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The most common neurodevelopmental disorders (e.g., developmental dyslexia (DD), 
autism, attention-deficit hyperactivity disorder (ADHD)) have been the subject of 
numerous neuroimaging studies, leading to certain brain regions being identified as neural 
correlates of these conditions, referring to a neural signature of disorders. Developmental 
coordination disorder (DCD), however, remains one of the least understood and studied 
neurodevelopmental disorders. Given the acknowledged link between motor difficulties 
and brain features, it is surprising that so few research studies have systematically 
explored the brains of children with DCD. The aim of the present review was to ascertain 
whether it is currently possible to identify a neural signature for DCD, based on the 
14  magnetic resonance imaging neuroimaging studies that have been conducted in 
DCD to date. Our results indicate that several brain areas are unquestionably linked 
to DCD: cerebellum, basal ganglia, parietal lobe, and parts of the frontal lobe (medial 
orbitofrontal cortex and dorsolateral prefrontal cortex). However, research has been 
too sparse and studies have suffered from several limitations that constitute a serious 
obstacle to address the question of a well-established neural signature for DCD.

Keywords: neurodevelopmental disorder, neuroimaging, brain, developmental coordination disorder, neural 
correlates

iNTRODUCTiON

Developmental coordination disorder (DCD) is a highly prevalent neurodevelopmental disorder 
(1.8–6% of school-aged children), with an early age of onset and persistence into adulthood (1–3). 
Although it is a heterogeneous disorder (4) with different phenotypes (5), it can be characterized by 
a persistent motor impairment that negatively affects daily living activities and/or academic achieve-
ment and cannot better be explained by intellectual disability or an underlying neurological condi-
tion (1). Posture, motor learning, and sensorimotor coordination are the main areas of functional 
difficulties experienced by children with DCD (6). The motor performances of children with DCD 
are slower, less accurate, and more variable than those of their peers. Characteristic signs include 
poor distal control and hand coordination, impaired balance, and difficulty in motor learning and 
motor imagery (5, 7–10), which, in turn, cause numerous functional difficulties [e.g., dressing, writ-
ing, using utensils, running, catching balls, and playing sports (11)].

No single cause has been identified, and its etiology appears to be multifactorial (12, 13). 
However, for many years, brain features have been assumed to constitute a valid explanation for 
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all the symptoms in DCD, and several hypotheses have been for-
mulated accordingly, some substantiated by behavioral studies.

It is, therefore, worth wondering whether it is currently 
possible to identify a neural signature for DCD, i.e., define the 
neuroanatomic basis of DCD (one or more brain areas or brain 
networks) in relationship with symptoms of disorder. For this 
purpose, we first reviewed studies that have made assumptions 
about specific brain areas linked to DCD, and secondly, all 
magnetic resonance imaging (MRI) studies realized in DCD 
population.

NeURAL CORReLATeS OF DCD: FROM 
eARLY HYPOTHeSeS TO THe FiRST 
BeHAviORAL STUDieS

There have been three critical stages in the search for a link 
between brain characteristics and the symptoms of DCD: 
(i) assumptions based on brain lesions (studies investigating the 
behavior of individuals with brain damage); (ii) brain hypotheses 
based on behavioral data (inferences drawn from neurological 
examinations about which neural circuitries or brain areas are 
involved); and (iii) neuroimaging studies, especially MRI. In this 
section, we deal with the first two stages.

early Assumptions about the Brain
The clinical symptoms (difficulties in postural control, balance, 
coordination, motor planning, or learning) of an underlying 
brain impairment were first reported in the 1960s, leading to 
several different assumptions about the relevant brain features, 
including impaired brain dominance (14) and hemispheric 
disconnection (15). The presence of soft neurological signs (16) 
also suggested an atypical recruitment of the cerebellum, basal 
ganglia (BG), and parietal and frontal lobes (17–19). For exam-
ple, Luria (20) analyzed the cerebral organization of perception 
and action (as well as attention, memory, speech, and intellectual 
processes), and discussed the role of the BG, and parietal and 
frontal cortices in motor dysfunctions. Observing that lesions in 
these areas could generate motor deficits in adults, he extended 
these causal links to clumsy children. He, therefore, deduced 
that occipitoparietal lesions could generate a visuospatial 
deficit, damage to the BG, and premotor cortex could impact 
the sequencing of elementary movements, and frontal lesions 
could affect action control (planning and realization). Shortly 
afterward, Gubbay (18) reported that clumsiness could be due 
to damaged neurological functions affecting the execution of 
movements (pyramidal and extrapyramidal circuits) and motor 
praxis (central nervous system, cerebellum, and peripheral 
nervous system). Finally, noting that underdevelopment of the 
cerebellum in premature or injured children causes clumsiness 
and difficulties in motor control, as well as in the performance 
of visuomotor and graphomotor tasks (despite preserved verbal 
skills), Lesný (19) suggested that atypical cerebellar development 
is implicated in DCD.

Concurrently, with these first assumptions, several more 
global approaches were proposed. Although they do not concern 
any specific disorder, they can be used to address the full range 

of neurodevelopmental disorders and account for the high rates 
of comorbidity among them. To initiate debate in neurological 
research on learning disorders and given that neurodevelopmental 
disorders are typically non-specific (symptoms and syndromes), 
heterogeneous, and frequently co-occurring, some authors 
proposed the term atypical brain development (21). This term 
acknowledged the overlap between these disorders and empha-
sized the role of the brain in their etiology. It replaced the older 
concept of minimal brain dysfunction (22), which served broadly 
the same purpose. More recently, we have witnessed the advent of 
a third term, early symptomatic syndromes eliciting neurodevelop-
mental clinical examinations [ESSENCE (23)], which refers to the 
various impairments displayed by children, rather than providing 
a specific diagnosis. It provides descriptions of impairments in 
multiple areas of functioning (language, motor coordination, 
attention, social interaction, etc.) that are associated with many 
neurodevelopmental disorders and accounts of co-occurrence 
between them. We should also mention the term developmental 
brain dysfunction, recently introduced by Moreno-De-Luca et al. 
(24), which includes neurodevelopmental disorders ranging from 
severe (underpinned by severe brain dysfunctions; i.e., intellectual 
disability and ASD) to lighter (underpinned by minimal brain 
dysfunctions; e.g., DCD, ADHD, and DD). Finally, we should 
also briefly describe the neural system typography for learning 
difficulties (25, 26), which contrasts general learning disabilities 
secondary to an impairment of the declarative learning system 
(i.e., intellectual developmental disorder) with neurodevelop-
mental disorders secondary to an impairment of the procedural 
learning system (i.e., ADHD, SLI, DD, and DCD), suggesting that 
neurodevelopmental disorders have a common impairment of 
the corticostriatal and/or corticocerebellar circuits.

It is important to stress that none of the abovementioned 
assumptions, whether they concern a single neurodevelopmental 
disorder or encompass all such disorders, are anything more than 
suppositions. The next stage was, therefore, to conduct behavioral 
investigations with tasks known to involve the brain areas thought 
to be dysfunctional.

Neural Correlates inferred from 
Neurological and Behavioral examinations
Between 1990 and 2010, there was a huge increase in the number 
of studies using brain imaging techniques to explore the neural 
mechanisms behind motor learning. These established objective 
criteria for determining which tasks activate which brain areas. 
Consequently, over this 20-year period, researchers were able to 
infer hypotheses about the neural correlates of DCD from beha-
vioral studies, thus significantly contributing to our knowledge 
about the neural bases of DCD. Zwicker et al. (27) and Bo and Lee 
(28) comprehensively reviewed the behavioral evidence for the 
neural correlates of DCD, exploring dominant hypotheses and 
their relationships with motor skill production and learning in 
children with DCD, leading to the identification of three main 
brain bases of DCD: the cerebellum, BG, and parietal lobes.

