclude, we hypothesize that social communication, interac-
tion difficulties, and repetitive behaviors in ASC appear to be 
associated with motor coordination and sensory reactivity, spe-
cifically attaining and coordinating the delicate balance between 
the feedforward programs and feedback systems of sensorimotor 
integration. However, once reached, research indicates that in 
comparison to controls, the feedforward program can be main-
tained and utilized just as efficiently in ASC provided environ-
mental cues stay the same. Such conclusions are reinforced when 
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listening to the lived experiences of ASC individuals; “I can do 
buttons up fine, unless I concentrate too hard.”

All studies included in this research have been summarized in 
Table S1 in Supplementary Material.
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