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Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disease. The mechanisms 
for loss of self-tolerance in this disease are not well understood, and recently described 
regulatory B cell (Breg) subsets have not been thoroughly investigated. B10 cells are 
a subset of Bregs identified by the production of the immunosuppressive cytokine, 
interleukin-10 (IL-10). B10 cells are known to strongly inhibit B- and T-cell inflammatory 
responses in animal models and are implicated in human autoimmunity. In this study, 
we examined quantitative and qualitative aspects of B10 cells in acetylcholine receptor 
autoantibody positive MG (AChR-MG) patients and healthy controls. We observed 
reduced B10 cell frequencies in AChR-MG patients, which inversely correlated with 
disease severity. Disease severity also affected the function of B10 cells, as B10 cells in 
the moderate/severe group of MG patients were less effective in suppressing CD4 T-cell 
proliferation. These results suggest that B10 cell frequencies may be a useful biomarker 
of disease severity, and therapeutics designed to restore B10 cell frequencies could hold 
promise as a treatment for this disease through restoration of self-tolerance.
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inTrODUcTiOn

Autoimmune myasthenia gravis (MG) is regarded as a T cell-dependent, B cell-mediated disease. 
The immunopathologic mechanisms that perpetuate the disease are not fully defined, but loss of self-
tolerance in the thymus is likely an early event (1). Prior studies demonstrated impaired function of 
FOXP3 + regulatory T cells (Tregs) in experimental models of MG and patients with established MG 
and acetylcholine receptor autoantibodies (2–4). However, Treg numbers were not altered in patients 
with muscle-specific kinase (MuSK) autoantibodies, and CD39 expression, a proposed marker of 
Treg functional capacity, was similarly preserved (5).

Investigations of other immune regulatory mechanisms in the disease are scant, but initial 
evidence in murine studies suggest that B cells with regulatory function play an important role in 

Abbreviations: AChR, acetylcholine receptor; Breg, regulatory B cell; LPS, lipopolysaccharide; MG, myasthenia gravis; 
MMT, manual muscle testing; PBMC, peripheral blood mononuclear cell; PMA, phorbal 12-myristate 13-acetate; Th1, type 
1 T helper; TLR, toll-like receptor; Tregs, regulatory T cells.
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promoting immune tolerance (6–12). In humans, lower frequen-
cies or defective regulatory B cells (Bregs) have been associated 
with lupus, multiple sclerosis, MG, and transplantation (13–19). 
These studies also demonstrate the difficulty of studying Bregs 
because the phenotype used to identify Bregs varied between 
investigative groups. Currently, a known specific transcription 
factor or cell surface phenotype that truly identifies Bregs is 
unknown. In addition, it is difficult to detect Bregs based on their 
low frequencies in circulation. Several subsets of B cells have been 
proposed to contain a Breg population including CD24hiCD38hi, 
CD25hi, and CD1dhiCD5+ B cells. However, the most accepted 
measurement of Bregs’ suppressive function is through the pro-
duction of interleukin-10 (IL-10) (6, 20, 21).

A subset of Bregs with known immunosuppressive func-
tion is B10 cells. B10 cells are defined as B cells capable of 
producing IL-10 for eliciting suppressive function (22). This 
rare population normally constitutes about 0.6% of peripheral 
B cells in humans and has been shown to strongly regulate 
inflammatory T cell responses in animal models of several 
autoimmune diseases (10, 22, 23). Due to their low frequency 
in the periphery, detection of B10 cells requires a short-term 
stimulation with CD40L and lipopolysaccharide (LPS) or CpG 
along with restimulation with phorbal 12-myristate 13-acetate 
(PMA) and ionomycin (23). This procedure allows detection of 
IL-10 in B10 cells and in B10 progenitor cells. In MG, a prior 
study demonstrated reduced frequencies of B10 cells in patients 
with anti-MuSK antibodies (18). In addition, MG patients who 
are responders to the B cell-depleting monoclonal antibody, 
rituximab, have early repopulation of B10 cells following treat-
ment (17). These initial findings support further investigation 
of the role of B10 cells in MG.