The literature on the behavioral deficits associated with DCD 
strongly suggests that the cerebellum (and/or its network of con-
nections) is a logical source of the dysfunction. An  increasing 
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number of studies have therefore been undertaken to demon-
strate the role of the cerebellum in uncoordinated behaviors, 
clumsiness, poor coordination, and postural control (29–31)  – 
the hallmarks of DCD. Several behavioral paradigms have 
been designed specifically to highlight cerebellar dysfunction, 
including finger-to-nose touching, rapid alternating hand move-
ments, and even motor adaptation tasks (32, 33). Given early 
assumptions about cerebellar dysfunctions in DCD, some stud-
ies were conducted with these specific tasks. These showed that 
children with DCD tend to perform more poorly than their peers 
on tasks such as finger-to-nose touching and rapid alternating 
hand movements, the most traditional tests of cerebellar func-
tion (16, 34). Difficulties with motor adaptation paradigms have 
also been demonstrated (35–37). Children with DCD seem to be 
affected by visual distortions in drawing tasks (their performance 
does not change significantly across trials), but seem to be able 
to recognize errors (adjusting their internal map) when there is 
an abrupt visuomotor distortion (36, 37). More recently, Lejeune 
et  al. (38) found slower performance and lower asymptotic 
performance in DCD on a visuomotor adaptation task. Similar 
findings were reported by Cantin et al. (35, 39) and Brookes et al. 
(40) on a prism adaptation test, where participants with DCD 
were less efficient than their peers, especially for complex tasks 
(39). The results of these behavioral studies, therefore, point to the 
involvement of either the cerebellum itself, the cerebellar loops, 
or both in the physiopathology of DCD.

Despite growing evidence implicating the cerebellum in DCD, 
it is highly unlikely to be the only neural correlate. The BG also 
play a key role in motor control, movement initiation, movement 
learning, and automatization (32, 41, 42), making them a plau-
sible source of DCD symptomatology. Lundy-Ekman et al. (16) 
talked about “soft neurological signs of BG dysfunction” in DCD, 
although their role in this disorder was essentially unknown at 
that time. These authors concluded that there are two coexisting 
subtypes of clumsiness, resulting from either BG or cerebellar 
dysfunction. They attributed difficulties in the timing of muscle 
contractions to a faulty central timer mechanism resulting from 
soft neurological signs of cerebellar dysfunction, and impaired 
control of the amplitude of the isometric force pulse to soft neu-
rological signs of BG dysfunction. Their hypothesis was recently 
refined by Gheysen et al. (43) and Biotteau et al. (44), who found 
that children with DCD performed more poorly on the sequenc-
ing of simple movements in a serial reaction time task [SRTT; 
(43)] and a finger-tapping task (44) – tasks known to involve the 
corticostriatal network (32). It should, however, be noted that 
when Wilson and McKenzie (45) and Lejeune et al. (46) applied 
SRTT paradigms, their results did not support the BG assumption 
[children with DCD performed similarly to typically developing 
(TD) children]. Results, therefore, appear more contrasted for the 
BG than for the cerebellum, although there are good grounds for 
considering them in the neurobiology of DCD.

The final brain structure thought to be implicated in DCD 
is the parietal lobe. Given its role in the processing of visuo-
spatial information, action prediction and observation, executive 
functions, facial recognition, and motor imagery (29, 47–50), it 
is legitimate to assume that it is involved in DCD. Wilson and 
McKenzie’s review (45) showed that children with DCD have 

poorer visuospatial processing than TD children. They also have 
difficulties with facial recognition (51), executive functions (52, 
53), response inhibition (54, 55), and motor imagery (7, 10, 
56, 57). All these processes involve the parietal lobes (and the 
prefrontal lobe for executive functions), and have, therefore, led 
researchers to conclude that this brain structure may be involved 
in DCD (7, 58, 59).

As outlined above, there is apparent evidence for the involve-
ment of the cerebellum, BG, and parietal lobes in DCD. Some 
other brain areas have sporadically been identified, including the 
insula/claustrum, anterior cingulate cortex (ACC), dorsolateral 
prefrontal cortex (DLPFC), and frontal lobe (27). Some beha-
vioral results also point to a deficit in intra- and interhemispheric 
transfer in DCD (55, 60). For example, Sigmundsson (60) 
 administered behavioral tests to children with a subtype of DCD 
with hand–eye coordination problems to test their right- and left-
hand coordination. Results indicated specific motor difficulties in 
controlling their non-dominant (left) hand and coordinating the 
left and right parts of their body, suggesting a right-hemispheric 
insufficiency (lack of hemispheric specialization) with or without 
a dysfunctional corpus callosum.

Taken together, these findings raise the question of whether 
DCD has a brain signature. Many neurodevelopmental disorders 
(e.g., autism, dyslexia, and ADHD) have been the subject of 
extensive neuroimaging research, leading to the identification of 
certain brain regions as neural signature of disorders. For exam-
ple, left temporoparietal regions, the inferior frontal gyrus (IFG), 
occipitotemporal cortex, and inferior parietal lobules have been 
identified as neural correlates of dyslexia (61), whereas functional 
abnormalities in right hemispheric frontal–BG networks (related 
to inhibition) and the DLPFC, parietal lobes, and cerebellar areas 
(related to attention) are typically found in ADHD (62). So in this 
context, is it currently possible to identify a cerebral signature for 
DCD on the basis of existing neuroimaging data?

NeUROiMAGiNG STUDieS

Our understanding of DCD has increased steadily over the past 
three decades and, as with all other neurodevelopmental disor-
ders, it has prompted researchers to conduct neuroimaging stu-
dies. Over the past 5 years in particular, there has been a growing 
desire in the fields of neuroscience and psychology to understand 
how DCD influences neural development and functioning. 
Brain imaging studies have, therefore, been designed to provide 
evidence for the cerebral validity of DCD symptoms, based on 
the hypothesis that impaired perceptual motor functions are 
the result of atypical brain development. Nonetheless, given the 
acknowledged link between motor difficulties and brain features, 
surprisingly, few research studies have systematically explored 
the brains of children with DCD (Table 1). The review conducted 
by Peters et al. (63) highlighted this dearth of neuroimaging stu-
dies in DCD (only four MRI studies at the time). The available 
data were therefore extremely heterogeneous and suggested that 
multiple brain areas are involved in the neuropathophysiology of 
DCD. Two years later, Brown-Lum and Zwicker (64) listed seven 
MRI studies and two diffusion tensor imaging (DTI), but were 
unable to reach any firmer formal conclusions. Our own review, 
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TABLe 1 | Main characteristics of the included neuroimaging studies.

Reference Participants Mean age (SD); 
range

Gender inclusion and 
exclusion criteria

Neuroimaging 
acquisition

fMRi analysis Neuroimaging results Behavioral results

Querne et al. (68) 9 DCD 9.9 (1.8);  
R = 8.0–12.9 years

7M, 2F DCD: DSM-IV criteria, 
clinical examination, 
parent report; low 
scores on NEPSY, 
ROCF, Stroop test; no 
neurological (cerebral 
lesion, pharmacologic 
medication) or 
psychiatric disorder 
(ADHD, CD, ODD, 
depressive symptoms); 
verbal IQ > 80 
(WISC-III)

fMRI task related: go/
no-go task

Whole-brain patterns 
of activity and ROI: IPC 
(BA40), MFC (BA46), ACC 
(BA32), and striatum; 
two one sample t-test; 
p-Values statistically 
corrected for multiple 
comparisons; path model 
construct on structural 
equation modeling

Common pattern between 
DCD and TD: ACC (BA32), 
SMA (BA6), OFC (BA47), 
MFC (BA46), IPC (BA39&40), 
insula (BA13), and striatum; 
DCD > TD activation in left 
hemisphere; DCD < TD 
activation in right hemisphere; 
connectivity analysis: 
DCD showed stronger 
path coefficients in the left 
hemispheric network than in 
the right

DCD = TD for correct 
inhibitions; DCD > 
TD for omissions; go 
responses were slower 
and more variable in 
DCD than TD

10 TD 10.0 (1.1);  
R = 8.2–11.6 years

7M, 3F

Kashiwagi et al. 
(69)

12 DCD 
(including  
three ADHD, 
three DD, two 
DD + ADHD)

10 years, 9 months 
(11.6 months);  
R = 9–12 years

12M DCD: DSM-IV criteria, 
parent report, MABC 
< 15th, >3 SNS; no 
neurological/psychiatric 
disorders; FIQ > 90 
(WISC-III); TD: normal 
intellectual development 
(Raven’s progressive 
matrices test)

fMRI task related: (1) 
tracking condition 
(track moving target 
by manipulating 
joystick); (2) watching 
condition (watch 
moving target without 
hand manipulation)

Whole-brain patterns 
of activity analyzed; 
p < 0.001 (voxel level); 
p < 0.05 (correction for 
multiple comparisons at 
the cluster level for the 
entire brain)

