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An overall increase in inflammatory cytokines with age in both the blood and the central 
nervous system (CNS) has been proposed to explain many aspects of ageing, including 
decreased motor function and neurodegeneration. This study tests the hypothesis that 
age-related increases in inflammatory cytokines in the blood and CNS lead to facial 
motor neuron degeneration. Groups of 3–5 female Sprague-Dawley rats aged 3, 12–18, 
and 24 months were used. Twelve cytokines interleukin (IL)-1α, IL-β, IL-2, IL-4, IL-5, IL-6, 
IL-10, IL-12p70, IL-13, tumor necrosis factor-α (TNFα), interferon-γ, and granulocyte 
macrophage-colony stimulating factor were measured in blood plasma and compared 
with those in the brainstem after first flushing blood from its vessels. The open-field test 
was used to measure exploratory behavior, and the morphology of the peripheral target 
muscle of facial motor neurons quantified. Total numbers of facial motor neurons were 
determined stereologically in separate groups of 3- and 24-month-old rats. Ageing rats 
showed a significant 30–42% decrease in blood plasma (peripheral) concentrations of 
IL-12p70 and TNFα and a significant 43–49% increase in brainstem (central) concentrations 
of IL-1α, IL-2, IL-4, IL-10, and TNFα. They also showed significant reductions in motor 
neuron number in the right but not left facial nucleus, reduced exploratory behavior, and 
increase in peripheral target muscle size. Marginal age-related facial motoneuronal loss 
occurs in the ageing rat and is characterized by complex changes in the inflammatory 
signature, rather than a general increase in inflammatory cytokines.
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inTrODUcTiOn

While there is abundant information from experimental studies on the survival requirements 
of young motor neurons, not much is known about adult and aged motor neurons, and 
there is reason  to think that young motor neurons are inappropriate models for age-related 
neurodegeneration, such as MND (1). Using a nerve avulsion model and stereological analysis 
in the confocal microscope (Figure  1), we previously reported age-related differences in rat 
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FigUre 1 | Optical disector method in the confocal microscope for stereological estimation of total numbers of facial motor neurons. (a) Motor 
neurons, pseudocolored green, are identified by their size and morphology when their nucleoli, nuclei, and Nissl bodies are fluorescently stained by YOYO-1 iodide. 
Neuroglial cells are approximately 20% of the size of motor neurons and easily discounted from counting. (B) Same field as in (a) but with a 10-μm Z-step and 
pseudocolored red. (c) Images (a) and (B) merged so that only motor neurons in the look-up section (green) are counted.
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facial motor neuron survival (2–6). Here, we consider whether 
age-related increases in inflammation “inflammaging” (7) can 
affect facial motor neuron survival, by correlating age-related 
motoneuronal survival with changes in the central nervous 
system (CNS) parenchyma in the brainstem at the level of 
the facial nucleus and in the blood.

Inflammation and its regulation by cytokines is considered 
to play an important role in both healthy aging of the nervous 
system and neurodegeneration (7, 8). Inflammatory cytokines 
have also been reported to affect motor functions (9). The link 
between aging and inflammation has led to the concept of 
“inflammaging” (10), which is defined as a low-grade chronic 
inflammatory state associated with the aging process. This 
concept centers on age-related inflammatory cytokine-driven 
innate immune responses in the peripheral immune system. 
Inflammaging has also been adduced to help explain age-related 
neuronal degeneration in the CNS (7, 11). The extent to which 
information derived from studies of the peripheral immune 
system can be transposed to the CNS however is unclear because 
there are both unique immunocompetent cells (microglia) in 
the CNS, and there is evidence of significant cross talk between 
changes in the peripheral immune system and changes in the 
aging CNS (12). Almost all cytokines in the peripheral immune 
system are also produced in the CNS (13), and cytokines 
produced peripherally can act on the CNS through several 
mechanisms (14–16). Just how CNS and peripheral cytokines 
alter with age, however, is unclear as typical CNS samples also 
contain large amounts of peripheral blood (17, 18), raising the 
possibility that larger changes in systemic cytokines may mask 