In this study, our goal was to further define the role of B10 cell 
populations in AChR MG patients by determining the capacity 
to generate IL-10-producing B cells, the conditions required to 
do so, as well defining the suppressive capacity of B10 cells from 
patients with MG on T cell activation. To accomplish our goals, 
we optimized the assay for detection of B10 cells and determined 
B10 cell frequencies in control and MG patients. We also show 
that B10 cell production is accompanied by mRNA transcrip-
tion of IL-10 followed by detection of secreted IL-10. Finally, 
we demonstrate that B10 cell suppressive capacity on CD4 T cell 
proliferation in AChR MG patients is associated with disease 
severity and suggest that B10 cell suppression of T cells does not 
require cell-to-cell contact.

MaTerials anD MeThODs

study Population and controls
Sixty-four MG patients were enrolled from the Duke MG clinic. 
All patients had detectable anti-AChR binding antibodies 
according to commercially available testing (Mayo Medical 
Laboratory, Rochester, MN, USA) as well as clinical and elec-
trodiagnostic features consistent with the disease. Key clinical 
variables, including demographics, thymectomy status, and 
immunosuppressive medications, were recorded (Table S1 in 
Supplementary Material). Disease severity was defined accord-
ing to the MGFA Severity Class and MG-Manual Muscle Test 

(24, 25). Blood samples were obtained from 21 healthy controls, 
who were age and gender matched to the patients as closely as 
possible, weighed more than 110 pounds, and were not receiv-
ing therapy for any chronic disease. Collection of samples was 
approved by the Duke University Institutional Review Board and 
written and informed consent was obtained from each patient 
and normal donor.

isolation and storage of Peripheral Blood 
Mononuclear cells (PBMcs)
Peripheral blood was obtained by venipuncture and collected in 
acid-citrate-dextrose tubes (BD Vacutainer). PBMCs and plasma 
were separated by Ficoll density gradient centrifugation, and 
the PBMCs were resuspended in a 90% FBS (Gemini) and 10% 
DMSO (Sigma-Aldrich) freezing solution. PBMCs were viably 
cryopreserved and stored in vapor phase liquid nitrogen, while 
plasma was frozen and stored at −80°C for future use.

Detection of il-10-Producing B cells
To detect IL-10-producing B cells, we utilized the protocol 
developed by Iwata et  al. (23). Then, 2  ×  106 PBMCs were 
plated in 96-well flat bottom plates in R10 [RPMI 1640 media 
(Gibco) + 10% FBS + 1% penicillin–streptomycin–l-glutamine 
(Sigma-Aldrich)] and stimulated with LPS (10  µg/mL, Sigma-
Aldrich) or CpG (10 µg/mL, Invivogen) in the presence of rCD40L 
(1 µg/mL, R&D Systems) for 48 h at 37°C in 5% CO2 incubator. 
For the last 5  h, cells were restimulated with PMA (1  µg/mL, 
Sigma-Aldrich), ionomycin (0.25  µg/mL, Sigma-Aldrich), and 
brefeldin A (BFA; 1 μg/mL, BDB). In some experiments, IL-21 
(50  ng/mL, Peprotech) or IL-35 (50  ng/mL, Peprotech) was 
included in the stimulation.

After 48 h of stimulation, intracellular cytokine staining was 
performed to detect IL-10. First, cells were stained with CD19 
PerCP-Cy5.5 (HIB19), CD27 PE (O323), IgD APC-Cy7 (IA6-2), 
Zombie Violet, CD14 Pacific Blue (M5E2), CD3 Pacific Blue 
(UCHT1), and CD16 Pacific Blue (3G8) conjugates for 25 min at 
4°C. All the cell surface fluorescent antibodies were obtained from 
Biolegend. Following cell surface staining, cells were treated with 
Cytofix/Cytoperm (BDB) in accordance with the manufacturer’s 
recommendations. Afterward, cells were stained intracellularly 
with IL-10 eFluor660 (JES3-9D7, eBioscience) for 30 min at 4°C. 
Cells were fixed with 1% paraformaldehyde (PFA) and acquired 
on a LSRII flow cytometer (BDB).