DCD = TD during (fixation) 
and (watching) conditions; 
DCD < TD activation in 
superior and inferior parietal 
lobe in the left posterior 
parietal cortex and left 
poscentral gyrus for contrast 
(tracking vs. watching)

DCD > TD for distance 
between target and 
cursor and change in 
velocity of the cursor

12 TD 10 years 5 months  
(11.9 months);  
R = 9–12 years

12M

Zwicker et al. 
(70)

7 DCD

7 TD

10.8 (1.5);  
R = 8–12 years

10.9 (1.5);  
R = 8–12 years

6M, 1F

4M, 3F

DCD: MABC-2 ≤ 16th, 
DCDQ; TD: MABC-2 
> 25th, “probably 
not DCD” on DCDQ;  
IQ > 80 (KBIT-2), no 
ADHD

fMRI task related: 
trail-tracing task 
(flower MABC)

Whole-brain patterns of 
activity analyzed using 
ANOVA; corrected for 
multiple comparisons; 
cor. < 0.01; cluster size 
k > 200

DCD > TD activation in left 
IPC (BA40); in right MFG 
(BA46), SG (BA40), LG 
(BA19), PG (BA30), PCG 
(BA30), PrG (BA6), STG 
(BA41), cerebellar Lobule 
VI; TD > DCD activation in 
left precuneus (BA39), SFG 
(BA8), IFG (BA47), PoG 
(BA2); in right STG  
(BA13)

DCD = TD

Zwicker et al. 
(71)

7 DCD

7 TD

10.8 (1.5);  
R = 8–12 years

10.9 (1.5);  
R = 8–12 years

6M, 1F

4M, 3F

DCD: MABC-2 ≤ 16th, 
DCDQ; TD: MABC-2 
> 25th, “probably not 
DCD” on DCDQ; IQ > 
80 (KBIT-2), No ADHD

fMRI task related: 
trail-tracing task 
(flower MABC); two 
scans: Day 1 and 
Day 5

Whole-brain patterns of 
activity analyzed  
using 2 × 2 [group (DCD, 
TD) × time (early practice, 
retention test)]; ANOVA 
corrected for multiple 
comparisons; cor. 
 < 0.005; cluster size  
k > 200

DCD < TD activation in right 
IPC (BA40), LG (BA18), MFG 
(BA9); in left FG (BA37), IPC 
(BA40); in right cerebellar 
(crus I) and left cerebellar 
(Lobule VI and IX) at both 
early practice and retention

DCD = TD

(Continued )
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Reference Participants Mean age (SD); 
range

Gender inclusion and 
exclusion criteria

Neuroimaging 
acquisition

fMRi analysis Neuroimaging results Behavioral results

Zwicker et al. 
(72)

7 DCD

9 TD

10 years, 10 months 
(1 year, 6 months);  
R = 8–12 years, 
4 months

10 years, 4 months 
(1 year, 7 months);  
R = 8 year, 
1 month–12 years, 
6 months

6M, 1F

6M, 3F

DCD: MABC-2 ≤16th, 
DCDQ; IQ > 80 (KBIT-
2), no ADHD

DTI: 60 slices 
(slice thickness 
= 2.2 mm; voxel 
size = 2.2 mm3); 
16 independent 
orientations  
(b = 1,000 s/mm2)

Tracts analyzed: corticospinal 
tract, posterior thalamic 
radiation, and superior and 
middle cerebellar peduncles 
in MD, FA, and AD; ROI in 
posterior limb of internal 
capsule (two limiting ROI in 
white matter under precentral 
gyrus and in cerebral 
peduncle) and at posterior 
thalamus and in white 
matter under postcentral 
gyrus and in superior and 
middle cerebellar peduncles; 
analysis of covariance 
(covariate: age); p < 0.05 for 
all calculations; uncorrected 
for multiple comparison 
for ROI

DCD = TD in FA; DCD < TD 
in MD in corticospinal tract

None

Debrabant et 
al. (73)

17 DCD

17 TD

9.4 (0.6);  
R = 7–10 years  
(LH = 3)

9.2 (0.9);  
R = 7–10 years  
(LH = 2)

14M, 3F

14M, 3F

DCD: MABC-2 ≤5th; 
TD: MABC-2 > 16; 
IQ > 85 (WISC-III); 
no other diagnosed 
of developmental 
disorders (ADHD or 
autism), or medical 
condition

fMRI task related: 
(1) predictive visual 
pacing (press 
button when stimuli 
appears on screen); 
(2) unpredictive 
visual pacing (stimuli 
randomly presented); 
(3) self-pacing 
(control, pressing the 
response button)

Analysis of covariance 
(covariate: mean RT); 
p < 0.001; corrected for 
multiple comparisons; 
cluster size k > 15

Within group: TD (unpredictive 
> predictive): right DLPFC, 
MFG, and IFG; TD (predictive 
> unpredictive): no region; 
DCD (unpredictive > predictive) 
and (predictive > unpredictive): 
no region; between groups: 
DCD < TD activation in right 
DLPFC, TPJ; in left posterior 
cerebellum (crus I) for contrast 
(unpredictive > predictive); 
DCD = TD for contrast 
(predictive > unpredictive)

Between groups: 
significant effects for 
visual pacing condition 
(predictive, unpredictive); 
within groups: (predictive 
> unpredictive) for TD; 
no difference between 
the two for DCD

McLeod et al. 
(74)

7 DCD

21 ADHD

18 DCD + 
ADHD

23 TD

13.0 (2.5);  
R = 8–17 years  
(LH = 1)

12.5 (2.9);  
R = 8–17 years  
(LH = 2)

11.5 (3.0);  
R = 8–17 years  
(LH = 4)

11.3 (2.8);  
R = 8–17 years  
(LH = 2)

5M, 2F

20M, 1F

14M, 4F

11M, 
12F

DCD: MABC-2 < 16th, 
DCDQ; ADHD: DSM-IV 
criteria; DICA-IV, or 
CPRS-R > 95th; no 
metabolic/genetic 
conditions, epilepsy, 
cerebral palsy, ID, 
ASD, FASD, psychiatric 
disorder, VLBW, or 
prematurity; IQ > 80 
(WASI); no medication 
for ADHD

fMRI-rs; FC in brain 
regions connected 
with M1; T2* (5 min); 
fixation cross

Analysis of covariance 
(covariate: age); p < 0.05 
(cluster level); cluster size 
k > 75

DCD < TD in bilateral IFG, IC, 
STG, caudate; in right FOC, 
SG, nucleus accumbens, 
pallidum, and putamen; 
DCD > DCD + ADHD in 
bilateral caudate, anterior 
STG; in left PC, PoG, FC; in 
right IFG, POC

None

(Continued )
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Reference Participants Mean age (SD); 
range

Gender inclusion and 
exclusion criteria

Neuroimaging 
acquisition

fMRi analysis Neuroimaging results Behavioral results

Langevin et al. 
(75)

9 DCD

27 ADHD

23 DCD + 
ADHD

26 TD

12.2 (2.7);  
R = 8–17 years

11.8 (3);  
R = 8–17 years

11.4 (2.9);  
R = 8–17 years

11.6 (3.2);  
R = 8–17 years

7M, 2F

24M, 3F

19M, 3F

14M, 
12F

DCD: MABC-2 < 16th, 
DCDQ; ADHD: DSM-IV 
criteria; DICA-IV, or 
CPRS-R > 95th; no 
metabolic/genetic 
conditions, VLBW, 
prematurity, epilepsy, 
cerebral palsy, ASD; 
IQ > 80 (WASI); no 
medication for ADHD

DTI: 26 axial–oblique 
slices (slice thickness 
= 4.0 mm; no 
interslice gaps) 
covering the entire 
brain; 11 non-linear 
directions (b = 850 
s/mm2)

Three white matter tracts 
analyzed: corpus callosum, 
SLF, cingulum; differences 
in FA, MD, RD, and AD, 
ANOVA of DTI measures 
performed for each tract 
subdivision; p < 0.05

DCD < TD for FA in the left 
lateral SLF III; DCD = TD in 
MD for all tracts

None

Langevin et al. 
(76)

14 DCD

10 ADHD

10 DCD + 
ADHD

14 TD

9 years, 9 months  
(1 year, 7 months);  
R = 8–17 years  
(LH = 3)

9 years, 9 months 
(1 year, 3 months);  
R = 8–17 years  
(LH = 1)