smaller changes in CNS cytokines. In this study, we have sought 
to distinguish age-related changes in CNS cytokines from those 
occurring systemically, by analyzing the brainstem at the level of 
the facial nucleus after flushing the blood from its vessels. Using 
a multivariate approach, we have studied 12 cytokine-proteins 
that are implicated in both aging (7, 8, 19) and neurodegenera-
tive conditions (20, 21) to identify the inflammatory signature 
characteristic of healthy aging in rats. The cytokines studied 
were interleukin (IL)-α, IL-β, IL-2, IL-4, IL-5, IL-6, IL-10, 
IL-12p70, IL-13, tumor necrosis factor-α (TNFα), interferon 
(IFN)-γ, and granulocyte macrophage-colony stimulating factor 
(GM-CSF). Of these cytokines, IL-1α, IL-β, IL-2, IL-6, IL-12p70, 
TNF-α, IFNγ, and GM-CSF are pro-inflammatory, whereas 
IL-4, IL-5, IL-6, IL-10, and IL-13 are anti-inflammatory (22, 
23). Age-related changes in cytokines have been compared with 
age-related changes in total numbers of facial motor neurons as 
well as age-related changes in the fiber density of the peripheral 
target muscle and changes in exploratory behavior.

MaTerials anD MeThODs

animals
For the cytokine analysis, morphometry of muscle, and open-
field tests, groups of 3–5 female Sprague-Dawley rats aged 3, 
12–18, and 24  months were used. For motor neuron counts, 
groups of 6–12 rats aged 3 and 24 months were used. Aging rats 
are not available commercially in Australia. Rats were therefore 
obtained as adults and maintained until they are 24-month-old 
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TaBle 1 | slope differences (% difference) of 3- and 24-month 
homogenate samples compared with standard curves.

cytokine standard sample% difference

3 months 24 months

IL-1α 0.59 0.09
IL-1β 8.78 4.07
IL-2 6.42 10.96
IL-4 4.07 −7.56
IL-5 30.51 3.82
IL-6 −7.22 11.56
IL-10 28.07 −2.24
IL-12 (p70) −8.32 3.57
IL-13 9.67 −1.61
TNF-α −1.82 −2.46
IFN-γ −1.01 4.22
GM-CSF −21.79 −1.09
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in the rodent facility of the University of Adelaide before use. 
While the maximum reported lifespan of the ad  libitum-fed 
Sprague-Dawley rat is 36 months (24), we found approximately 
50% of the rats in our study had died by 24 months, as reported 
previously for this strain (2, 4, 25). Animals were housed under 
a standard 12-h on/off lighting regime and given food and water 
ad libitum. The experimental study complied with the Australian 
code for the care and use of animals for scientific purposes (2016) 
and was approved by the University of Adelaide Animal Ethics 
Committee (M-57-2013). The aging animals analyzed here did 
not have significant health issues although they did have age-
related conditions, such obesity, lipomas, and arthritis that are 
typical of an aging population.

stereological counts of Facial Motor 
neurons
In rats terminally anesthetized with sodium pentobarbitone, the 
brain was fixed by intracardiac perfusion with 4% phosphate-
buffered paraformaldehyde following a saline rinse. Also, 100 μm 
Vibratome sections were cut serially through the facial nucleus 
and numbers of motor neurons estimated in every fifth section 
using an optical disector method modified for use in the confocal 
scanning laser microscope as described previously (3).