PrimeFlow analysis of il-10 
rna and Protein
Two million PBMCs were plated in 96-well flat bottom plates 
in R10 and stimulated with CpG in the presence of rCD40L 
for 24 or 48 h at 37°C in 5% CO2 incubator. Five hours before 
the end of these stimulations, cells were restimulated with PMA 
and ionomycin in the presence of BFA; unstimulated cells were 
also treated with BFA. The PrimeFlow assay was performed 
according to manufacturer’s recommendations (Affymetrix). 
Briefly, cells were plated in a 96-well V bottom plate and stained 
with CD19 PE-eFluor610 (HIB19, eBioscience), CD27 PE 
(O323, Biolegend), IgD APC-Cy7 (IA6-2, Biolegend), Zombie 
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FigUre 1 | interleukin-10 (il-10) expression is highest after 48 h of stimulation. The kinetics of IL-10 RNA and protein was examined after 5, 24, and 48 h of 
stimulation. IL-10 RNA and protein were simultaneously detected by flow cytometry using Affymetrix’s PrimeFlow assay.
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Violet (Biolegend), CD14 Pacific Blue (M5E2, Biolegend), CD3 
Pacific Blue (UCHT1, Biolegend), and CD16 Pacific Blue (3G8, 
Biolegend) conjugates for 25 min at 4°C. Following cell surface 
staining, cells were treated with the kit’s fixation buffer for 
30 min at 4°C followed by an RNA Perm Buffer for 30 min at 
4°C. Intracellular staining was then performed for 30  min at 
4°C with IL-10 PE-Cy7 (JES3-9D7, eBioscience). Cells were fixed 
with a second fixation buffer for 30 min at room temperature. 
Afterward, cells were stained with an IL-10 AlexaFluor 647 
RNA probe, or a positive control RPL13A AlexaFluor 647 
RNA probe, or no probe and placed in a 40°C incubator for 
2 h. The next day, the probes were then amplified and labeled. 
Cells were resuspended in PBS and acquired on a LSRII flow 
cytometer (BDB).

B10 suppression assay
Prior to stimulation for B10 cells, B cells were negatively 
isolated from a starting population of 107 PBMCs, using the 
B cell enrichment kit (Stemcell). Isolated B cells were plated 
in 96-well flat bottom plates in RPMI + 10% FBS. Cells were 
stimulated with CpG and rCD40L for 48 h at 37°C in 5% CO2 
incubator. At 43  h, cells were restimulated with PMA and 
ionomycin. In parallel with the end of the 48-h stimulation, 
PBMCs from the same patients were enriched for CD4 T cells 
(Stemcell) and stained with the Violet Proliferation dye (1 µM, 
BD Bioscience) in PBS and incubated in a 37°C water bath 
for 15 min. After 48 h, the isolated CD4 cells were combined 
with B cells at 1:1 and 1:2 ratio of T:B cells along with a CD4 
T cell only condition and stimulated with αCD3/αCD28 for 
5 days. For experiments using the transwell plates, stimulated 
B cells were plated in top chamber of 24-well transwell plates 
while CD4 T cells and αCD3/αCD28 were plated in bottom 
chamber.

To visualize proliferation of the CD4 T cells, cells were 
stained with Zombie Violet, CD14 Brilliant Violet 510 
(M5E2, Biolegend), CXCR5 AlexaFluor 647 (RF8B2, BDB), 
CD8 AlexaFluor 700 (SK1, Biolegend), CD3 APC-Cy7 (SK7, 
Biolegend), CD19 PE (HIB19, Biolegend), and CD4 PE-Cy7 
(SK3, Biolegend) conjugate for 25  min at 4°C. Following cell 

surface staining, cells were fixed with 1% PFA and acquired on 
a LSRII flow cytometer (BDB).