9 years, 7 months 
(2 years, 3 months);  
R = 8–17 years  
(LH = 0)

11 years 9 months 
(3 years); R = 8–17 
years (LH = 2)

5M, 9F 

6M, 4F

8M, 2F

8M, 6F

DCD: MABC-2 < 16th, 
DCDQ; ADHD: DSM-IV 
criteria; DICA-IV, or 
CPRS-R > 95th; no 
metabolic/genetic 
conditions, VLBW, 
prematurity, seizure 
disorder, cerebral palsy, 
ASD; IQ > 80 (WASI); 
no medication for 
ADHD

MRI; CT; 2*3D T1 
(varying inversion 
times: 766 and 780 
ms); RT = 7.4 ms; ET 
= 3.1 ms; FOV = 256 
mm; slice thickness 
= 0.8 mm; 28 cortical 
regions

ANOVA; p < 0.05; 
uncorrected for multiple 
comparisons

DCD < TD right medial 
orbitofrontal cortex; multiples 
differences in CT between 
DCD + ADHD and TD, DCD 
or ADHD alone

None

Licari et al. (77) 13 DCD

13 TD

9.6 (0.8);  
R = 8–10 years

9.3 (0.6);  
R = 8–10 years

13M

13M

DCD: MABC-2 < 5th; 
TD: MABC-2 > 15th; 
no ADHD

fMRI task related: 
(1) sequential finger-
thumb task (touching 
each finger onto 
their thumb one at 
a time); (2) repetitive 
hand-clenching task 
(opening and closing 
their hand)

ANOVA (differences 
between conditions and 
groups); threshold of  
p < 0.05 (FDR corrected); 
cluster size k > 15

DCD < TD activations in 
left SFG (BA9), IFG (BA44), 
and DCD > TD activation in 
right PoG (BA3) for (finger-
sequencing) condition; DCD 
= TD for (hand-clenching) 
condition

Between groups: DCD 
> TD for contralateral 
motor overflow on both 
tasks; within groups: 
finger-sequencing 
>hand clenching in 
motor overflow for DCD 
whereas no differences 
for TD

(Continued )
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Reference Participants Mean age (SD); 
range

Gender inclusion and 
exclusion criteria

Neuroimaging 
acquisition

fMRi analysis Neuroimaging results Behavioral results

Reynolds et al. 
(78)

14 DCD

12 TD

10.08 (1.31);  
R = 7.8–11.6 years

10.10 (1.15);  
R = 8.33–12.00 years

14M

12M

DCD: clinician report; 
MABC-2 ≤ 16th, 
no ADHD, no ASD; 
TD: MABC-2 ≥ 20th

fMRI task related: (1) 
action observation 
(view finger-
sequencing task 
without execution); 
(2) action execution 
(performed finger-
sequencing task 
with just first hand 
stimulus image); 
(3) action imitation 
(viewed sequencing 
task and imitated 
actions as they 
observed)

ANOVA FWE corrected 
level of p < 0.05 followed 
by an uncorrected 
level of p < 0.001; 
15 ROI: regions in 
pars opercularis of 
IFG, supplementary 
and premotor areas, 
posterior/parietal lobe, 
and superior temporal 
sulcus; Bonferroni 
corrected within each ROI 
< 0.0083

Whole brain: DCD = TD for 
(action execution) or (action 
imitation) conditions; DCD 
> TD activation in bilateral 
PrG; in right precuneus, pars 
opercularis of right IFG; in left 
MTG, PCC for (observation) 
condition; ROI: DCD = TD; 
interaction effect between 
group and task conditions in 
pars opercularis DCD < TD 
activation during (imitation) 
and DCD > TD activation 
during (observation)

Unreported

Debrabant  
et al. (79)

21 DCD

20 TD

9 years, 2 months 
(10 months);  
R = 8–10 years  
(LH = 3; M = 2)

9 years, 4 months 
(7 months);  
R = 8–10 years  
(LH = 3; M = 1)

18M, 3F

16M, 4F

DCD: MABC-2 ≤ 5th; 
(DCDQ/MABC-2-C); 
TD: MABC-2 > 16th, 
MABC-2-C; IQ > 85 
(WISC-III); no additional 
clinical conditions

DTI: 60 contiguous 
sagittal slices (slice 
thickness = 2.0 mm; 
voxel size = 2.0 mm3) 
covering the entire 
brain; 15 diffusion 
gradients along 
30 non-collinear 
directions (b = 1,400 
s/mm)

Differences in 
FA, RD, and AD; 
fiber tractography 
combined with graph 
theoretical analyses 
to evaluate whole-
brain connectomics; 
unreported level of 
significance

DTI: DCD compared with 
TD (1) decrease in FA 
and increase in RD in left 
retrolenticular limb of the 
internal capsule; (2) lower 
FA and higher RD in right 
retrolenticular limb of the 
internal capsule; (3) lower FA 
in sensorimotor tracts and 
altered structural connectivity; 
graph theorical analyses: 
DCD < TD in clustering 
coefficient, global, and local 
efficiency, especially, nodal 
efficiency at cerebellar Lobule 
VI and right parietal superior 
gyrus

None

Caeyenberghs  
et al. (80)

11 DCD

15 ASD

8 DCD + ASD

19 TD

8.82; R = 8–12 years

9.4; R = 8–12 years

9.75; R = 8–12 years

9.68; R = 8–12 years

11M

14M, 1F

8M

8M, 11F

DCD: DSM-IV-TR 
or DSM-5 criteria, 
MABC-2 < 15th; ASD: 
DSM-IV-TR or DSM-5 
criteria, SRS, ADOS; 
TD: MABC-2 > 15th; 
no genetic condition, 
VLBW, seizure 
condition, cerebral 
palsy, neurological/
psychiatric disorder, 
ADHD, IQ > 75 
(WISC-III)

MRI; CT, 2*3D T1 
(varying inversion 
times: 766 and 780 
ms); RT = 2,250 ms; 
ET = 4.18 ms; FOV 
= 176 mm × 256 
mm; slice thickness 
= 1 mm; 68 cortical 
regions

CT corrected for mean 
CT; area under the curve 
statistics; p < 0.05; 
uncorrected for multiple 
comparisons

DCD > TD clustering 
coefficient in right lateral 
OFC; DCD > DCD + ASD 
clustering coefficient of right 
PCG, PoG; in left transverse 
temporal gyrus; DCD < DCD 
+ ASD clustering coefficient 
in left LG, pars opercularis of 
the left IFG, temporal pole; in 
right entorhinal cortex, MOC

None
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Reference Participants Mean age (SD); 
range

Gender inclusion and 
exclusion criteria

Neuroimaging 
acquisition

fMRi analysis Neuroimaging results Behavioral results

Biotteau et al. (9) 16 DCD

16 DCD + DD

16 DD

9.6 (1.7);  
R = 8–12 years

9.9 (1.1);  
R = 8–12 years

10.3 (1.3);  
R = 8–12 years

12M, 4F

10M, 6F

9M, 7F

DCD: MABC-2 ≤ 5th; 
DD: MABC-2 > 16;  
French reading 
tests <−1.5SD, 
IQ > 85 (WISC-III); 
no other diagnosed 
of developmental 
disorders (ADHD, 
SLI, ASD), or medical 
condition

fMRI task related: 
(1) overtrained finger 
sequence tapping 
task; (2) unentrained 
finger sequence 
tapping task

Whole-brain; ANOVA FWE 
corrected level of p < 0.05 
followed by an uncorrected 
level of p < 0.001; cluster 
size k > 50

DCD > DD activations in 
bilateral CG (BA31, BA24), 
SC (BA4, BA3), premotor 
cortex (BA6), TPC (BA40, 
BA41, BA42, BA43, BA44, 
BA22); in right insula (BA 
13), anterior cerebellum; in 
left thalamus for (overtrained) 
condition; and higher activity 
in bilateral CG (BA31, BA24), 
thalamus; in right caudate, 
claustrum for (unentrained) 
condition; DCD > DCD + 
DD activation in right CG 
(BA24, BA31, BA32), TPC 
(BA7, BA21, BA22, BA31, 
BA37, BA41, BA42, BA43), 
PrG (BA4); in left premotor 
cortex (BA6), thalamus, 
globus pallidus; in right 
anterior and posterior 
cerebellum for (overtrained) 
condition; and higher activity 
in right CG (BA31, BA23) for 
(unentrained) condition;  
DCD + DD = DD