image Processing and Morphometric 
analysis of Peripheral Target Muscle
Also, 5-μm microtome sections of the paraffin-embedded 
peripheral muscle targets of facial motor neurons (i.e., snout 
muscle) were stained with hematoxylin and eosin for general 
muscle morphology measurements (26) using the segmentation 
and analysis method (FIJI, Adelaide Microscopy). High qual-
ity 20× magnification images were collected via the NDPview 
software to ensure the images retained characteristics from 
initial acquisition for analysis and would not require enhancing 
in terms of brightness or contrast. Briefly, the scale on the images 
was set so that all subsequent measurements were correct (e.g., X 
number of pixels for a known distance). The threshold of images 
was then automatically adjusted by Image J before converting the 
colored image to a binary image. The binary watershed function 
was used to ensure real muscle fibers were being segmented as 
“real particles.” Finally, particles were identified as the output 
type “maxima within tolerance” and noise tolerance was set to 
200.00 before being analyzed.

Functional Test
An open-field test was used as a measure of exploratory behavior 
(27). A 100 cm × 100 cm square box acted as the “open field,” 
and rats were placed in the center of the open-field arena. 
Movement, in terms of total distance traveled, was then recorded 
for a period of 5 min. To ensure consistency between groups, 
the time at which the test was conducted, color, and texture of 
the open-field box, lighting, temperature, ambient noise, and 
olfactory cues were all controlled for. The Stoelting “ANY-maze” 
software was used as the tracking system that automated this 
functional test (28).

cardiac Puncture, saline-Perfusion, 
Protein extraction, and estimation
Rats were deeply anesthetized by inhalation of 5% isofluorane 
in 2 l oxygen/min, and while the anesthetic nose cone was still 
attached, cardiac puncture was performed to withdraw blood 
into EDTA-coated blood tubes. Blood plasma was retrieved and 
stored at −80°C. Immediately following cardiac puncture, rats 
were perfused transcardially with approximately 200 ml of sterile 
saline until the fluid flowing out of the right atrium was clear. 
The animals were then decapitated and the brainstem removed, 
trimmed at the mid pons level and approximately 1 mm below the 
lower border of the pons to ensure it contained the facial nucleus, 
snap-frozen, and stored at −80°C. Frozen brainstem samples were 
homogenized in lysis buffer made up with PBS, triton-X, and 
protease inhibitors (Roche, cOmplete tablets). The supernatant 
was retrieved from homogenized samples and stored at −80°C. 
The BioRad DC Protein Assay (a modified Lowry method) was 
used to quantify the amount of protein in each sample as per the 
manufacturer’s instructions.

Multiplex assay
Bio-Plex Pro Rat 12 plex cytokine assay kits (BioRad, New South 
Wales) were used to measure the concentration of 12 cytokines 
within each sample. Samples were loaded onto 96 well plates 
in duplicates (3- and 12- to 18-month-old rats) and triplicates 
(24-month-old rats). Plates were read using a Magpix Luminex 
multiplexing platform, which uses a fluorescent imager (Abacus 
ALS, Queensland) and data expressed as picogram/milliliter of 
concentration. Experimental data were calibrated against standard 
curves of all 12 cytokines (BioRad, New South Wales). To validate 
the accuracy of the multiplex assay, a spike recovery analysis was 
performed. This involved obtaining readings for cytokine stand-
ards serially diluted in buffer as per the manufacturer’s instruc-
tion and comparing these with readings for cytokines diluted in 
brain homogenates (“spike recovery”). The later represented the 
form in which the cytokines were measured in rats of different 
ages in this study. As seen in Table 1, slope differences of ≤30% 
were found. Using a Parallelism approach, this is generally taken 
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TaBle 2 | numbers of motor neurons in the left and right facial nuclei of 3- and 24-month-old rats.