Data analysis
B10 cell frequencies and suppressive capacity were compared 
between controls and MG patients. In addition, MG patients 
were analyzed by disease severity according to MGFA Severity 
Class (mild or moderate/severe) and ocular only weakness 
(ocular MG) versus generalized disease. Data analysis was per-
formed using Flowjo software (Tree Star, Ashland, OR, USA). 
Student’s t-tests were used to determine statistical significance. 
The p values were calculated using Prism software (Graph Pad, 
La Jolla, CA, USA).

resUlTs

Detection of il-10 rna and Protein
Previous B10 studies identified IL-10-producing B cells after 48 h 
of stimulation with LPS or CpG. To evaluate whether IL-10 RNA 
could be detected prior to the 48-h timepoint, we performed a 
PrimeFlow RNA assay to co-visualize IL-10 RNA and protein 
expression by flow cytometry. We examined IL-10 expression 
after 5, 24, and 48 h of stimulation with rCD40L and CpG, and 
for the last 5 h, the cells were restimulated with PMA and iono-
mycin along with BFA. At the 5 h timepoint, we observed hints 
of IL-10 RNA and protein, and this expression increased with 
stimulation time (Figure  1). By 48  h, we observed the highest 
frequency of IL-10+ events and detected three combinations of 
IL-10-expressing B cells including IL-10 RNA only, IL-10 protein 
only, and IL-10 RNA and protein. Based on the highest expres-
sion of IL-10, we focused our evaluation of B10 cells after 48 h of 
stimulation.

B10 Frequency is associated 
with Disease severity
Because B10 cells promote immune tolerance, we next 
evaluated whether the frequency of IL-10-producing B cells is 
associated with disease severity. When all the MG patients were 
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FigUre 2 | a decrease in the frequency of B10 cells is associated with disease severity. Intracellular cytokine staining of peripheral blood mononuclear cells 
after 48 h of stimulation with lipopolysaccharide (LPS) or CpG and phorbal 12-myristate 13-acetate/ION during the last 5 h. (a) Representative flow cytometry plots 
of control, mild, and severe patients. Number in the gated box represent the frequency of interleukin-10 (IL-10)+ B cells; gated on CD19+ cells. (B,c) Composite 
data of B10 frequencies divided by (B) MFGA classification (12 control, 35 mild, 7 moderate/severe) or (c) divided by control, ocular, or generalized disease (12 
controls, 11 ocular, 28 generalized). Statistical significance is represented as follows: *p < 0.05; **p < 0.01.
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grouped together and compared to controls, we did not observe 
a difference between the two groups; therefore, we separated 
the MG patients based on disease severity (Figure 2A). Disease 
severity of MG was categorized into mild and moderate/
severe MG patients based on MGFA classifications of I–II and 
III–V, respectively. The lowest frequency of IL-10+ B cells was 
observed in the moderate/severe group and it was significantly 
lower compared to the control and mild groups (Figure 2B). 
Alternatively, we divided the MG patients into ocular only 
weakness and generalized disease, and the mean frequency of 
IL-10+ B cells in the generalized group was significantly lower 
than the control and ocular groups (Figure 2C). Collectively, 

we observed a decrease in B10 frequencies as MG severity 
worsened.

generation of B10 cells in the Presence of 
il-21 or il-35
Recent studies suggest that IL-21 and IL-35 are involved in the 
generation of B10 cells (26, 27). Thus, we examined whether 
the addition of IL-21 or IL-35 enhance the frequency of 
IL-10-producing B cells. We found that in both controls and 
MG patients, the addition of recombinant IL-21 or IL-35 did 
not enhance IL-10 production when added to the LPS or CpG 
stimulations (Figure 3). When cells were stimulated with IL-21 or 
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FigUre 3 | il-21 or il-35 does not enhance B10 cell populations. The effect of IL-21 or IL-35 on the generation of B10 cells was evaluated after 48 h of 
stimulation with lipopolysaccharide (LPS). Intracellular cytokine analysis for interleukin-10 (IL-10)+ B cells in the presence and absence of (a) IL-21 or (B) IL-35 and 
in combination with LPS. Bar graphs show the fraction of CD19+ B cells producing IL-10 after stimulations with (c) IL-21 or (D) IL-35 (six controls and six MG 
patients). Statistical significance is represented as follows: *p < 0.05; **p < 0.01.
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IL-35 alone, in the presence of rCD40L, IL-21 and IL-35 induced 
the production of IL-10 by B cells, but the frequency of IL-10 was 
lower compared to toll-like receptor signaling by LPS and CpG. 
These results support an independent role for IL-21 and IL-35 in 
promoting the generation of B10 cells.