DCD = DD + DCD = DD

Sample: ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum disorder; CD, conduct disorder; DCD, developmental coordination disorder children; DD, developmental dyslexia; F, females; FASD, fetal alcohol spectrum 
Disorder; FIQ, full intelligence quotient; ID, intellectual disability; IQ, intelligence quotient; LH, left handed; M, males; ODD, opposite defiant disorder; R, range; RD, reading disabilities; SLI, specific language impairment; SNS, soft 
neurological signs; TD, typically developing children; VLBW, very low birth weight; Tests: ADOS, autism diagnostic observation schedule; CPRS-R, Conners’ Parent Rating Scale-Revised; DCDQ, developmental coordination disorder 
questionnaire; DICA-IV, Diagnostic Interview for Children and Adolescents-IV; DSM, diagnostic and statistical manual of mental disorders; FTT, finger-tapping task; KBIT-2, Kaufman Brief Intelligence Test, second ed; MABC, movement 
assessment battery for children; MABC2-C, checklist MABC-2; ROCF, Rey–Osterrieth complex figure; SRS, Social Responsiveness Scale; SRTT, serial reaction time task; WASI, Wechsler Abbreviated Scale of Intelligence; WISC, 
Wechsler Intelligence Scale for Children; ZNA, Zurich neuromotor assessment; Brain acquisition and analysis: AD, axial diffusivity; CT, cortical thickness; DTI, diffusion tensor imaging; ET, echo time; FA, fractional anisotropy; FC, 
functional connectivity; FDR, false discovery rate; fMRI, functional magnetic resonance imaging; fMRI-rs, functional magnetic resonance imaging-resting state; FOV, field of view; FWE, family wise error; MD, mean diffusivity; MRI, 
magnetic resonance imaging; RD, radial diffusivity; ROI, region of interest; RT, repetition time; Brain areas: ACC, anterior cingulate cortex; CG, cingulate gyrus; DLPFC, dorsolateral prefrontal cortex; FC, frontopolar cortex; FG, frontal 
gyrus; FOC, frontal operculum cortex; IC, insular cortices; IFG, inferior frontal gyrus; IPC, inferior parietal cortex; LG, lingual gyrus; M1, primary motor cortex; MC, motor cortex; MFC, middle frontal cortex; MFG, middle frontal gyrus; 
MOC, medial orbitofrontal cortex; MTG, middle temporal gyrus; OFC, orbito frontal cortex; PC, premotor cortex; PCG, posterior cingulate gyrus; PG, parahippocampal gyrus; POC, parietal operculum cortex; PoG, postcentral gyrus; 
PrG, precentral gyrus; SC, sensorimotor cortex SFG; superior frontal gyrus; SG, supramarginal gyrus; SLF, superior longitudinal fasciculus; SMA, supplementary motor area; STG, superior temporal gyri; TPC, temporoparietal cortex; 
TPJ, temporoparietal junction.
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conducted 1 year later, brought five more neuroimaging studies 
to light. These 14 existing studies were clearly aimed at identify-
ing the cerebral bases of the deficits observed in children with 
DCD, and it, therefore, seemed relevant to take a fresh look at the 
question of a neural correlate for DCD. Noted that we decided 
not to include the two MRI studies that assessed dysgraphia (65, 
66), as their results, combined with those of Van Hoorn et al.’s 
(67) review (based on the limited data available on the neural 
correlate hypothesis in dysgraphia), point to the contribution of 
cortical areas (frontal, temporal, parietal, and occipital) and the 
cerebellum.

We identified nine fMRI studies, two structural MRI studies, 
and three DTI studies. All the children had motor problems in 
daily life and, for the most part, had been assessed with the MABC 
(one study did not clearly report the recruitment criteria). It 
should be noted that the children in the comparison groups were 
not always assessed on motor or cognitive criteria. Four studies 
clearly included comorbid DCD, but comorbidities for the DCD 
and comparison groups were not generally explored beyond the 
more usual ones (i.e., autism and ADHD, never DD or SLI). The 
studies included only small numbers of participants, varying from 
7 to 21. All of them included children aged 7–12 years (ranges: 
8–12, 8–10, and 7–10), except for three studies, where mean ages 
varied from 8 to 17  years. A variety of tasks were performed 
 during the fMRI scans (visuomotor, finger sequence, tracking, 
motor timing, go/no-go, and trail-tracing).

The most striking result of this review is that no two stu dies 
observed the same differences. For this reason, we provide a 
detailed description of each individual study in the following sec-
tion. As illustrated in Figure 1, few regions are consistent across 
studies, owing to several different factors that are summarized 
below, to avoid having to reiterate them in each individual study 
description.

First, part of the explanation may lie in the heterogeneity of the 
sample. DCD is heterogeneous in nature, but this heterogeneity 
may be increased by (1) the use of different MRI scanners (scan-
ning site) with specific acquisition designs, (2) the administration 
of different tasks during the fMRI (go/no-go, finger tapping, 
 tracing tasks, etc.), and (3) comorbidity. Regarding this last point, 
it is surprising to note that the vast majority of studies failed to 
explore DCD comorbidities other than the most common ones. 
While ADHD and ASD were excluded in some studies, DD and 
SLI were only excluded in one of the 14 studies (9), despite being 
frequently associated with DCD (9, 81, 82). A fourth source 
of heterogeneity is the use of different assessment batteries to 
select the children. Although the MABC is now generally used 
to assess motor functions (used in 13/14 studies), cutoff scores 
for inclusion in the DCD and TD groups can vary. Although 
the 15th percentile is used to determine the clinical status of 
children with DCD, researchers prefer to use the 5th percentile 
of the motor test score to ensure that the sample is best suited 
for answering the research question (83). Only four of the 14 
studies respected this threshold (9, 73, 77, 79). All the other 
studies included children below the 15th or the 16th percentile. 
Finally, heterogeneity may be increased by a large age range. 
While most of the studies included children aged 7–12  years 
(ranges: 8–12, 8–10, and 7–10), in three studies (74–76), mean 

ages varied between 8 and 17 years. It is, therefore, very difficult 
to directly compare the findings of these studies with those of 
previous ones.

Second, comparison with a control group was problematic in 
the majority of studies. It seems very important to ensure that 
the TD group has none of the signs listed in the clinical criteria 
for DCD (83), especially a motor performance score above the 
15th percentile, but these do not always appear to have been veri-
fied. In some cases, the TD group did not even undergo a motor 
assessment (68, 69, 78). Additionally, we frequently found that 
there was no safety margin between the TD and DCD groups 
(e.g., DCD below the 15th percentile, TD above the 15th). Thus, 
fewer than half the studies (70, 71, 73, 77, 79) clearly used a motor 
inclusion criterion for TD children. In the remaining ones, those 
children who were not selected for the DCD group were included 
in the TD group. Additionally, the TD group was not systemati-
cally tested for IQ, or for comorbidities such as ADHD and ASD 
[see, for example, Reynold et al. (78)]. One study (9) did not even 
use control groups. These are all potential sources of bias, making 
comparisons difficult, if not impossible.

Third, some results need to be interpreted with the utmost 
caution, owing to methodological inconsistencies in inclusion. 
For example, the large age ranges mentioned above for McLeod 
et al. (74) and Langevin et al. (75, 76) are highly problematic for 
the intrinsic interpretation of findings. Even when analyses were 
performed using age as a covariate, the inclusion range was too 
great, given the rapid developmental maturation of the brain (84, 
85). Other results also need to be interpreted with great care, 
owing to significant differences between the DCD and TD groups 
in age, sex distribution, IQ, handedness, or level of attention 
(71, 74–76) – all factors known to influence the brain’s structure 
or functioning (84–88). Furthermore, the DCD group was gene-
rally very small, making it extremely difficult to lend credence 
to the results (sample varying from 7 to 21 children with DCD, 
depending on the study; fewer than 10 in 6 studies, and fewer 
than 15 in 11 studies). Sometimes, even though the numbers of 
children differed considerably between the DCD and TD groups, 
tests were still conducted between the two [e.g., 7 DCD vs. 23 TD 
in McLeod et al. (74)]. All these factors can introduce bias into 
the data analysis and, by extension, undermine the authenticity 
of the results.