3 month-old rats 24 month-old rats

left nucleus right nucleus left + right nucleus left nucleus right nucleus left + right nucleus

3404 3676 7080 2518 2953 5471

3118 3622 6740 2461 3063 5524

3385 3631 7016 3872 3722 7594

3233 3666 6899 1982 1842 3824

3090 3305 6395 1866 1802 3668

3307 3222 6529 2389 1998 4387

2958 2306 5264

3501 4135 7636

2821 3329 6150

2232 2295 4527

3127 3990 7117

3105 3398 6503

n 12 12 12 6 6 6
Mean 3106.75 3381.25 6488.00 2514.67+ 2563.33* 5078.00
SEM 97.20 165.08 246.85 292.43 324.73 597.82
% loss vs. 3-month-old rats 19.06 24.19 21.73

*p = 0.041.
+p = 0.052 vs. nucleus of same side of 3-month-old rats.
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to indicate that there are minimal effects of the matrix on the 
assays and resultant standard curves (29).

statistical analysis
Mann–Whitney U tests were used for comparisons of motor 
neuron number, morphometric analysis of muscle, and func-
tional test results. A general linear model (SPSS statistics 22, 
IBM) was used to generate descriptive statistics for all three age 
groups and to check for interactions between cytokines. The 
12 cytokines within the same sample were treated as “repeated 
measures” within each animal. Age categories were treated as 
between-subjects factors, and the 12 cytokines were treated as 
within-subjects factors. Dunnett’s post hoc test was used to test 
for differences between cytokines. The omnibus/homogeneity 
test confirmed that the spread of scores was roughly equal across 
the three age groups, which meant that the comparisons were 
between populations with equal variances. A multivariate test 
was then run between age categories to determine the signifi-
cance of differences within cytokines in the different age groups. 
Statistical significance of p <  0.05, p <  0.01, and p <  0.001 is 
reported.

resUlTs

age-related changes in Facial Motor 
neurons and Their Peripheral Targets
Mean total numbers of motor neurons in the brainstems of 
24-month-old rats were 22% lower than those of 3-month-old 
rats (Table 2). While this reduction was statistically significant for 
the right facial nucleus (24% reduction, p = 0.041), it just failed 
to reach significance for the left (19% reduction, p = 0.052). This 

probably reflects the small (n = 6) sample size for the 24-month-
old rats. In contrast to the age-related reduction in number 
of facial motor neurons, analysis of the snout muscle, which 
represents the peripheral targets of these motor neurons, reveled 
an increase in muscle fiber size. Thus, mean pixel density meas-
urements (pixels/21 cm2) from segmentation and analysis of 20× 
images showed that 3-month-old rats had 49% smaller (p < 0.05) 
peripheral muscle fiber densities (22,535 ± 822) compared with 
24-month-old rats (43,786 ± 7564) (Figure 2).

age-related changes in Open-Field 
exploratory Behavior
In general, 3-month-old rats were more active. This qualitative 
observation was confirmed using total distance traveled (meters) 
during the open-field test, where 3-month-old rats showed 44% 
more (p  <  0.05) exploratory behavior than 24-month-old rats 
(Figure 3).

age-related changes in Brainstem and 
serum cytokine levels
Overall, increasing age from 3 to 24  months was associated 
with an increase in brainstem cytokine levels (Figure 4) and a 
decrease in plasma cytokine levels (Figure 5). Analysis of rats 
aged 12–18 months revealed that this did not affect cytokines 
uniformly. Thus, in the brainstem of 12- to 18-month-old rats, 
the concentrations of three cytokines were significantly lowered 
by 17–65% compared to 3-month-old rats (p  <  0.05). The 
cytokines and their concentrations (picogram/milliliter) were 
IL-5 (303 ± 12 vs. 355 ± 13), IL-6 (203 ± 21 vs. 335 ± 32), and 
IFNγ (353 ± 44 vs. 519 ± 47). In contrast, there were no significant 
differences in plasma samples of 3- and 12- to 18-month-old rats. 
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FigUre 3 | Mean ± seM (meter) total distance traveled in the open field. Asterisk denotes p < 0.05 (Mann–Whitney U test) showing 24-month-old rats 
(n = 5) traveling a significantly shorter distance vs. 3-month-old rats (n = 4). Example representative images of an adult rat exploring the open-field (gray arrow) and 
an aged rat crouched in the open-field corner (black arrow).