T cell suppression by B10 cells
Since we observed a decrease in B10 cells in MG patients, we 
next investigated the suppressive ability of B10 cells on CD4+ 
T cell proliferation. Proliferation of CD4+ T cells was assessed by 

the Violet Proliferation Dye 450, whose fluorescence diminishes 
by half after each division. To test the function of B10 cells, the 
B cells containing the newly generated subset of B10 cells after 
48  h of stimulation were cultured at a 1:1 ratio of B cells and 
CD4 T cells in the presence of αCD3 and αCD28 stimulation. 
Compared to the positive control condition with only T cells, 
we observed a significant decrease in the proliferative index in 
both MG patients and controls when B cells containing B10 cells 
were included in the culture (Figure 4). The proliferation index 
is the average number of divisions underwent by those cells 
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FigUre 4 | continued

FigUre 4 | continued 
suppression of T cell proliferation by B10 cells worsens with disease 
severity. To evaluate suppression by B10 cells, proliferation of CD4 T cells 
was measured after a 5-day stimulation with anti-CD3 and anti-CD28. 
(a) Representative histograms of CD4 T cell proliferation from a control and 
MG patient. Baseline level represents the fluorescence of the proliferation dye 
prior to anti-CD3 and anti-CD28 stimulation. (B–D) Comparison of the 
proliferative index from control subjects and MG patients categorized by 
MGFA classifications of mild or moderate/severe. Culture conditions include 
(B) CD4 T cell only (10 controls, 11 mild, 4 moderate/severe); (c) 1:1 mixture 
of B and CD4 T cells (9 controls, 6 mild, 6 moderate/severe); and (D) 1:1 
mixture of B and T cells in transwell plate (10 controls, 11 mild, 4 moderate/
severe). Statistical significance is represented as follows: *p < 0.05.
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that divided. This decrease in the proliferative index, after the 
addition of B cells, was comparable between the control group 
and the total MG patient group. However, when MG patients 
were categorized by disease severity (ocular/mild or moderate/
severe), the moderate to severe group were less capable of sup-
pressing CD4 T cell proliferation compared to the mild group 
(Figure  4C). Furthermore, to determine if this decrease in 
proliferation is IL-10 dependent we introduced a transwell con-
dition that separated the B cells and CD4 T cells from cell-to-cell 
contact, but allowed proteins to migrate through the permeable 
barrier. We observed a decrease in the proliferation of T cells 
in the transwell culture compared to the T cell only culture; 
however, this decrease was not on par with the suppression in 
the 1:1 coculture condition (Figure 4D).

DiscUssiOn

Our results suggest that reduced frequencies of B10 cells are 
partially responsible for the loss of self-tolerance in patients with 
AChR antibody positive MG. The underlying immunopathogenic 
mechanism responsible for reduced B10 cell frequencies in MG 
patients is uncertain and many fundamental aspects of B10 cell 
biology remain to be elucidated. However, therapeutic strategies 
aimed at restoring B10 cell numbers may be a rational target for 
ameliorating MG and other autoimmune diseases with similar 
pathophysiology (27, 28).

A unique aspect of this study was the application of a 
PrimeFlow RNA assay that uses branched-DNA technology to 
amplify the detection of an RNA transcript in combination with 
staining for proteins with flurochrome-conjugated antibodies. 
This enabled us to assess the kinetics of IL-10 production by 
B cells during the assay development stage and optimize condi-
tions (48-h stimulation with CpG) for B10 cell identification. 
This was particularly helpful for identifying this scarce B cell 
subset that is even more rare in the setting of MG. For future 
therapeutic strategies that seek to expand this B cell subset, 
this knowledge of prime B10 cell conditions derived from the 
PrimeFlow RNA assay will be particularly helpful.

Another potential application for the observations in our study 
is to monitor B10 cell frequencies as a marker of disease sever-
ity. Since B10 cell frequencies progressively decrease as disease 
severity increases, this cell subset could be used in the clinic to 
longitudinally monitor patient status in response to therapy and 
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possibly to predict worsening. This approach appears promising 
in the setting of rituximab-treated MG patients where rapid 
repopulation of B10 cells was associated with better outcomes 
(17). Further validation for this application, including in the set-
ting of other immunosuppressives, is needed.