A final issue concerns the absence of methodological MRI 
standards. Some studies investigated the whole brain, while oth-
ers were interested in a specific region. Statistical power varied 
from one study to another, and was sometimes uncorrected for 
multiple comparisons [despite 68 brain regions in Caeyenberghs 
et al. (80) and 28 in Langevin et al. (76)]. In some cases, the authors 
talked about differences even when the voxel size was very small 
[e.g., below 20 in Reynolds et al. and Debrabant et al. (73, 78)]. 
It should also be noted that studies often failed to find significant 
group differences for brain data and, therefore, focused on cor-
relations between behavioral data.

Functional MRi Studies
Querne et al. (68)
Using fMRI during a go/no-go task performed by children with 
DCD and TD, these authors assessed the impact of DCD on 
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FiGURe 1 | Foci of atypical brain involvement reported from neuroimaging studies of children with DCD compared to TD children. Studies: circles 1–8: 
fMRI; triangles 9–10: sMRI; squares 11–13: DTI. Each number/color represented one study. [1] Querne et al. (68); [2] Kashiwagi et al. (69); [3] Zwicker et al. (70); [4] 
Zwicker et al. (71); [5] Debrabant et al. (73); [6] McLeod et al. (74); [7] Licari et al. (77); [8] Reynolds et al. (78); [9] Langevin et al. (76); [10] Caeyenberghs et al. (80); 
[11] Zwicker et al. (72); [12] Langevin et al. (75); [13] Debrabant et al. (79). Brain areas: ACC, anterior cingulate cortex; c., cortex; DLPCF, dorsolateral prefrontal 
cortex; g., gyrus; lob., lobule; OFC, orbito frontal cortex; PCC, posterior cingulate cortex; RLIC, retrolenticular part of the internal capsule; SLF, superior longitudinal 
fasciculus; TPJ, temporoparietal junction; t, tract.
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effective connectivity applied to a putative model of inhibition. 
No difference in behavioral performances was found between the 
DCD and TD groups (even if DCD responses were slower and 
more variable than TD responses). However, structural equation 
modeling indicated that the coefficients of the paths from both 
the middle frontal cortex (MFC) and ACC to the inferior parietal 
cortex (IPC) increased in the children with DCD, especially 
for the left hemisphere. Moreover, in the children with DCD, 

coefficients of the paths between the striatum and parietal cortex 
decreased in the right hemisphere. The authors suggested that 
DCD can be characterized by abnormal brain hemispheric spe-
cialization during development (executive functions tended to 
recruit a left-lateralized network in DCD and a right-lateralized 
network in TD). They also hypothesized that children with DCD 
compensate for their poor efficiency by more actively engaging 
the ACC, thus maintaining a good level of inhibition.
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Kashiwagi et al. (69)
Using fMRI during a visuomotor task (visually guided tracking 
task), this study was designed to identify the brain mechanisms 
underlying clumsiness in children with DCD and TD. The beha-
vioral performances of children with DCD were significantly less 
accurate than those of TD. Between-group differences showed that 
there was less brain activity in the superior and inferior parietal 
lobes, left posterior parietal cortex (PPC), and left postcentral gyrus 
in the children with DCD than in the TD children. The authors 
suggested a link between the left PPC and clumsiness in DCD.

Zwicker et al. (70)
Using fMRI during a fine motor trail-tracing task, the authors 
measured brain activation patterns in children with DCD. Similar 
levels of behavioral performance were noted. Between-group dif-
ferences were found in patterns of brain activity. The children 
with DCD had greater activation in nine areas, essentially in the 
right hemisphere: middle frontal gyrus, supramarginal gyrus, 
lingual gyrus, parahippocampal gyrus, posterior cingulate gyrus, 
precentral gyrus, superior temporal gyrus, cerebellum (Lobule 
VI), and left inferior parietal lobule. They had less activation in 
five brain regions: left precuneus, superior frontal gyrus, IFG, 
postcentral gyrus, and right superior temporal gyrus/insula.

Zwicker et al. (71)
Using fMRI, the authors mapped brain activity associated with 
skilled motor practice of a trail-tracing task (5  days’ practice, 
two scans: days 1 and 5) in children with DCD [same population 
sample as in Zwicker et al. (70)]. The children with DCD did 
not show any improvement in motor accuracy following skilled 
practice. Between-group differences showed that nine brain 
areas were less activated in the children with DCD at both early 
practice and retention: the bilateral inferior parietal lobules, right 
lingual gyrus, right middle frontal gyrus, left fusiform gyrus, 
right cerebellum (Crus I), left cerebellum (Lobule VI), and left 
cerebellum (Lobule IX).

Debrabant et al. (73)
Using fMRI during a visuomotor reaction time task (sequences of 
visual stimuli with predictive or unpredictive interstimulus inter-
vals, ISIs), the authors investigated the neural correlates of motor 
timing in DCD. The children with DCD reacted more quickly to 
predictive ISIs than TD children did, and there was no difference 
in their brain activation between the two conditions (TD exhibited 
greater activation in the right DLPFC and right IFG in response 
to unpredictive vs. predictive ISIs). Between-group differences 
in the predictive condition showed that the children with DCD 
activated their DLPFC, temporoparietal junction (TPJ), and left 
posterior cerebellum (Crus I) less. The authors concluded that the 
children with DCD needed to perform extra processing, owing to 
impaired predictive encoding.

McLeod et al. (74)
Using resting-state fMRI, the authors investigated the functional 
connections of the motor network in children with DCD and/
or ADHD and predicted that, compared with TD, the children 
with DCD and/or ADHD would exhibit altered functional 

connectivity (FC) between the primary motor cortex (M1) and 
brain regions involved in motor functioning and sensorimotor 
processing. We  excluded results for the ADHD group, given 
that this pathology was not the subject of our review. Between-
group differences are, therefore, only shown for the DCD, 
DCD + ADHD, and TD groups [for details of the ADHD group, 
see McLeod et al (74)]. Compared with TD, the DCD group 
demonstrated decreased FC with M1 for the bilateral IFG, right 
frontal operculum cortex, right supramarginal gyrus, bilateral 
insular cortices and superior temporal gyri, bilateral caudate 
and right nucleus accumbens, pallidum, and putamen. The 
DCD + ADHD group exhibited lower FC with M1 for the right 
motor cortex, left supramarginal gyrus, bilateral postcentral 
gyri, left putamen, left pallidum, and left amygdala, and greater 
FC for the left frontopolar cortex and lingual gyrus. The children 
with DCD + ADHD exhibited greater FC between M1 and the 
bilateral caudate nuclei and anterior superior temporal gyri, 
left premotor cortex, postcentral gyri and frontopolar cortex, 
and right IFG and parietal operculum cortex. The authors 
concluded that the decreased FC between M1 and the striatum 
and angular gyrus (observed in all the groups) indicated that 
these brain regions are common neurophysiological substrates 
underlying both DCD and ADHD. They also suggested that 
the co-occurrence of neurodevelopmental disorders may have 
a distinct impact on FC (unique alterations in FC between M1 
and sensory networks for these children).

Licari et al. (77)
Using fMRI during two tasks (finger sequencing and hand 
clenching), the authors investigated cortical activation patterns 
contributing to increased motor overflow in children with DCD. 
Behavioral results showed that the children with DCD performed 
more poorly than TD on both tasks. Analysis failed to reveal 
between-group differences in the hand-clenching condition. 
However, compared with TD, the children with DCD activated 
their left superior frontal gyrus (BA 9) and left IFG (BA 44), and 
right postcentral gyrus (BA 3) more in the finger-sequencing task.

Reynolds et al. (78)
Cortical activations during the performance of an imitative 
finger-sequencing task (observation, action execution, and action 
imitation) were observed through the use of fMRI. The authors 
hypothesized a deficit in the mirror neuron system (MNS). 
A between-group analysis revealed differences in six areas (right 
IFG, precentral gyrus, precuneus, left precentral gyrus, middle 
temporal gyrus, and posterior cingulate), but only in the observa-
tion condition. Region of interest analysis revealed less activation 
in the pars opercularis in the DCD group in the imitation condi-
tion. The authors concluded that the results supported a possible 
MNS dysfunction.