FigUre 2 | significantly lower pixel density measurements (pixels/21 cm2) of 3-month-old rats’ snout muscle fibers compared with 24-month-old 
rats (Mann–Whitney U test, p < 0.05). Representative 20× H&E images of 3-month (gray label, n = 5) and 24-month (black label, n = 4) images.
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This suggests that regional differences (plasma vs. brainstem) in 
age-related changes in cytokines are in place by 12–18 months 
of age.

In the brainstem of 24-month-old rats, the concentrations 
of five cytokines were significantly increased by 23–30% 
compared to 3-month-old rats. The cytokines and their 
concentrations (picogram/milliliter) were IL-1α (499 ±  31 vs. 
351 ± 30, p < 0.05), IL-2 (1714 ± 84 vs. 1320 ± 44, p < 0.01), 
IL-4 (228  ±  13 vs. 164  ±  8, p  <  0.01), IL-10 (3369  ±  262 vs. 
2363 ± 59, p < 0.05), and TNFα (797 ± 41 vs. 597 ± 16, p < 0.01). 
While the three cytokines whose concentrations were decreased 
in the brainstems of 12- to 18-month-old rats were no longer 
decreased at 24 months, they did not contribute to the increase 
in cytokines seen at 24 months. GM-CSF was also higher in the 

24-month-old group although this just failed to reach statistical 
significance. When compared to 12- to 18-month-old rats, the 
concentrations of seven cytokines were significantly increased 
by 28–61% in the brainstem of 24-month-old rats. The cytokines 
and their concentrations (picogram/milliliter) were IL-1α 
(335 ± 28 vs. 499 ± 31, p < 0.05), IL-4 (164 ± 11 vs. 228 ± 13, 
p < 0.01), IL-6 (203 ± 21 vs. 373 ± 23, p < 0.01), IL-13 (252 ± 6 
vs. 322 ± 17, p < 0.05), TNF-α (530 ± 14 vs. 797 ± 41, p < 0.01), 
IFNγ (353 ± 44 vs. 543 ± 34, p < 0.05), and GM-CSF (374 ± 30 
vs. 604 ± 57, p < 0.05). Three of these cytokines (IL-1α, IL-4, 
and TNF-α) were also elevated in 24-month-old rats when 
compared with 3-month-old rats, indicating that changes occur 
earlier and are longer lasting in these cytokines compared to 
other brainstem cytokines.
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FigUre 5 | (a) Cytokine levels (picogram/milliliter, mean ± SEM) in the plasma of 3-, 12- to 18-, and 24-month-old rats. Asterisk denotes p < 0.05 vs. 3 months. 
(B) Color-coded table showing changes in cytokine levels in the plasma (mean ± SEM). Compared to 3-month-old rats (no color), >15% decrease is represented by 
light blue and >25% by dark blue. (c) Summary of p-values of plasma cytokine changes with age. Statistically significant differences are italicized and underlined. 
Note that changes in IL-1β and IL-13 showed trends that were not statistically significant.