Based on previous Breg studies demonstrating IL-21 and IL-35 
as drivers of Breg development, we examined whether recombi-
nant IL-21 or IL-35 enhances the frequency of B10 cells (26, 27). 
Although we found that IL-21 or IL-35 did not act synergistically 
with LPS or CpG to enhance the frequency of B10 cells, the addi-
tion of IL-21 and IL-35 alone promoted the generation of B10 
cells. This result suggests that IL-21 and IL-35 may regulate the 
generation of B10 cells, and the differences between our study 
and the previously mentioned studies could be attributed to the 
disease model, animal model, and source of cells. We utilized 
PBMCs for our studies, while the murine studies examined 
splenic B cells. For future studies using IL-21 to enhance the 
generation of B10 cells, caution must be taken because IL-21 has 
also been demonstrated to promote T cell responses (29–33), and 
elevated levels of IL-21 have been implicated in driving autoim-
mune disease (34–36).

Our results differ somewhat from those published recently 
by Sheng et al. (19). in which they demonstrate a deficiency in 
the CD19+CD24hiCD38hi Bregs to suppress type 1 T helper (Th1) 
cytokine production and had no effect of CD19+CD24hiCD38hi 
Bregs in suppressing CD4 T cell proliferation. Variations in 
results could be attributed to differences in the approach to 
assessing functionality of Bregs and identification of Breg sub-
sets. Sheng et al. characterized two populations of Bregs: Breg1 
(CD19+CD1d+CD5+ B cells) and Breg2 (CD19+CD38+CD24+ 
B cells). By contrast, we identified a broader population of 
Bregs with the common property of IL-10 production. This was 
intentional, as IL-10-producing B cells overlap in phenotype 
with multiple proposed Breg subsets, including those selected 
by Sheng et  al., and other phenotypes (21, 37). Currently, a 
known specific transcription factor or cell surface phenotype 
that identifies Bregs is undefined (21). We also found that 48 h 
of stimulation with LPS (not shown) or CpG optimized CD19+ 
IL-10-producing B cells (Figure  1). Sheng et  al. compared 
Breg2 depletion versus no depletion to assess the production 
of Th1 cytokines. They demonstrate that depleting the Breg2 
population in MG patients did not increase the frequency of 
IFN-γ- and TNF-α-producing CD4+ T cells, suggesting that the 
Breg2 subset in MG is defective in suppressing T cell function. 
In their approach, the inability to suppress could be attributed 
to other Breg subsets including B10 cells that are keeping the 
CD4 T cell response at bay even after Breg2 cells are depleted. 
Furthermore, our transwell experiment demonstrated that the 
majority of B10 cell suppressive activity on CD4+ T cells is likely 
through secreted IL-10.

Since the suppression of CD4 proliferation in the transwell 
condition did not match a mixed 1:1 culture of B cells and T 
cells, it is likely that other B cell-mediated immunosuppressive 
mechanisms are involved. One possibility is the suppression 
through direct or indirect cell-to-cell contact. Early Breg studies 
defining cell-to-cell contact as a mechanism of B cell-mediated 

immunosuppression stimulated isolated CD19+CD25+ B cells 
with autologous CD4 T cells (38, 39). Although the CD19+CD25+ 
B cells significantly suppressed the proliferative capacity of CD4 
T cells, further phenotypic analysis revealed that this population 
was associated with high levels of IL-10 (39). Furthermore, this 
group also observed enhanced suppression by Bregs after stimu-
lation of Bregs with CpG ODN-CD40L. These observations do 
not discard the role of IL-10 in their observed Breg suppression, 
since we include CpG ODN-CD40L to promote the generation of 
B10 cells. Furthermore, the Bregs can indirectly promote T cell 
suppression by promoting the expression of FOXP3 and CTLA-4 
in Tregs (39).

Collectively, we demonstrate a defect in the quantity and 
quality of B10 cells in MG patients with moderate to severe 
disease. Unlike other B cell subsets in which the phenotype 
consists of a heterogenous population of Bregs and other B cells, 
B10 cells are a distinct population of Bregs with IL-10 as the 
common identifier. These results suggest that B10 cell frequencies 
may be a useful biomarker of disease severity, and therapeutics 
designed to restore B10 cell frequencies could hold promise as a 
treatment for this disease through restoration of self-tolerance.
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