Biotteau et al. (9)
Using fMRI during a finger-tapping task administered to children 
with DCD with or without comorbidity, the authors assessed the 
impact of comorbidity in DCD on brain functioning. No diffe-
rence was found in behavioral performances between DCD and 
the other groups. However, compared with the DD group, results 
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revealed greater activity in the bilateral cingulate gyrus (BAs 24 
and 31), bilateral sensorimotor cortex (BAs 3 and 4), bilateral pre-
motor cortex (BA 6), bilateral temporoparietal cortex, right insula 
(BA 13), left thalamus and left globus pallidus, right caudate and 
right claustrum, and right anterior and posterior cerebellum. The 
authors suggested that, compared with the DD and DD + DCD 
groups, the DCD group was characterized by a distinct pattern 
of functioning in the neural correlates recruited for procedural 
learning. The DD and comorbid groups were very close, whereas 
the DCD group presented specific characteristics, raising the 
issue of the nature of motor problems in DD.

Structural MRi Studies
Langevin et al. (76)
Using structural MRI, the authors examined whether comorbid 
motor and attention problems influence cortical thickness 
in children. They compared the brain patterns of four groups. 
Between-group differences in cortical thickness were large, but 
in summary  the children with DCD  +  ADHD had a greater 
overall decrease in cortical thickness than the children with 
DCD or ADHD alone (concentrated in the frontal, parietal, and 
temporal lobes). The children with DCD alone only differed from 
TD on the right medial orbitofrontal cortex (MOC), which was 
thinner in DCD. The authors concluded that the DCD + ADHD 
co-occurrence is associated with a distinct overall pattern of 
decreased regional cortical thickness, highlighting the unique 
neurobiology of comorbid neurodevelopmental disorders.

Caeyenberghs et al. (80)
Using structural MRI, this study aimed to address the question 
of whether abnormal connectivity in DCD overlaps with that 
seen in ASD or comorbid DCD + ASD. The authors investigated 
differences in the global and regional topological properties of 
structural brain networks (small-world networks between 68 
brain regions, based on cortical thickness) in 53 children divided 
in four groups. Between-group differences between ASD (with 
or without DCD) and other groups were large, but are not pro-
vided here (see Caeyenberghs et al. (80) for details). The DCD 
group exhibited only one difference from the TD group, in the 
right lateral orbitofrontal cortex (higher clustering coefficient). 
Regarding comorbidity, compared with the DCD group, the chil-
dren with DCD + ASD had higher nodal clustering coefficients 
in the left lingual gyrus, pars opercularis of the left IFG, left tem-
poral pole, right entorhinal cortex, and right MOC. By contrast, 
the DCD + ASD group had lower clustering coefficients in the 
right posterior cingulate gyrus, right postcentral gyrus, and left 
transverse temporal gyrus. The authors concluded that the DCD, 
ASD, and TD groups had prominent small-world properties in 
their cortical thickness networks, even if the overall organization 
of networks in the children with DCD was relatively intact, as 
shown by the absence of group effects on overall network param-
eters (global network values close to those of TD).

DTi Studies
Zwicker et al. (72)
The authors measured diffusivity and fractional anisotropy (FA) 
in the corticospinal tract, posterior thalamic radiation, and 

superior and middle cerebellar peduncles in DCD. Mean diffu-
sivity of the corticospinal tract and posterior thalamic radiation 
was lower in DCD than in TD. By contrast, FA in these tracts and 
diffusion parameters in the cerebellar pathways did not differ 
between groups. The authors concluded that reduced axial dif-
fusivity in motor and sensory tracts may be implicated in DCD.

Langevin et al. (75)
Using DTI in children with DCD, the authors examined the 
three major white-matter tracts involved in attention and motor 
processes [corpus callosum, cingulum, and superior longitudinal 
fasciculus (SLF)]. They explored associations between attention/
executive and motor measures, and white-matter microstruc-
ture. Results for the ADHD group are not mentioned here (see 
Langevin et al. (75) for details). The authors found microstruc-
tural abnormalities in the white-matter connections underlying 
the primary and somatosensory motor cortices that were unique 
to the DCD group, with FA reductions in regions of the corpus 
callosum underlying parietal brain regions (superior/posterior 
parietal cortex, corpus callosum), as well as the left SLF. Children 
with comorbid DCD  +  ADHD exhibited alterations found in 
children with DCD or ADHD only (two distinct callosal regions). 
The authors, therefore, suggested that ADHD and DCD share 
a common basis in the callosal structure (reflecting a neuro-
biological basis for motor and attention disorders in children), 
with regionally and functionally distinct alterations.

Debrabant et al. (79)
Using DTI, the authors investigated whole-brain structural con-
nectomics to identify abnormal microstructural properties of 
specific sensorimotor white-matter tracts in children with DCD. 
First, the children with DCD displayed a significant decrease in 
mean FA, together with an increase in mean radial diffusivity 
of the left retrolenticular limb of the internal capsule. Second, 
DCD-related FA reductions in the left retrolenticular limb of the 
internal capsule were associated with poor visuomotor tracing 
outcomes. Third, nodal efficiency in the cerebellum (Lobule VI) 
and right parietal superior gyrus was found to be a significant 
predictor of DCD.

DiSCUSSiON

Neuroimaging studies have been conducted with a view to sup-
porting the most promising hypotheses formulated on the basis 
of neuropsychological and behavioral observations in children 
with DCD. These point to impaired activation in the cerebellum, 
parietal lobes, and BG. In the following subsections, we discuss 
the available neuroimaging evidence.

Cerebellum
The cerebellum was targeted in these studies because of its role in 
movement, balance, coordination, learning, and automatization. 
Four studies (70, 71, 73, 79) observed specific features within 
this area. Lobule VI was highlighted in three of them (70, 71, 
79), and Debrabant et al. (79) concluded that it is a significant 
predictor for DCD. Crus I was also mentioned by Zwicker et al. 
(71) and Debrabant et  al. (73), as well as Lobule IX (71). Our 
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review, therefore, highlights a particular role of Lobule VI in the 
neuropathology of DCD. However, there is converging evidence 
in the literature that the cerebellum is a common source of 
 neuropathology in children with neurodevelopmental  disorders 
(89). Thus, although DCD is probably linked to cerebellar 
dysfunction, it would be difficult to use the latter as a specific 
signature of DCD, given the evidence of cerebellar involvement in 
all other neurodevelopmental disorders (e.g., ADHD, ASD, DD).

Basal Ganglia
On account of their primary role in movement initiation, plan-
ning, motor control, learning, and automatization, the BGs are 
viewed as being potentially implicated in DCD. Several neuro-
imaging studies seem to corroborate this hypothesis (68, 72, 74, 
79). Querne et al. (68) found atypical (decreased) coefficients for 
the paths between the striatum and parietal cortex in the right 
hemisphere. McLeod et al. (74) showed atypical recruitment of 
the caudate, nucleus accumbens, pallidum, and putamen for 
both DCD and DCD + ADHD. These authors even concluded 
that the striatum could be a common neurophysiological 
substrate of DCD and ADHD. Finally, using DTI techniques, 
Debrabant et al. (79) and Zwicker et al. (72) found particularities 
that mainly involved the thalamus: the corticospinal tract and 
posterior thalamic for Zwicker et al. (72), and the retrolenticular 
limb of the internal capsule for Debrabant et  al. (79). Once 
again, however, it would be presumptuous to regard the BG as a 
unique brain characteristic of DCD, because of their suspected 
or proven involvement in a large number of neurodevelopmental 
disorders (90–94).

Parietal Lobe
The parietal lobe is a promising structure in the search for neural 
correlates in DCD. Eleven of the 14 neuroimaging studies men-
tioned its involvement in DCD. Differences were found in the IPC 
(68–71), superior parietal cortex (69, 79), PPC (69), postcentral 
gyrus (69, 70, 74, 77), supramarginal gyrus (70, 74), TPJ (73), and 
parietal operculum cortex (74). Additionally, Querne et al. (68) 
noted decreased coefficients for the paths between the striatum 
and parietal cortex in the right hemisphere in children with 
DCD. These findings were consistent with those of McLeod et al. 
(74) who found decreased FC between M1 and the striatum and 
angular gyrus in the DCD group. It should, however, be noted 
that the authors concluded that these brain regions are common 
neurophysiological substrates of both DCD and ADHD, as this 
specific decrease was observed in all three groups. Once again, 
therefore, abnormalities in this brain region are probably not 
peculiar to DCD and could be common to other neurodevelop-
mental disorders.