FigUre 4 | (a) Cytokine levels (picogram/milliliter, mean ± SEM) in the brainstem of 3-, 12- to 18-, and 24-month-old rats. A single asterisk and double 
asterisks denote p < 0.05 and p < 0.01 vs. 3 months, respectively. A single star and double stars denote p < 0.05 and p < 0.01 vs. 12–18 months, respectively. 
(B)  Color-coded table showing changes in cytokine levels in the brainstem (mean ± SEM). Compared to 3-month-old rats (no color), >15% increase is represented 
by light red and >25% by dark red, >15% decrease is represented by light blue and >25% by dark blue. (c) Summary of p-values of brainstem cytokine changes 
with age. Statistically significant differences are italicized and underlined. Note that changes in IL-5 and GM-CSF showed trends that were not statistically significant.
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A contrasting picture emerged for the effects of aging on 
cytokine levels in plasma derived from peripheral blood. 
Compared to 3-month-old rats, 24-month-old rats had signifi-
cantly lower mean plasma concentrations (picogram/milliliter) of 
IL-12p70 (1006 ± 255 vs. 1778 ± 160) and TNF-α (370 ± 106 vs. 
720 ± 57) (Figure 5). Interestingly, while TNF-α was decreased 
in the plasma of 24-month-old rats, it was increased in the 
brainstem. Serum concentrations of IL-1β and IL-13 were also 
lower in 24-month-old rats, although this just missed statistical 
significance. In contrast to the significant increases in brainstem 
cytokines seen in 24-month-old rats compared with 12- to 
18-month-old rats, no significant differences in plasma cytokine 
concentrations were found when these two age groups were com-
pared. Thus, changes in plasma cytokine concentrations appear to 
have stabilized by 12–18 months, whereas changes in brainstem 
cytokine concentrations continue up to 24 months.

DiscUssiOn

We report that aging (24-month-old) rats (i) have lower blood 
plasma (peripheral) inflammatory markers, (ii) have higher 
brainstem (central) inflammatory markers, (iii) show reduced 
exploratory behavior, (iv) have larger peripheral target muscle for 
facial motor neurons, and (v) have fewer facial motor neurons 
than 3-month-old rats. This points to complicated changes occur-
ring in both the inflammatory signature and peripheral target 
interactions of aging rats that are associated with age-related 
motor neuron loss.

The median lifespan of ad libitum-fed Sprague-Dawley rats is 
24–34 months (30, 31) and in line with other studies, we found 
that 50% of our ad libitum-fed Sprague-Dawley rats died by the 
age of 24 months (4, 25). It is possible that the age-related health 
changes found in the rats analyzed here such as obesity, lipomas, 
and arthritis have contributed to the changes in inflammatory 
markers measured. However, these changes, often referred to as 
“frailties” (32, 33), are commonly found with age and so to have 
used rats where such age-related conditions are absent may not 
have been representative of normal aging. It is also possible that 
rats showing reduced mortality at 24, such as Fischer 344 rats and 
diet-restricted rats (2, 4), may show different cytokine changes.

We found statistically significant increases in IL-1α, IL-2, IL-4, 
IL-6, IL-10, IL-13, TNF-α, IFNγ, and GM-CSF in the brainstem. 
Of these, IL-1α, IL-2, TNF-α, IFNγ, and GM-CSF are pro-inflam-
matory, IL-4, IL-10, and IL-13 are considered anti-inflammatory, 
and IL-6 falls under both categories. We also found statistically 
significant decreases of IL-12p70 and TNF-α in the plasma, 
both of which are pro-inflammatory. While this is a complicated 
picture, our results could be taken to indicate that aging is associ-
ated with a general decline in peripheral inflammatory cytokines 
and a general increase in central inflammatory cytokines. Age-
related increases in CNS cytokines have been reported by others 
(12, 34–36) and associated with increased vulnerability of the 
CNS to injury (37–39) as well as implicated in the development 
of age-related neurodegeneration (40–42). In contrast to the 
brainstem region of the CNS, we find that peripheral cytokines 
show a general decline with aging, which is at odds with initial 
studies on “inflammaging” by others showing increased levels of 

individual inflammatory markers in the periphery, especially IL-6 
(43–45). Notwithstanding the difficulty of extrapolating from rats 
to human lifespan, one possible reason for this difference could 
be that early studies employed individual ELISA kits/antibodies 
each with different sensitivities for single cytokines and used 
different samples with each kit. Also, the view that peripheral 
cytokines increase with advancing age has been largely based on 
measurements of IL-6 even though Franceschi (46) showed that 
other cytokines, such as GM-CSF, were reduced in healthy aged 
humans. This highlights the need to study many inflammatory 
mediators within the same sample.

In adult mice, elevated levels of peripheral inflammatory 
cytokines after LPS challenge also decrease exploratory behav-
ior and is believed to facilitate recovery from acute infections 
(47,  48).  In our study, we found lower levels of exploratory 
behavior in 24-month-old rats, but this was associated instead 
with lower levels of peripheral cytokines compared to 3-month-
old rats. Only in the brainstems of 24-month-old rats did we find 
evidence of an increase in inflammatory cytokines. These results 
indicate that age, the site of inflammation (central or peripheral), 
and its time-course (acute or chronic) all likely contribute to 
behavioral changes.

Peripheral muscle wasting has been associated with increased 
cytokine signaling, especially with TNF-α largely implicated in 
the process (49, 50). The larger peripheral target muscle morpho-
metry of 24-month-old rats observed in this study, compared to 
3-month-old animals could be associated with the reduced levels 
of peripheral inflammatory cytokines noted. A link between 
peripheral target size and motor neuron survival is well known 
from studies of the developing nervous system (51, 52). This 
has generally been linked to the ability of the peripheral target 
to provide neurotrophic support to developing motor neurons 
(53, 54). In our study of aging rats, an increase in peripheral target 
size correlated with a decrease in motor neurons. Whether this 
reflects a decrease in peripheral neurotrophic support with age 
or is simply a result of the generally larger size of the aging rats 
is unknown.

The initial concept of inflammaging revolved around the 
low-grade amplification of pro-inflammatory cytokines (55, 56). 
However, more recent studies show increases in both pro- and 
anti-inflammatory cytokines with advancing age (57). This more 
complicated pattern of change with aging, is consistent with our 
current results, indicating that aging is not a simple matter of 
increased inflammation in the whole animal. Acknowledging 
that only 50% of the rats in our study survived to 24 months, and 
so must be considered aging “survivors,” the general decrease in 
peripheral cytokines could be viewed beneficial, possibly ame-
liorating age-related increases in other inflammatory mediators 
that were not measured here. Further studies, perhaps employing 
heterochronic parabiosis, involving the surgical attachment of 
young and old organisms so that they share a common vascular 
system (58, 59) are needed to address this point. Neither do 
we know if the rats that reached 20 months but failed to reach 
24 months of age showed increased levels of peripheral cytokines, 
in keeping with the orthodox concept of inflammaging (60), since 
we did not analyze the blood in these rats that died early. Our data 
show no consistent increase in most of the cytokines measured 
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from 3 to 12–18 to 24 months, but we cannot discount changes 
occurring around the 24-month mark in these cytokines. While 
we have only looked at 12 cytokines, this result forces the conclu-
sion that changes in the total inflammatory signature are likely to 
characterize aging and that these changes are different in the CNS 
and periphery. Notwithstanding the possibility that our results on 
the brainstem may not generalize the rest of the CNS, this view 
runs contrary to the concept of “inflammaging” for the whole 
animal and the various ways this concept has been adduced to 
explain age-related neuronal degeneration (48, 61).

cOnclUsiOn

We show that the peripheral innate immune system of adult rats 
has higher levels of cytokines than the brainstem, and this bal-
ance is reversed in aging rats. We also show that inflammatory 
changes in the aging brainstem are different to those occurring 
in the blood. If our results for the brainstem at the level of the 
facial nucleus can be confirmed generally for the CNS, they 
may have implications for the design of therapeutic strategies 

for age-related diseases affecting the CNS or other parts of the 
body. The discrepancy between our results and others calls into 
question the importance of changes of cytokines with age. Our 
multi-analyte approach leads us to suggest that changes in all 
inflammatory mediators, or the “inflammatory signature,” may 
better link inflammation with regional aging processes. The 
changes in the inflammatory signature may involve an intrinsic 
loss in competency of peripheral immunity with age or be the 
result of a regulatory system where increased cytokine levels in 
the CNS feedbacks to the periphery.
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