Other Areas
Limbic Lobe
There are few hypotheses of limbic lobe involvement in the 
physiopathology of DCD, even though several neuroimaging 
studies have found evidence of such involvement (68, 70, 74, 78). 
In particular, fMRI studies have reported differences in the ACC 
(68) and posterior cingulate cortex (70, 78), parahippocampal 
gyrus (70), insular cortices and insula (70, 74), and left amygdala 

(74). However, as suggested by Querne et al. (68), children with 
DCD may compensate for their poor efficiency by more actively 
engaging the cingulate cortex, thereby maintaining a good level 
of inhibition. This assumption can be applied to the other limbic 
areas mentioned.

Frontal Lobe
Frontal lobe dysfunction has been found in almost all MRI stu-
dies, but it is very difficult to draw the right conclusions about its 
involvement in DCD, owing to its unspecific nature. However, 
several features in specific frontal areas may appear to be poten-
tial neural correlate of DCD. First, for DCD alone compared with 
TD, Langevin et al. (76) noted only one difference – in the right 
MOC (thinner in DCD). Exactly the same result was reported by 
Caeyenberghs et al. (80). Using an innovative design (separate 
structural correlation networks based on cortical thickness), 
they highlighted the specific involvement of the right orbito-
frontal cortex in DCD. Connectivity of the orbitofrontal cortex 
mainly concerned limbic areas (in particular, the insular cortex, 
parahippocampal regions, and amygdala, which we just men-
tioned as atypical in DCD) and the striatum. The MOC is also 
connected to the DLPFC, which was found to be implicated in 
the physiopathology of DCD by Debrabant et al. (73), especially, 
the right DLPFC. Given its role in executive functions and cog-
nitive processes, the DLPFC seems to be an excellent signature 
of DCD. It should be noted that the DLPFC is connected to a 
variety of subcortical structures, which once again include the 
thalamus and BG (specifically the caudate nucleus). All in all, the 
DLPFC, MOC, and their connections to limbic and subcortical 
structures, could be viewed as solid cerebral correlates of DCD.

Lingual Gyrus
Differences have been noted in the lingual gyrus (70, 71, 74). This 
brain region is assumed to be engaged by low-level visual pro-
cesses (95, 96) and to play an important role in vision, especially 
related to letters. The recent review by Richlan et al. (97) identi-
fied it as a specific brain characteristic for dyslexia. Comorbidity 
with dyslexia, which has not so far been explored in DCD 
neuroimaging studies, despite its frequency (98), is one possible 
(but speculative) explanation. The same question applies to other 
areas, such as the left fusiform gyrus mentioned by Zwicker et al. 
(71), temporal areas where differences between DCD and TD 
have been found in many studies (71, 74, 75, 78), and even Lobule 
VI (70, 71, 79), which has been designated as linked to reading-
related activity (99). This raises the underlying question of how to 
assess all possible comorbidities when studies are performed with 
DCD children in order to determine what is specifically related to 
DCD and what is related to another comorbid disorder.

Abnormal Brain Hemispheric Specialization
Two studies support the notion of abnormalities in cerebral 
hemispheres, congruent with the older hemispheric disconnec-
tion approach (15). Querne et  al. (68) evoked abnormal brain 
hemispheric specialization during development. These authors 
found that executive functions tended to recruit a left-later-
alized network in DCD and a right-lateralized network in TD. 
Alternative fin dings suggest that DCD may reflect a hemispheric 
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disconnection syndrome. In particular, Langevin et  al. (75) 
observed reduced connectivity between the parietal region of the 
corpus callosum and parietal areas, compared with TD.

CONCLUSiON

The findings described above open up promising avenues in the 
quest for a possible cerebral signature for DCD.

First, the cerebellum and BG are unquestionably linked to 
DCD. But there is converging evidence that both are involved in 
several neurodevelopmental disorders and are probably indica-
tive of the nature of neurodevelopmental disorders in general, 
rather than the unique and intrinsic nature of DCD. However, the 
cerebellum and BG are nowadays most often regarded as a single 
block (in a relatively general and imprecise manner). If they had 
to be investigated in greater detail, links might probably emerge 
between specific disorders and specific cerebellar or BG areas. 
Therefore, their degree of involvement and the precise role they 
play in the neuropathology of neurodevelopmental disorders 
have yet to be clearly defined.

Second, similar doubts can be expressed about the parietal 
lobe, even if its specific implication in DCD is more probable.

Third, two regions (MOC and DLPFC) closely connected to 
the cerebellum and BG, and also closely interconnected, could 
constitute a good signature of DCD.

Fourth and last, the limbic lobe, especially the cingulate cortex 
and parahippocampal gyrus, would appear to be viewed as com-
pensatory brain mechanisms in DCD, more actively engaged to 
ensure that a good level of achievement is maintained.

Altogether, can the results of these 14 neuroimaging studies 
really be said to point to a neural signature for DCD? If we include 
the cerebellum, BG, parietal lobe, MOC, and DPFC, the answer 
is probably yes, but uncertain. Indeed, during our review of these 
neuroimaging studies, it became clear that the current literature 
struggles to find a consistent picture on neural correlates linked to 
DCD (Table 1; Figure 1), which prevents us to reach firm conclu-
sions on a cerebral signature of DCD. There are many possible 
explanations for this.

First, there have been too few MRI studies to date, and there 
has been no uniformization of the tasks performed during fMRI. 
The use of different designs (task, paradigm, and duration), 
especially in a pediatric population, is a major limitation, making 
comparisons impossible and findings hard to interpret when it 
comes to determining what is related to the neurophysiological 
basis of DCD, to task difficulty or to compensatory mechanisms.

Second, samples have often been very small, and above all, 
non-homogeneous. They differed across our 14 studies for many 
reasons. Regarding inclusion ages, studies adhered closely to the 
minimum age for DCD diagnosis, only including participants 
aged 5 years or older, in accordance with the European Academy 
for Childhood Disability [EACD (100)]. However, the age range 
extended from 7 to 17  years which, given the development of 
the brain across childhood, adolescence, and puberty (85, 101), 
prevented researchers from extending the significance of their 
findings. Inclusion criteria were also a real problem. While the 
use of MABC (or MABC-2) received a broad consensus (13/14 
studies used it), the cutoff scores used to assess children with 

DCD were not homogeneous. Concerning the inclusion criteria 
for TD, motor and/or cognitive abilities were not systematically 
controlled for, and even where this was done, a safety margin 
was not always created between the TD and DCD groups for 
motor skills.

Third, for the most part, the authors chose not to look for 
comorbidities other than the more usual ones (ASD or ADHD). 
Multicomorbidities in neurodevelopmental disorders are, how-
ever, extremely frequent (102), resulting in the co-occurence 
of two and even three or more disorders, with a high level of 
co-occurrence with SLI or DD for DCD (44, 81, 82). More homo-
geneous subtypes of DCD, excluding not only ASD and ADHD 
but also DD and SLI, are required, in order to distinguish the 
brain characteristics of DCD alone from those of other comorbid 
 disorders. Additionally, given the absence of homogeneity in 
DCD, it would appear appropriate to explore the heterogeneous 
presentation of the children who are studied (where do they 
experience difficulty: in motor learning, and/or motor skill 
acquisition, and/or gross motor skills, and/or fine motor skills?). 
This has not been the case up to now, even though it could have 
enhanced the analysis and comprehension of the findings.

Fourth and last, can we really talk about differences when 
cluster sizes are below 50 or when results are uncorrected for 
multiple comparisons? More rigorous analysis of imaging data 
will be required to ensure the validity of such differences.

Thus, to confirm our conclusions about the involvement of 
the cerebellum, BG, parietal lobe, MOC, and DPFC in DCD, new 
neuroimaging studies need to be designed. Based on this review, 
we strongly encourage researchers:

 1. to include groups more homogeneous with strict inclusion 
criteria for DCD and TD, especially concerning cognitive 
and motor tests (safety margin between the two groups is for 
example required), featuring larger samples;

 2. to take comorbidities into account and not only autism or 
ADHD but also SLI or DD;

 3. to pay careful attention to rigorous analysis of imaging data;
 4. to use preferentially more advanced neuroimaging techniques 

as DTI and resting state or even to realize longitudinal struc-
tural neuroimaging studies in order to isolate cortical altera-
tions inherent to DCD or reflecting environmental influence 
(e.g., poor motor experience);

 5. finally, to combine several neuroimaging markers as it has 
already done in other pathologies (103).

Even if we know the difficulties encountered by such recom-
mendations, it seems necessary in order to allow for the compari-
son of results from many studies and providing an opportunity to 
share imagery data.
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